

Supplementary Tables and Figures

TableS1. Elemental analysis of PEM in various preparations analyzed by energy-dispersive x-ray spectroscopy (EDS).

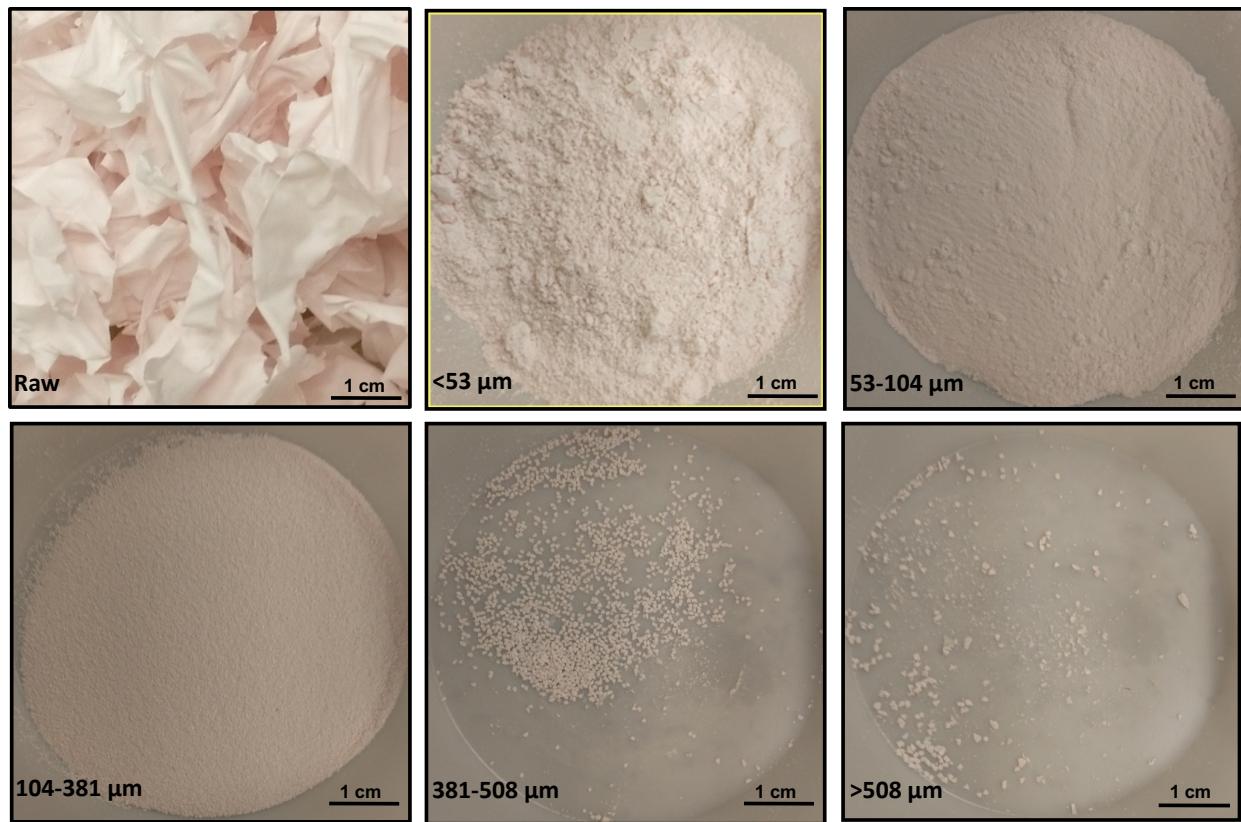
Element	PEM, Weight (%) (Average \pm SD)				
	<15 μ m	<53 μ m	53-104 μ m	104-381 μ m	Intact membranes
Carbon	68.30 \pm 9.25 ^a	60.72 \pm 4.55 ^{ab}	55.09 \pm 3.96 ^b	70.36 \pm 4.65 ^a	64.13 \pm 5.74 ^{ab}
Nitrogen	12.61 \pm 8.45 ^{ab}	18.65 \pm 3.42 ^{ab}	21.36 \pm 2.82 ^a	9.17 \pm 3.34 ^b	13.82 \pm 6.07 ^{ab}
Oxygen	16.67 \pm 1.72 ^{ab}	18.29 \pm 3.47 ^{ab}	21.13 \pm 2.98 ^a	13.36 \pm 3.64 ^b	19.87 \pm 1.29 ^a
Magnesium	0.01 \pm 0.02	0	0	0	0
Sulfur	2.21 \pm 0.06 ^b	2.25 \pm 0.55 ^b	2.34 \pm 0.87 ^b	6.88 \pm 2.58 ^a	2.15 \pm 1.07 ^b
Calcium	0.08 \pm 0.11 ^{ab}	0.07 \pm 0.05 ^b	0.06 \pm 0.06 ^b	0.22 \pm 0.06 ^a	0.01 \pm 0.03 ^b

Values represent Mean \pm SD from three independent measurements. Values with different superscript letters (Tukey multiple means comparison) are significantly different (ANOVA; P < 0.05).

