## **Supplementary Materials**

## Folic acid-functionalized magnetic nanoprobes via PAMAM dendrimers/SA-biotin mediated cascade amplifying system for efficient enrichment of circulating tumor cells

Xiangyu Meng<sup>a</sup>, Pingfeng Sun<sup>b</sup>, Hengyi Xu<sup>c,\*</sup>, Zhifei Wang<sup>a,\*</sup>

a School of Chemistry and Chemical Engineering, Southeast University, Nanjing

211189, Jiangsu, PR China

b Jiangxi Maternal and Child Health Hospital, Nanchang 330000, Jiangxi, PR China

c State Key Laboratory of Food Science and Technology, Nanchang University,

Nanchang, 330047, Jiangxi, PR China

## \* Corresponding author:

Hengyi Xu, e-mail address: HengyiXu@ncu.edu.cn

Zhifei Wang, e-mail address: zfwang@seu.edu.cn



Fig. S1. The relative element mapping of SM@BPF by SEM analysis.



Fig. S2. The preparation process of SMs and BPF, and the schematic diagram for

CTCs separating in blood via two-step binding strategy.



Fig. S3. TEM image (A) and hydrodynamic size (B) of FPMs.



**Fig. S4.** Capture efficiency of SKOV3 by SM@BPF and FA-PAMAM-MNPs (FPM). \*\*\*p < 0.001, \*\*p < 0.01, or \*p < 0.05. Error bars indicate standard deviation (n = 3).

| Nanoplatform                       | Probe      | Sample | Capture          | Cell<br>viability | Cancer cells | Detection       | Ref.  |
|------------------------------------|------------|--------|------------------|-------------------|--------------|-----------------|-------|
| Δh-                                | anti_HFR?  | Whole  | 84%              | /                 | SK-BR-3      | /               | 1     |
| silane-coated                      | antibody   | blood  | 04/0             | /                 | cells        | 7               |       |
| MNPs                               | annoody    | 01000  |                  |                   | cells        |                 |       |
| MNPs-Ab                            | anti-      | PBS    | 70.2%            | /                 | LM-MEL-33    | colorimetric    | 2     |
|                                    | MCSP       | 125    | 10.270           | ,                 | cells        | detection       |       |
|                                    | antibody   |        |                  |                   |              |                 |       |
| Ab@Lipo-                           | anti-      | Whole  | ~68%             | viable            | HCT-116      | Immunafluores   | 3     |
| MNP-GO                             | EpCAM      | blood  |                  |                   | cells        | -cence staining |       |
|                                    | antibody   |        |                  |                   |              | 8               |       |
| Tf-                                | Transferri | Whole  | $58.7 \pm 6.4\%$ | 89%               | D556         | /               | 4     |
| PEG-b-AGE                          | n (Tf)     | blood  |                  |                   | Medullobla-  |                 |       |
| coated IONPs                       |            |        |                  |                   | stoma cells  |                 |       |
| UCNP-Apt-                          | Aptamer    | PBS    | 80%-90%          | /                 | CCRF-CEM     | CCK4-based      | 5     |
| Biotin and                         | -          |        |                  |                   | cells        | ICC             |       |
| IONPs-Av                           |            |        |                  |                   |              |                 |       |
| Apt-MBs                            | aptamer    | Whole  | 55 %             | /                 | DLD-1 cells  | SERS imaging    | 6     |
|                                    |            | blood  |                  |                   |              |                 |       |
| Fe <sub>3</sub> O <sub>4</sub> @HA | FA and     | Whole  | 88%              | viable            | MCF-7 cells  | three-color ICC | 7     |
| capsules                           | anti-      | blood  |                  |                   |              |                 |       |
|                                    | EpCAM      |        |                  |                   |              |                 |       |
|                                    | antibody   |        |                  |                   |              |                 |       |
| MNPs-FA                            | FA         | Whole  | 61.3%            | viable            | SKOV3 cells  | HE4-based ICC   | 8     |
|                                    |            | blood  |                  |                   |              |                 |       |
| FA-BSA-MNP                         | FA         | Whole  | 61.3%            | 92.7%             | SKOV3 cells  | HE4-based ICC   | 9     |
|                                    |            | blood  |                  |                   |              |                 |       |
| MNPs-SA and                        | FA         | Whole  | 80%              | viable            | SKOV3 cells  | HE4-based ICC   | 10    |
| biotin-BSA-FA                      |            | blood  |                  |                   |              |                 |       |
| SM@BPF                             | FA         | Whole  | 79.6%            | 93.2%             | SKOV3 cells  | HE4-based ICC   | This  |
|                                    |            | blood  |                  |                   |              |                 | study |

 Table S1 Comparison of the current magnetic separation technique for CTC

 enrichment and detection.

## References

-

[1] Haghighi AH, Faghih Z, Khorasani MT, Farjadian F. Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. *J.Magn. Magn. Mater.* 2019, **490**, 165479-165489.

[2] Li J, Wang J, Wang Y, Trau M. Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. *Analyst* 2017, **142**, 4788-4793.

[3] Lai C H, Tsai W S, Yang M H, Chou T Y, Chang Y C. A two-dimensional immunomagnetic nano-net for the efficient isolation of circulating tumor cells in whole blood. *Nanoscale* 2019, **11**, 21119-21127.

[4] Lin R, Li Y, MacDonald T, Wu H, Provenzale J, Peng X, et al. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. *Colloids Surface. B.* 2017, **150**, 261-270.

[5] Fang S, Wang C, Xiang J, Cheng L, Song X, Xu L, et al. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. *Nano Res.* 2014, **7**, 1327-1336.

[6] Sun C, Zhang R, Gao M, Zhang X. A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surfaceenhanced Raman scattering imaging. *Anal. Bioanal. Chem.* 2015, **407**, 8883-8892.

[7] Ma S, Zhou X, Chen Q, Jiang P, Lan F, Yi Q, et al. Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells. *J. Colloid Inter. Sci.* 2019, **545**, 94-103.

[8] Liu W, Nie L, Li F, Aguilar ZP, Xu H, Xiong Y, et al. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. *Biomater. Sci.* 2016, **4**, 159-166.

[9] Li F, Yang G, Aguilar ZP, Xiong Y, Xu H. Affordable and simple method for separating and detecting ovarian cancer circulating tumor cells using BSA coated magnetic nanoprobes modified with folic acid. *Sensors Actuat. B-Chem.* 2018, **262**, 611-618.

[10] Nie L, Li F, Huang X, Aguilar ZP, Wang YA, Xiong Y, et al. Folic acid targeting for efficient isolation and detection of ovarian cancer CTCs from human whole blood based on two-step binding strategy. *ACS Appl. Mater. Inter.* 2018, **10**, 14055-14062.

| Sample (No.) | Sample volume (mL) | Numbers of identifed CTC |
|--------------|--------------------|--------------------------|
| 1            | 1.0                | 7                        |
| 2            | 1.0                | 3                        |
| 3            | 1.0                | 11                       |
| 4            | 1.1                | 5                        |
| 5            | 1.0                | 2                        |
| 6            | 1.0                | 6                        |
| 7            | 1.1                | 4                        |
| 8            | 1.0                | 2                        |
| 9            | 1.0                | 3                        |
| 10-20        | 1.0                | 0                        |

samples.

No: number.