Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2020

Tough and injectable fiber reinforced calcium phosphate cement as an alternative to polymethylmethacrylate cement for vertebral augmentation: a biomechanical study

Sónia de Lacerda Schickert, João Castro Pinto, John Jansen, Sander C. G. Leeuwenburgh, Jeroen J.J.P. van den Beucken

Supplemental Information

Table S1 - Semi-quantitative scoring system used to evaluate the cohesion of the CPC formulations

GRADE	PARTICULATE CLOUD FORMATION
1	Virtually no particulate cloud formation
2	Minimal particulate cloud formation upon injection into aqueous environment
3	Visible particulate cloud formation in the vicinity of the injected CPC
4	Large particulate cloud formation that spreads over the majority of the liquid volume
5	Virtually no cohesion present, with near total disintegration of CPC
GRADE	FRAGMENTATION
1	A continuous tube of CPC is extruded
2	CPC tube remains almost continuous with an average tube length > 5 cm
3	CPC tube fractures in several points with an average tube length of 3 cm
4	Prevalence of fracture points in CPC tube is frequent with the average tube length < 1 cm
5	Virtually no cohesive properties present, with total disintegration of CPC

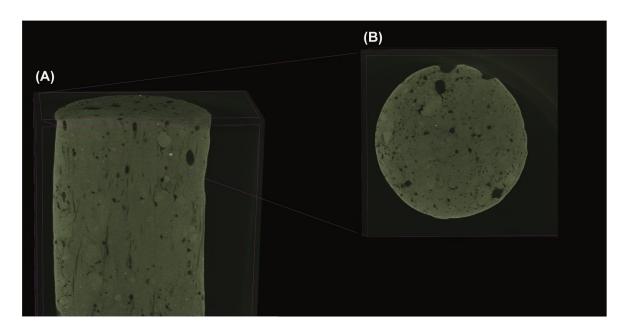


Figure S1. Micro-CT images of extruded cement paste in a (A) a lateral view and (B) a top view.