Supporting Information

Guanidine-Rich Helical Polypeptides Bearing Hydrophobic Amino Acid Pendants for Efficient Gene Delivery

Zikun Yu,[†] Zhimin Zhang,[†] Jing Yan, Ziyin Zhao, Chenglong Ge, Ziyuan Song,

Lichen Yin,* and Haoyu Tang*

Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation

Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123,

China

[†] These authors contributed equally (Z.Y. and Z.Z.).

Correspondence to: Haoyu Tang (Email: hytang@suda.edu.cn) or Lichen Yin (Email: lcyin@suda.edu.cn)

Figure S1. GPC curve of PAPLG (M_n = 26500, DP = 125, M_w/M_n = 1.09).

Figure S5. ¹H NMR spectrum of P1 in D_2O .

Figure S7. ¹H NMR spectra of P5-P7 in D₂O.

Figure S8. ¹H NMR spectra of P8-P10 in D₂O.

Figure S9. DNA condensation by P1-P10 at various polymer/DNA weight ratios as evaluated by the gel retardation assay (N represents naked DNA).

Figure S10. Zeta potential of polypeptide/DNA complexes ((A) P1-P5 (B) P6-P10) in DI water at various polymer/DNA weight ratios, as determined by the DLS measurement (n = 3).

Figure S11. Transfection efficiency of P9 at various P9/DNA weight ratios or PEI in RAW 264.7 cells (n = 3).

Figure S12. Cell uptake level of polypeptide/DNA complexes (w/w = 10) in HeLa cells as determined by flow cytometry. PEI/DNA complexes (w/w = 1) and naked YOYO-1-DNA were used as controls. M1 and M2 phases represent YOYO-1-DNA negative and positive cells, respectively. The percentages of M2 cells were listed.

Figure S13. Cytotoxicity of P9/DNA or PEI/DNA complexes against RAW 264.7 cells (n = 3).

Figure S14. Hemolysis activity of polypeptides at best transfection concentration of 10 μ g/mL (n=3).