

Hydrogels of engineered bacterial fimbriae can finely tune 2D human cell culture

Gema Dura; Maria Crespo-Cuadrado; Helen Waller; Daniel T. Peters; Ana Marina Ferreira; Jeremy H. Lakey; David A. Fulton.

Figure S1: a) Structural model of a *native*-Caf1^{WT} polymer. Individual subunits are shown as a blue molecular surface with the N-terminal donor strand highlighted in orange. b) Structural model of *native*-Caf1^{RGDS} polymer, produced by RosettaRemodel ²⁴ using the Caf1^{WT} structure as the input. The polymer is shown as a purple molecular surface, with the N-terminal donor strand highlighted in orange and the RGDS insertion highlighted in yellow. c) Structural model of *refolded*-Caf1^{WT-RGDS} obtained after thermal refolding.

2 µm

Figure S2. SEM images of the dried samples of hydrogels obtained from a) 2.5% *native*-Caf1^{WT}, and b) 2.5% *refolded*-Caf1^{WT} hydrogel. In both cases the samples displayed interconnected porous networks.