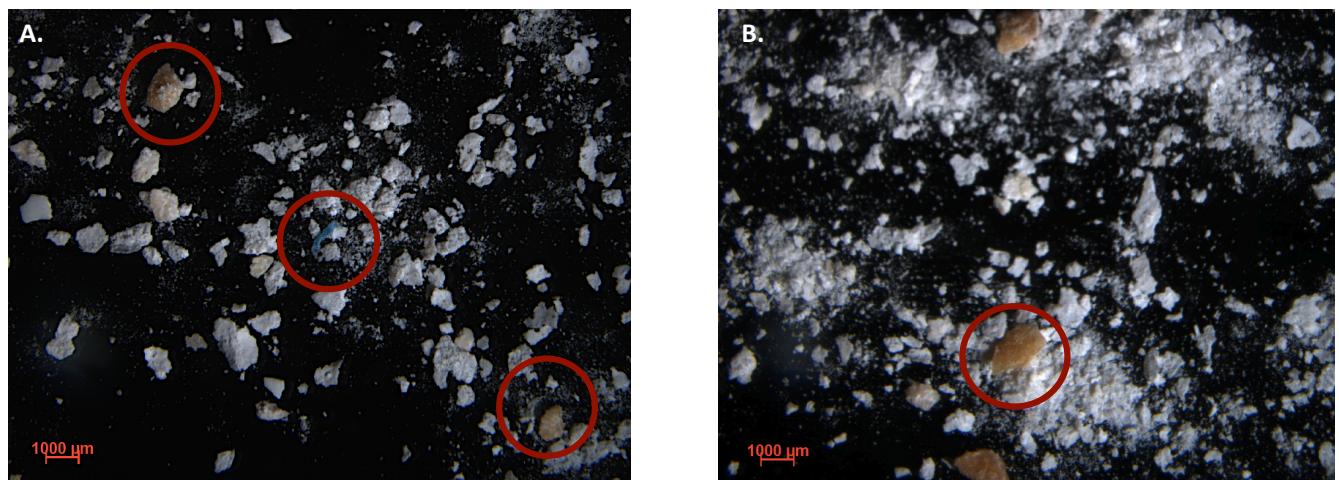
Table S2. Calcium content of manually processed PEM measured by calcium colorimeter with the associated kit (Hanna HI 758, ITM Instruments Inc., Canada)

Type of ESM processing	CaCO ₃ (ES) content (wt %) in 0.2-1 g
Manually processed- 381-504μm	0.39±0.16
Manually processed-104-381μm	0.42±0.22
Manually processed-53-104μm	1.55±1.15
Manually processed-<53μm	0.49±0.29
Manually processed-<15μm	0.37±0.20
Industrially processed	2.64±0.12

Values represent Mean ± SD from 2 independent samples each done in triplicate (n = 3).


Table S3. Amino acid composition of PEM in various size (Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, SPARC Biocentre, Toronto, ON)

Amino acid	mole%						Mean± Std. Dev
	PEM (Unsieved)	PEM (104-381 µm)	PEM (53-104 µm)	PEM (<53µm, R1)	PEM (<53µm, R2)	PEM (Emulsiflex)	
Asx (Asp+Asn)	7.5	7.6	7.7	7.6	7.5	7.7	7.6±0.1
Glx (Glu+Gln)	9.9	10.2	10.3	10.1	10.0	10.2	10.1±0.1
OH-Pro	0.9	0.9	0.9	0.9	0.9	0.9	0.9±0.0
Ser	6.5	6.6	6.8	6.7	6.5	6.7	6.6±0.1
Gly	9.8	9.9	10.0	10.0	9.8	10.0	9.9±0.1
His	3.1	3.2	3.2	3.2	3.1	3.2	3.2±0.0
Arg	5.0	5.1	5.2	5.1	5.0	5.2	5.1±0.1
Thr	5.9	6.0	6.1	6.0	5.9	6.1	6.0±0.1
Ala	3.5	3.5	3.6	3.6	3.5	3.6	3.5±0.0
Pro	9.6	9.7	9.9	9.7	9.6	9.8	9.7±0.1
Tyr	1.3	1.3	1.3	1.4	1.3	1.4	1.3±0.0
Val	7.7	7.7	7.8	7.7	7.6	7.7	7.7±0.1
Met	3.3	3.3	3.4	3.3	3.3	3.3	3.3±0.0
Ile	3.1	3.1	3.2	3.2	3.1	3.1	3.1±0.0
Leu	4.3	4.3	4.4	4.4	4.3	4.4	4.4±0.1
OH-Lys	0.4	0.4	0.4	0.5	0.4	0.4	0.4±0.0
Phe	1.7	1.7	1.7	1.7	1.7	1.7	1.7±0.0
Lys	3.1	3.2	3.1	3.2	3.1	3.1	3.1±0.0
Cys A	13.2	12.3	11.1	11.6	13.4	11.6	12.2±0.9


