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Synthesis of PLGA-PEG-PLGA copolymer. The detailed procedure was described 

as the following: 25 g of PEG 1500 was added into a three-neck flask and heated at 130 

°C for 3 h under vacuum to eliminate the remanent moisture. Then, LA (45.46 g) , GA 

(12.21 g) and catalytic amount of Sn(Oct)2 were put into and maintained at 100 °C 

under vacuum for another 30 min. Next, the reaction system was stirred continuously 

and heated at 150 °C under the argon atmosphere for 12 h. After that, the reaction 

products were washed by 80 °C water for 4 times, and then lyophilized to obtain the 

final copolymer (PLGA-PEG-PLGA). 

Characterization of PLGA-PEG-PLGA copolymer. 1H-NMR spectra measured by 

a 400 MHz spectrometer (Bruker, AVANCE III) were used to investigate the chemical 

structure and composition of PLGA-PEG-PLGA copolymer. CDCl3 and 

tetramethylsilane (TMS) were used as the solvent and the internal standard, 

respectively. The gel permeation chromatography system (GPC, Agilent1260) with a 

differential refractometer was used to determine the MW and distribution of the 

copolymer. The measurement was performed at 35 °C and tetrahydrofuran was used as 

the eluent at a flow rate of 1.0 mL/min. Monodispersed polystyrene was used as the 

standard for MW calculation. Rheological properties of the different composites were 

measured by a dynamic rheometer (Kinexus, Malvern) equipped with a Peltier cone-

plate (angle: 1°, 60 mm diameter, 0.03 mm gap). Samples were loaded and sealed with 

a thin layer of silicone oil to prevent water evaporation. The measurements were carried 

out at an oscillatory frequency of 10 rad/s and a heating rate of 0.5 °C/min from 15 °C 

to 45 °C.
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CLSM Imaging & Flow Cytometry Analysis. Prior to CLSM imaging or flow 

cytometry analysis, cells were cultured in 35-mm glass bottomed dishes at a density of 

2 × 105 /dish for 24 h, and then randomly divided into five groups: laser group, Gel-

AINP/FMCP group, Gel-FMCP + laser group, Gel-AINP + laser group and Gel-

AINP/FMCP + laser group. Afterwards, cells were stained with Calcein-AM (10 mM 

in PBS) and PI (2 μM in PBS) for 15 min at 37 °C under 5% CO2 atmosphere. For 

CLSM imaging, cells were subjected to imaging analysis with a confocal microscopy 

after replacing the staining solution with free RPMI-1640. Calcein-AM was excited by 

a 488 nm laser and the green emission (520 nm) was collected with a band pass-filter 

within the range 500-550 nm. PI was excited by a 564 nm laser and the red emission 

(620 nm) was collected with a band pass-filter within the range 600-700 nm. For flow 

cytometry analysis, after cells were stained with Annexin V-FITC/PI apoptosis 

detection kit, cells were directly digested and analyzed by a Gallios flow cytometry 

with excitation at 488 nm and emission at 525 ± 40 nm and 620 ± 30 nm, respectively. 

WinMDI software (version 2.9) was used to calculate cell apoptosis rate.
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Fig. S1. XRD spectrum of AINP.

Fig. S2. Raman spectrum of AINP.
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Fig. S3. FT-IR spectrum of AINP.

Fig. S4. TEM photograph of AINP.
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Fig. S5. Size distribution of AINP dispersion by DLS.

Fig. S6. Photographs of AINP/FMCP solutions with or without PLGA-PEG-PLGA 

copolymer.
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Fig. S7. Synthesis route of PLGA-PEG-PLGA copolymer.

Fig. S8. 1H NMR spectrum of PLGA-PEG-PLGA copolymer.
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Fig. S9. GPC trace of PLGA-PEG-PLGA copolymer.

Fig. S10. Typical images of the sol and gel states of AINP solution and various 

copolymer solutions after exposure to NIR laser.
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Fig. S11. Temperature elevation and decline curves of AINP dispersion exposed to a 

1064 nm laser (50 μg/mL, 1 W/cm2).

Fig. S12. Temperature change of hydrogel system containing various concentrations of 

AINP upon exposure to a 1064 nm laser (PLGA-PEG-PLGA: 25 wt%; FMCP: 5 v/v%; 

0.5 W/cm2). 
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Fig. S13. The respective cell viability of HCT-116 cancer cells after treated with 

different concentrations of FMCP followed by a 1064 nm laser irradiation (0.5 W/cm2; 

5 min). 

Fig. S14. Photographs of mice and their skin tissue after subcutaneously injected with 

AINP and Gel-AINP, and further exposed to NIR laser.
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Fig. S15. H&E staining of the main organs of mice after different treatments. All the 

scale bars are 200 μm.

Table S1 Molecular parameters of PLGA-PEG-PLGA copolymer.

PEG Mn
a Mn

a LA/GA 
(mol/mol)a Mn

b (Mw/Mn)b

1500 1830-1500-
1830 2.98 4420 1.21

a Number-averaged molecular weight, Mn of the central block PEG was provided by 
Aldrich. Molar ratio of lactide/glycolide (LA/GA) and Mn of each PLGA block were 
calculated by 1H NMR.
b Measured by GPC.
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Table S2 Photothermal conversion efficiency of AINP and previous reported 

photothermal agents. 

Photothermal 
agents

 
Laser 

wavelength 
(nm)

Photothermal 
conversion 

efficiency ()

   
Reference

Fe3O4@CuS 1064 19.2 % S1

IONP@shell-in-
shell

1064 28.3 % S2

Bi 1064 32.2 % S3

SPN-OT 1064 36 % S4

Au-Cu9S5 1064 37 % S5

MoOx 1064 37.4 % S6

(NH4)xWO3 1064 39.4 % S7

Ti3C2@Au 1064 39.6 % S8

Cu3BiS3 1064 40.7 % S9

Nb2C 1064 45.6 % S10

SPN-DT 1064 49 % S4

TBDOPV−DT 1064 50 % S11

SPN-PT 1064 53 % S4

PPy 1064 64.6 % S12

AINP 1064 47.6 % This work
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