Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2021 ## **Supplementary Information for** ## Cationic polymer synergizing with chemotherapeutics and re-purposing antibiotics against cancer cells Yiran Zheng,*a,b Jessica Kng,b Chuan Yang, b James L. Hedrick,c Yi Yan Yang, *b ^aCollege of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China. Email: yrzheng@suda.edu.cn ^bInstitute of Bioengineering and Nanotechnolgy, Agency for Science Technology and Research. 31 Biopolis way, Singapore 138669. Email: yyyang@ibn.a-star.edu.sg ^cIBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA *Corresponding authors Supplementary Figure 1: Percentage of MCF-7 cells killed more than additive effects by combination therapy at certain antibiotic concentrations in the presence of polymer at 20 µg/mL. Additive effects = percentage of cells killed by ciprofloxacin alone + percentage of cells killed by polymer alone. Synergistic effect is observed when additional cell killing is positive and antagonistic effect is observed when additional cell killing is negative. Supplementary Figure 2: Guanidinium-functionalized polymer failed to elicit synergistic effects with the chemotherapeutic drug Dox in treating cancer cells. (A) Killing efficacy of different concentrations of Dox and polymer in MCF-7 ADR cancer cells. (B) Isobologram analysis representing an antagonistic effect between Dox and polymer in MCF-7 ADR cancer cells. Solid line was drawn from IC₅₀ values of Dox and polymer alone. Value above the line indicates an antagonistic effect at the polymer concentration tested. Statistically analysis was done by two-way ANOVA followed by Tukey's multiple comparison test. *** p < 0.001, **** p < 0.001.