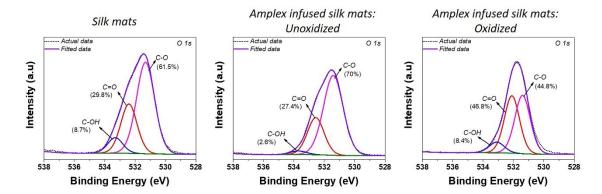
Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2020

Supporting information

Silk Fibroin Nanofibrous Mats for Visible Sensing of Oxidative Stress in Cutaneous Wounds

Sushant Singh¹, Gabriela Cortes², Udit Kumar¹, Tamil S. Sakthivel¹, Stephen M. Niemiec⁴, Amanda E. Louiselle⁴, Mark Azeltine-Bannerman⁴, Carlos Zgheib⁴, Kenneth W. Liechty⁴, Sudipta Seal^{1,3*}

¹Advanced Material Processing and Analysis Center, Department of Material Science and Engineering University of Central Florida, Orlando, FL, 32816


²Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

³College of Medicine, University of Central Florida, Orlando, FL, 32816

⁴Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045

Corresponding Author

Prof. Sudipta Seal (Sudipta.Seal@ucf.edu)
Trustee Chair
University Distinguished Professor and Pegasus Professor
Chair, Materials Science and Engineering, CECS

Figure S1: C 1s spectra of respective silk fibroin mats with the deconvolution of the experimental spectra results in peaks corresponding to the binding energy of C-O, C=O and C-OH and integrated peak area ratio of the individual oxygen species. Changes in the integrate peak area ratio of amplex infused silk fibroin mats after the H_2O_2 treatment clearly indicates that the oxidation reaction occurs in the amplex infused silk fibroin mats