Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2020

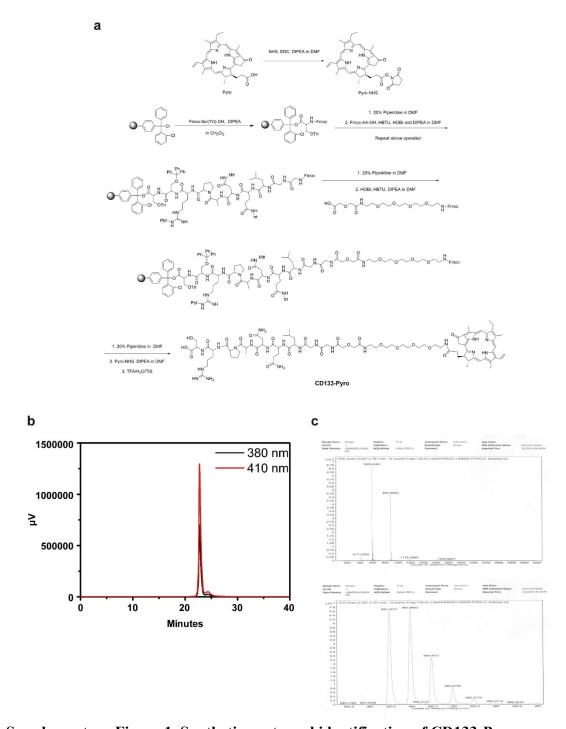
Supplementary Information

CD133 peptide-conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells

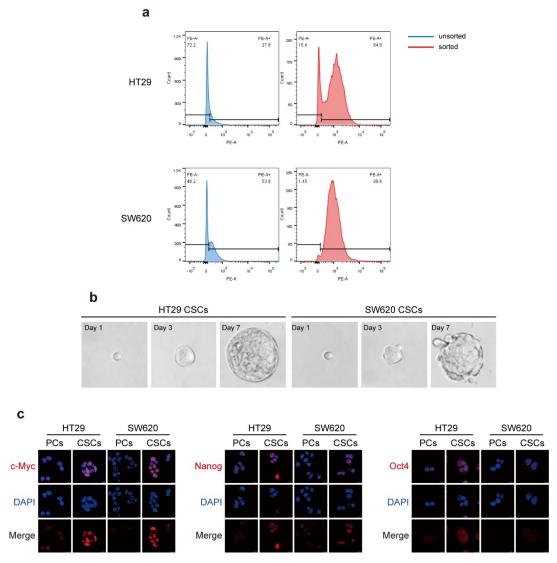
Shichao Yan^{1,2,3#}, Da Tang^{4#}, Zhangyong Hong⁵, Jing Wang⁵, Hui Yao^{2,3}, Lu Lu^{2,3}, Huimei Yi^{2,3}, Shujun Fu^{2,3}, Chanjuan Zheng^{2,3}, Guangchun He^{2,3}, Heng Zou¹, Xuyang Hou¹, Qing He¹, Li Xiong^{1*}, Qinglong Li^{1*}, Xiyun Deng^{2,3*}

- ² Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan 410013, China.
- ³ Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.
- ⁴ Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
- ⁵ State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.

Corresponding Authors

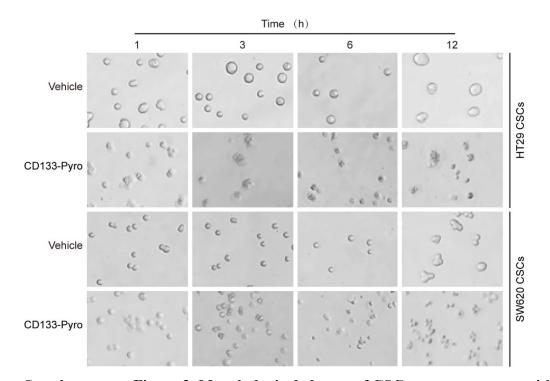

Li Xiong, M.D., Associate Professor, Research area: Photodynamic Therapy and Digestive System Tumors Research, Phone: 18107311987, E-mail: lixionghn@csu.edu.cn.

Qinglong Li, M.D., Professor, Research area: Photodynamic Therapy and Digestive System Tumors Research, Phone: 13807312640, E-mail: liqinglonga@sina.com. Xiyun Deng, Ph.D., Professor, Research area: Translational Cancer Stem Cell Research, Phone: 18711006515, E-mail: dengxiyunmed@hunnu.edu.cn.

