Supplementary Information

Engineering of Biofilms with a Glycosylation Circuit for Biomaterial Applications

Ebru Sahin Kehribar¹, Musa Efe Isilak¹, Eray Ulas Bozkurt¹, Jozef Adamcik², Raffaele

Mezzenga², Urartu Ozgur Safak Seker^{1*}

¹UNAM- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara,

Turkey.

²ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland

Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

*e-mail: <u>urartu@bilkent.edu.tr</u>

Supplementary Table 1. List of primers used in this study.

DQNA T_pet22 b_F	Forw ard	5'AAAAAACCTAGGGGCGGTAGCGGTGATCAGAACGCGACCACTAGT TGAGATCCGGCTGCTAACAA 3'
DQNA T_pet22 b_R	Reve rse	5' AAAAAAGAGCTCGGCCATCGCCGGCTGG 3'
TasA- DQNAT- F	Forw ard	5'AAAAAAGAGCTCATGGCATTTAACGACATTAAATCAAAGGATGC 3'
TasA- DQNAT- R	Reve rse	5' AAAAAACCTAGGGTGGTGGTGGTGGTGGTG 3'

Supplementary Table 2. Aminoacid sequences of proteins used in this study. Color coded aminoacids correspond to genetic parts with the same color code

Tas MAFNDIKSKDATFASGTLDLSAKENSASVNLSNLKPGDKLTKDFQFENNGSLAIKEVL A MALNYGDFKANGGSNTSPEDFLSQFEVTLLTVGKEGGNGYPKNIILDDANLKDLYLM pro SAKNDAAAAEKIKKQIDPKFLNASGKVNVATIDGKTAPEYDGVPKTPTDFDQVQMEIQ tei FKDDKTKDEKGLMVQNKYQGNSIKLQFSFEATQWNGLTIKKDHTDKDGYVKENEKA n HSEDKNGGSGLEHHHHHH* wit h C

ter			
mi			
nal			
pol			
yhi			
stid			
ine			
tag			

Tas	MKYLLPTAAAGUUU AAOPAMAELMAENDIKSKDATEASGTUDI SAKENSASVNI SNI
Δ_	
Т	
I Dro	WINGETIKKDITT DRUGT VREINERAITSEDRINGGSGEETITTITTITTITTITTIKGGSGDQNATTS
toin	
wit b	
nel	
R	
per	
ipla	
sm	
loc	
aliz	
atio	
n	
sig	
nal,	
DQ	
NA	
Т	
gly	
COS	
ylat	
ion	
mo	
tif	
at	
the	
C-	
ter	

min		
us		
an		
d		
pol		
yhi		
stid		
ine		
tag		

Supplementary Table 3. Desorption constant (k_d) of differently aged TasA, TasA D and TasA DP samples.

Supplementary Table 4. Gibbs free energy (ΔG°) calculations of differently aged TasA, TasA D and TasA DP samples.

Supplementary Figure 1. Circular dichroism spectra of TasA (orange dots), TasA-D (blue dots) and TasA-DP (green dots) samples and percentages of secondary structures calculated by BestSel online tool for TasA (orange bars), TasA-D (blue bars) and TasA-DP (green bars) with aging durations of a. 1 day b. 7 days and c. 28 days. n=3.

Supplementary Figure 2. STEM of images of a. 1 day b. 7 days and c. 28 days old TasA, TasA D and TasA DP samples.

Supplementary Figure 3. Morphological characterization of 28 days old TasA, TasA D and TasA DP fibrils using Atomic force microscopy (AFM). AFM images analyzed by FiberApp software for quantification of average fibril height and contour length.

Supplementary Figure 4. QCM frequency shifts with respect to time and with respect to protein concentration for (a-b). 1 day old, (c-d). 7 days old and (e-f). 28 days old samples.

Supplementary Figure 5. k_d and ΔG° graphs of (a-b). 1 day old, (c-d). 7 days old and (e-f). 28 days old samples. n=3.

Supplementary Figure 6. The recorded dissipation shifts in QCM-D upon adsorption with increasing concentrations of TasA, TasA-D and TasA-DP proteins with aging durations of a. 1 day b. 7 days and c. 28 days.

Supplementary Figure 7. Percentages of secondary structures calculated by BestSel online tool from CD data of TasA, TasA-D and TasA-DP with different aging durations. n=3.

Supplementary Figure 8. Adhesion of HEK293 cells on surfaces coated with differently aged TasA, TasA D and TasA DP. a. Representative images of Calcein AM labelled adhered cells and b. Quantitative analysis of adhered number of cells, n=3.