Supporting Information

Polymeric nanoformulation improves the bioavailability and efficacy

of sorafenib for hepatocellular carcinoma therapy

Yang Chen^{a,b}, Jia-Xian Li^a, Na Shu^c, Sui-Juan Zheng^a, Min Ma^a, Zhi-Bin Zhao^a, Zhi-Ting Cao^{*e}, Qi Zhou^{*f,g}, Jin-Zhi Du^{*a,b}, Jun Wang^{b,c,d}

^aGuangzhou First People's Hospital, and Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China; E-mail: <u>djzhi@scut.edu.cn</u>

^bNational Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China

^cSchool of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China

^dKey Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, Medical Devices Research & Testing Center, South China University of Technology, Guangzhou 510006, China

eSchool of Biopharmacy, China Pharmaceutical University, Nanjing 210009, China; Email: <u>caozt@scut.edu.cn</u>

^fDepartment of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China

^gDepartment of General Surgery, Huiya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou 516081, Guangdong, China; E-mail: <u>zhouqi@mail.sysu.edu.cn</u>

Fig. S1 ¹H NMR spectra of PEG-*b*-PLA in CDCl₃.

Fig. S2 Cell viability of H22 (a), Hepa1-6 (b), and HepG2 cells (c) after 24 hours incubation with different concentrations of free-sfb and NP-sfb.

Fig. S3 Cell viability of normal mouse hepatocytes AML-12 after incubation for 24 hours (a) and 48 hours (b) with varying concentrations of free-sfb and NP-sfb.

Fig. S4 The inhibitory effect of free-sfb (a) and NP-sfb (b) on foci formation of Hepa1-6 cells and HepG2 cells.

Fig. S5 Cell viability of Hepa1-6 cells (a) and HepG2 cells (b) after incubation with varying concentrations of blank NP.

Fig. S6 NP-sfb promoted the apoptosis of hepatocellular carcinoma cells. Flow cytometry analysis of apoptosis ratio of Hepa1-6 (a), HepG2 (b) and H22 (c) cells after treated with different contents of free-sfb and NP-sfb at 48 hours.

Fig. S7 Measurement of body weight of H22 tumor-bearing mice when treated with PBS, free-sfb (10 mg/kg, 30 mg/kg) or NP-sfb (10 mg/kg).

Fig. S8 Individual tumor growth curve of H22 tumor-bearing mice when treated with PBS, free-sfb (10 mg/kg, 30 mg/kg) or NP-sfb (10 mg/kg).