Table S4. Amino acid composition of the PEM powder (WP-1) as compared to the industrial ESM

Amino acid	mole%		
	PEM	I-ESM industrial dry Batch 2	Reference values*
Asx (Asp+Asn)	7.6±0.1	2.3	7.9±0.4
Glx (Glu+Gln)	10.1±0.1	6.3	10.5±0.5
OH-Pro	0.9±0.0	0.9	1.1±0.2
Ser	6.6±0.1	8.2	6.7±0.5
Gly	9.9±0.1	11.7	10.4±0.5
His	3.2±0.0	3.7	3.1±0.3
Arg	5.1±0.1	6.0	5.2±0.2
Thr	6.0±0.1	6.7	6.1±0.3
Ala	3.5±0.0	5.5	4.0±0.1
Pro	9.7±0.1	10.5	10.6±0.8
Tyr	1.3±0.0	1.9	1.3±0.2
Val	7.7±0.1	9.2	7.5±1.1
Met	3.3±0.0	3.9	3.2±0.4
Ile	3.1±0.0	4.1	3.2±0.4
Leu	4.4±0.1	6.1	4.7±0.2
OH-Lys	0.4±0.0	0.9	0.2±0.2
Phe	1.7±0.0	2.3	1.4±0.3
Lys	3.1±0.0	2.9	3.2±0.2
Cys A	12.2±0.9	6.9	9.9±0.7

