Supplementary Information

A reduction and pH dual-sensitive nanodrug for targeted theranostics

in hepatocellular carcinoma

Mingyue Cai,^{‡a} Bo Li,^{‡b} Liteng Lin,^{‡a} Jingjun Huang,^a Yongcheng An,^a Wensou Huang,^a Zhimei Zhou,^a Yong Wang,^c Xintao Shuai^{*b} and Kangshun Zhu^{*a}

^aLaboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.

E-mail: zhksh010@163.com; Tel: +86-20-34156205

^bPCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.

E-mail: shuaixt@mail.sysu.edu.cn; Fax: +86-20-84112245; Tel: +86-20-84110365

^cCollege of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.

enna.

[‡]These authors contributed equally.

Fig. S1 Synthetic route of the diblock copolymer mPEG-PAsp(MEA&DIP).

Fig. S2 ¹H NMR spectrum of mPEG_{2k}-PBLA₅₀ in DMSO-d₆. Characteristic peaks as follows: ¹H NMR (400 MHz, DMSO-d₆, 298 K): δ (ppm) = 2.52 - 2.88 ppm (-CH₂COOCH₂Ph, f), 3.24 ppm (CH₃(OCH₂CH₂) NH-, a), 3.50 ppm (CH₃(OCH₂CH₂) NH-, b), 4.62 ppm (-CH- of the main chain, c), 5.00 ppm (-CH₂COOCH₂Ph, g), 7.27 ppm (-CH- of benzyl group, e), 8.16 ppm (-NH- of the main chain, d).

Fig. S3 ¹H NMR spectrum of mPEG_{2k}-PAsp(MEA&DIP)₅₀ in DMSO-d₆. Characteristic peaks as follows: ¹H NMR (400 MHz, DMSO-d₆, 298 K): δ (ppm) = 1.06 ppm ((CH₃)₂CH- of DIP, e), 2.49 ppm (-CH₂-CH₂-CH-(CH₃)₂- of DIP, i), 2.68 ppm (-CH₂-CH₂-SH of MEA, g), 3.34 ppm (CH₃(OCH₂CH₂) NH-, k), 3.61 ppm (CH₃(OCH₂CH₂) NH-, a), 4.55 ppm (-CH- of the main chain, b). Peak f and peak h are covered by the water peak.

Fig. S4 Acid-base titration curve of mPEG_{2k}-PAsp(MEA&DIP)₅₀. (NaOH concentration: 0.2

Fig. S5 SF loading contents of GPPSS prepared at different drug feeding contents.

Fig. S6 T2 relaxivities of the micelles.

Fig. S7 T2WI image of the HepG2 cell samples. (A) T2WI images of HepG2 cells incubated with micelles at various Fe concentrations for 2 h. (B) Normalized signal intensities of cell samples on T2WI images (*P < 0.05 and **P < 0.01, compared with PPSS).

Fig. S8 H&E staining images of major organs from the mice in different treatment groups (scale bar: 20 μ m).

Incubation time —	IC ₅₀ (μg mL ⁻¹)		
	Free SF	GPPSS	PPSS
24 h	4.55	4.99	9.05
48 h	2.96	2.85	5.24
72 h	1.93	1.79	3.54

Table S1. The IC_{50} values of micellar nanodrug for HepG2 cells

 IC_{50} , half maximal inhibitory concentration.