Electronic Supplementary Information

Surface Morphology and Payload Synergistically Caused

Enhancement of Longitudinal Relaxivity for Mn₃O₄/PtO_x

Nanocomposite in Magnetic Resonance Tumor Imaging

Sihan Ji^{a,b,1}, Yaodong Chen^{c,1}, Xianglong Zhao^{b,d,1}, Yunyu Cai^{a,*}, Xiaopeng Zhang^{b,e}, *Feilong Sun^{b,e}*, *Qi Chen^f*, *Qingmei Deng^f*, *Changhao Wang^{b,d}*, *Kun Ma^d*, *Bo Hong^{d,f,*}*, *Changhao Liang^{a,b,*}*

^a Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.

Email: chliang@issp.ac.cn, yycai@issp.ac.cn, and bhong@hmfl.ac.cn.

^b University of Science and Technology of China, Hefei, 230026, China.

^c Department of Ultrasonic Imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.

^d High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China.

^e Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China.

^fHefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, P. R. China. ¹ These authors contributed equally to this work.

Table S1. The volume of adding Na_2PtCl_4 and the corresponding molar ratio of different $Pt@Mn_3O_4 NPs$

Different Pt@Mn ₃ O ₄ NPs							
Na ₂ PtCl ₄ solution (mL)	0.5	0.6	0.8	1.0	1.1	1.15	1.2
Actual Pt/Mn molar ratio	0.4	0.6	0.7	1.1	1.6	2.2	2.6

Figure S1. XRD patterns of the sample (a) MnO_x NPs generated by LAL; (b) Mn_3O_4 NPs after LIL.

Figure S2. STEM HAADF of Mn₃O₄/PtO_x NCs.

Figure S3. The XPS spectra of O element of different samples: (a) Mn_3O_4 ; (b) sample 1; (c) sample 2; (d) sample 3 and (e) sample 4. The XPS spectra of Mn element of different samples: (f) Mn_3O_4 ; (g) sample 1; (h) sample 2; (i) sample 3 and (j) sample 4. (black line: raw data, red line: fitting data)

Figure S4. The FTIR spectra of the Mn_3O_4/PtO_x NCs before and after PEGylation.

Figure S5. Size distribution of Mn_3O_4/PtO_x NCs.

Figure S6. T₁-weight image of Na₂PtCl₄ and PtO₂ with different Pt concentration.

Figure S7. (a) TEM image of Pt@Mn₃O₄; (b) STEM image of Pt@Mn₃O₄; (c) EDS mapping of Pt@Mn₃O₄ NCs: (c) overlapping image; (d)Mn; (e) O; (f) Pt.

Figure S8. XRD pattern of the Pt@Mn₃O₄ NPs.

Figure S9. TEM image and the corresponding size distribution of $Pt@Mn_3O_4$ NPs with different molar ratio: (a) & (d) 0.4; (b) & (e) 0.7; (c) & (f) 2.2.