Supporting Information

Self-assembly of Hyaluronic Acid-mediated Tumortargeting Theranostics Nanoparticles

Xiaoxuan Zhou, ^{1, §} Chengbin He, ^{1, §} Min Liu, ¹Qingqing Chen, ¹Lingjie Zhang, ¹ Xiaodan Xu, ² Hongxia Xu, ² Yue Qian, ¹ Feidan Yu, ¹ Yan Wu, ¹ Yuxin Han, ¹ Bing Xiao, ²* Jianbin Tang, ²* Hongjie Hu ¹*

¹ Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
² Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
*Corresponding Author: xiaobingphd@zju.edu.cn, jianbin@zju.edu.cn, hongjiehu@zju.edu.cn

[§]These authors equally contributed to this work.

Synthesis of Cy5.5-labeled HMDN

The 5 mL HMDN solution (3mg mL⁻¹) was mixed with 300 μ L Cy5.5-NHS (1 mg mL⁻¹), stirred for 12 h in the dark, and purified by ultrafiltration (molecularweight cut-off: 3 K Da).

In vivo PTT

For *in vitro* photothermal experiment, temperature change of HMDN under four laser irradiation on/off cycles was recored by a photothermal imager. Besides, the temperature changes of HMDN at different concentrations (0.75, 0.5, 0.25, 0.125 mg mL⁻¹) under laser irradiation (808 nm, 2 W cm⁻², 5 min), were recorded every ten seconds.

Colloidal and Optical Stability Measuremen

For the observation of colloidal stabilization, 1 mg mL⁻¹ of HMDN were dispersed in DI water, PBS, RPMI-1640 culture medium, and normal saline, respectively. Hydrodynamic diameters were monitored throughout a period of 7 days.

Statistical analysis

Quantitative data were expressed as the mean \pm standard deviation, as discribed in the figure legends. Statistical analysis was conducted using a Student's t-test. Significant differences were estimated by **p* < 0.05, ***p* < 0.01, ****p* < 0.001.

Supporting data

Figure S1. (a) The EDS data of the HMDN. (b) UV-vis absorption spectra of HMDN, HA, DA, PDA, KMnO₄ and BSA solutions. (c) The intensity at 808 nm as a function of HMDN concentration. (d) Absorption spectra of HMDN, HA, DA, PDA, BSA and KMnO₄ solutions. (e) Changes in temperature of the HMDN upon laser irradiation (808 nm, 2.0 W cm⁻², and 5 min) for three laser on/off cycles. (f) Photothermal heating profile of the HMDN at different concentration under laser irradiation (808 nm, 2.0 W cm⁻², and 5 min).

Figure S2. Flow cytometry-based apoptosis of 4T1 cells. (a) PBS only, (b) Laser only, (c) HMDN only (55 μ M Mn), (d) HMDN with free HA under laser, (e) MDN under laser, (f) HMDN under laser (808 nm, 2W cm⁻², 5 min).

Figure S3. Flow cytometry analysis of cellular uptake of Cy5.5-labeled HMDN (55 μ M Mn) at different times.

Figure S4. Representative photographs of mice bearing orthotropic 4T1 tumors after different treatments (as indicated) taken on day 15.

Figure S5. H&E-stained images of the major organs from four different treatment groups (PBS, HMDN, HMDN plus HA with PTT 5 min, and HMDN with PTT 5 min) mice after 15 days (0.02 mmol kg⁻¹ Mn, 808 nm, 2W cm⁻²). Scale bar 200 μ m,

magnification imes 200.

Figure S6. One day after administration, Mn content in main organs and tumor of 4T1 orthotopic tumor-bearing mice (0.02 mmol kg⁻¹ Mn).