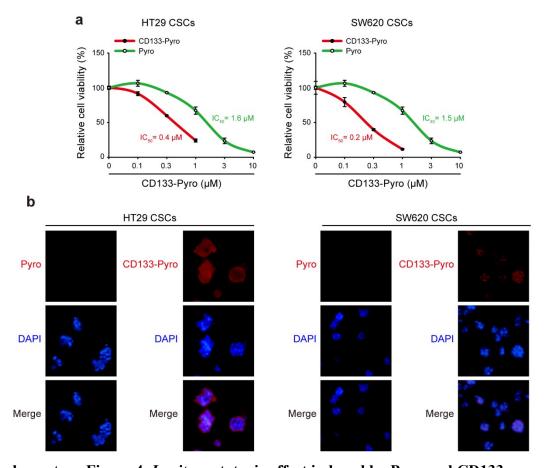

¹ Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.

[#] These authors contributed equally to this work.

Supplementary Figures



Supplementary Figure 1. Synthetic route and identification of CD133-Pyro conjugate. a Synthetic route and identification of CD133-Pyro conjugate. b HPLC analysis of CD133-Pyro conjugate. c Mass spectrometry analysis of CD133-Pyro conjugate.



Supplementary Figure 2. Characteristics of CSCs isolated from CD133+ cells of

CRC. a CD133⁺ cells were sorted from HT29 and SW620 PCs by MACS. The percentage of CD133⁺ cells was analyzed by FlowJo. **b** The morphology showing tumorsphere formation of CD133⁺ cells 1-7 d after cell sorting under serum-free suspension culture conditions. Original magnification at 200×. **c** Representative confocal images of protein levels of c-Myc, Nanog and Oct4 in HT29 and SW620 PCs and CSCs. Scale bars, 10 μm.

Supplementary Figure 3. Morphological change of CSCs upon treatment with CD133-Pyro PDT. Photomicrographic images of HT29 and SW620 CSCs obtained at indicated time points after treatment with CD133-Pyro PDT. Original magnification at 200×.

Supplementary Figure 4. *In vitro* cytotoxic effect induced by Pyro and CD133-Pyro PDT in HT29 and SW620 CSCs. a Relative cell viability of Pyro and CD133-Pyro-treated HT29 and SW620 CSCs under 670 nm light irradiation (5 J/cm²). Data were shown as mean \pm s.e.m. (n = 4) and the half-maximal inhibitory concentration (IC₅₀). **b** Representative fluorescence images showing the superior binding capacity of CD133-Pyro over Pyro to HT29 and SW620 CSCs after incubation with Pyro or CD133-Pyro (3 μ M) for 10 min at ambient temperature. Original magnification at

400×.

Supplementary Tables

Supplementary Table 1. Tumor-initiating potential of SW620 PCs or CSCs in each treatment group.

Cell types	No. of cells inoculated	Tumor incidence	observation time (d)
SW620 PCs	5 x 10 ⁴	0/4	30
	5 x 10 ⁵	0/4	30
	5 x 10 ⁶	4/4	30
SW620 CSCs	5 x 10 ²	0/4	30
	5 x 10 ³	0/4	30
	5 x 10 ⁴	3/4	30

Different numbers of viable cells were injected subcutaneously into unilateral flank of nude mice. Tumor-initiating potential in the above groups was observed.

Supplementary Table 2. Reagents associated with this article.

Reagent Name	Company	Cat#	
RPMI-1640	Hyclone	C11875500BT	
DMEM/F-12		C11330500BT	
D-Hank's	Gibco	14175095	
B27	Invitrogen	17504-044	
EGF		Cyt-217-b	
bFGF	Prospec	Cyt-218-b	
CellTiter-Blue® Cell Viability Assay	Promega	G808b	
DCFH-DA		D6883	
NAC	Sigma-Aldrich	A7250	
CQ		C6628	
Fetal bovine serum	BI	04-001-1A	
Apoptosis Detection Kit	Miltenyi	130-092-052	

BI: Biological industries; DCFH-DA: 2'-7'-dichlorofluorescein diacetate; NAC: N-acetyl-l-cysteine; CQ: chloroquine.

Supplementary Table 3 Antibodies associated with this article.

Antibody Name	Company	Cat #	Dilution (WB)	Dilution (IF)
CD133	CST	5860	/	1:100
c-Myc	CST	5605	/	1:100
Nanog	Abcam	ab109250	/	1:100
Oct4	Abcam	ab109183	/	1:100
Nrf2	CST	12721	1:1000	/
Keap1	CST	8047	1:1000	/
mTOR Ser2448	CST	5636	1:1000	/
mTOR	CST	2983	1:1000	/
P62	CST	8025	1:1000	/
LC3-I/II	CST	12741	1:1000	1:100
Bcl-2	Abclonal	A0208	1:1000	/
BAD	Abclonal	A1593	1:1000	/
Bak	CST	12105	1:1000	/
GAPDH	Abclonal	AC002	1:10000	/

CST: Cell signaling technology; WB: Western blotting; IF: Immunofluorescence.

Supplementary Video. Uptake of CD133-Pyro in HT29 and SW620 CSCs were recorded by dynamic laser confocal 0-10 min post-treatment.