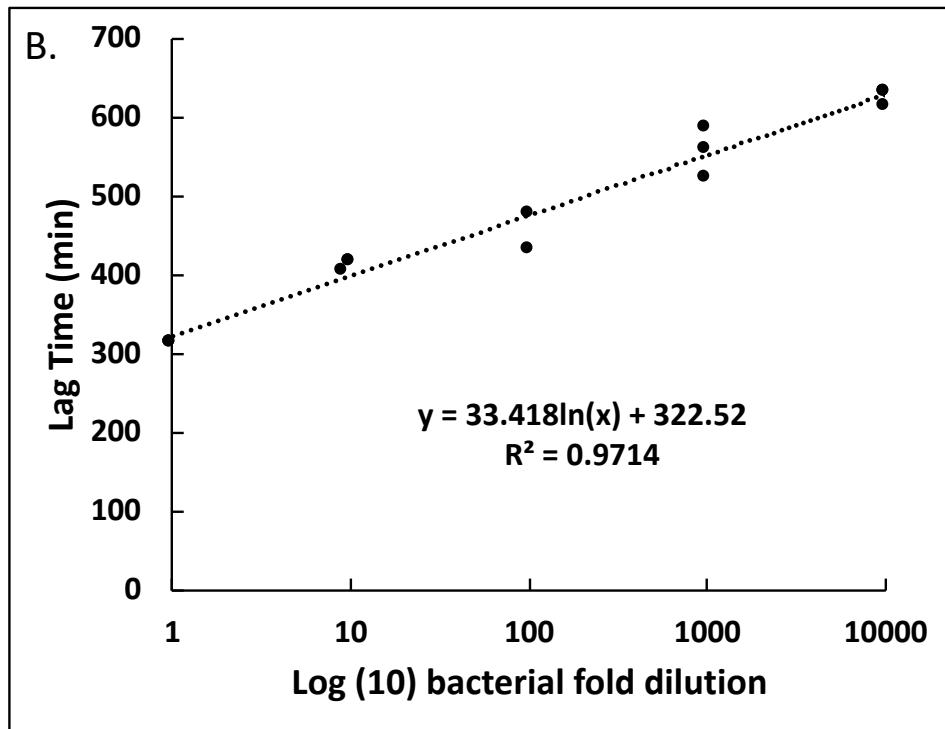
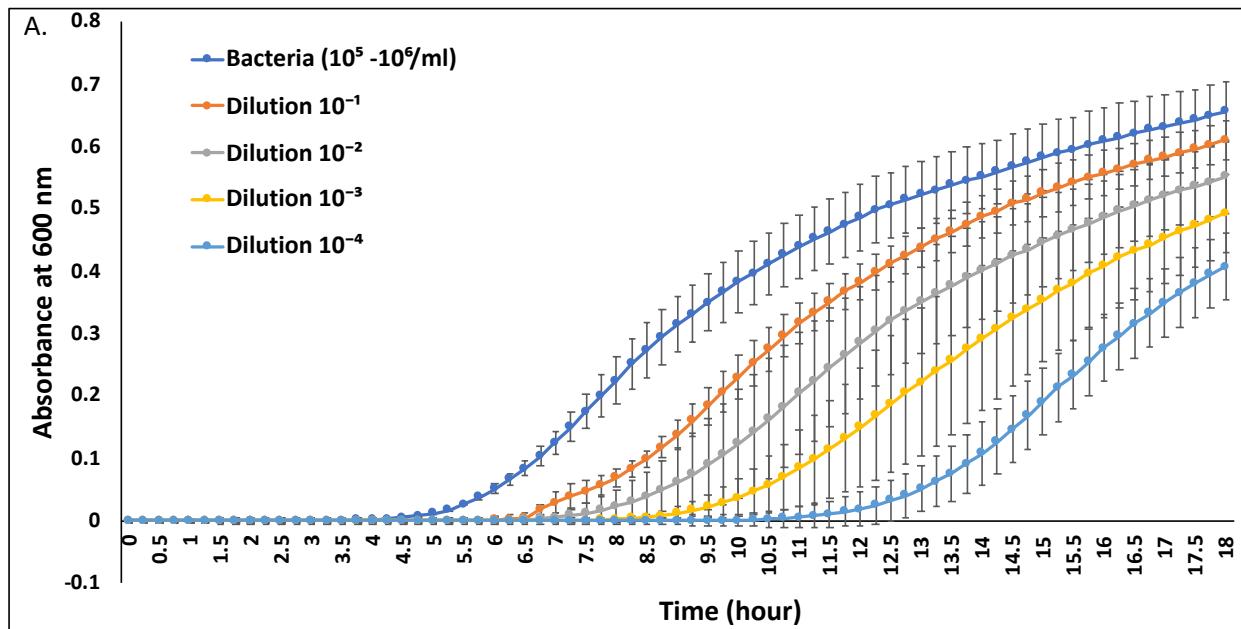


* Average of 5 references **1.** Leach RM, Jr., Rucker RB, Van Dyke GP (1981) Egg shell membrane protein: a nonelastin desmosine/isodesmosine-containing protein. *Arch Biochem Biophys* 207: 353-359; **2.** Baumgartner S, Brown DJ, Salevsky E, Jr., Leach RM, Jr. (1978) Copper deficiency in the laying hen. *J Nutr* 108: 804-811; **3.** Salevsky E, Leach RM (1980) Studies on the Organic-Components of Shell Gland Fluid and the Hens Eggshell. *Poultry Science* 59: 438-443; **4.** Crombie G, Snider R, Faris B, Franzblau C (1981) Lysine-Derived Cross-Links in the Eggshell Membrane. *Biochimica et Biophysica Acta* 640: 365-367; **5.** Ahmed TAE, Suso HP, Maqbool A, Hincke MT (2019) Processed eggshell membrane powder: Bioinspiration for an innovative wound healing product. *Mater Sci Eng C Mater Biol Appl*; 95:192-203

Figure S1. Macroscopic appearance of processed PEM after cryogenic grinding and sieving.

Figure S2. Dry industrial ESM (I-ESM) visualized by stereomicroscopy showing contamination with **A.** Egg shell and environmental debris **B.** Yolk at 7.5X magnification.

Figure S3. The antimicrobial activity associated with PEM treatment was measured as bacterial growth inhibition calculated from growth curves. **A.** Serially ten-fold dilution series of *S. aureus* obtained from the uninhibited control. Most concentrated bacterial solution (cell density = 10^5 - 10^6) was serially diluted in a microplate (in triplicate) and bacterial growth was monitored by measuring the optical density at 600 nm every 15 min for 18 hours. **B.** A standard curve was

generated to establish a correlation between the number of viable bacterial cells in the inoculum and bacterial growth lag time. This standard curve was used to determine bacterial growth inhibition.