Electronic supplementary information

Mechanism-based inhibitors of SIRT2: structure–activity relationship, X-ray structures, target engagement, regulation of α -tubulin acetylation and inhibition of breast cancer cell migration

Alexander L. Nielsen,^a Nima Rajabi,^{‡ad} Norio Kudo,^{‡b} Kathrine Lundø,^{‡c} Carlos Moreno-Yruela,^a Michael Bæk,^a Martin Fontenas,^a Alessia Lucidi,^a Andreas S. Madsen,^{a,e} Minoru Yoshida,^b and Christian A. Olsen^{*a}

^aCenter for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.

^bRIKEN Center for Sustainable Resource Science (S13), Hirosawa 2-1, Wako, Saitama 351-0198, Japan.

^cNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences.

^dPresent address: Red Glead Discovery, 223 63, Lund, Sweden.

^ePresent address: Novo Nordisk A/S, DK-2880, Bagsværd, Denmark.

[‡]These authors contributed equally

*e-mail: cao@sund.ku.dk

Contents

Scheme S1. Additional inhibitors for the structure-activity relationship study	3
Scheme S2. Synthesis of inhibitors in solution, part I	4
Scheme S3. Synthesis of inhibitors in solution, part II	4
Scheme S4. Synthesis of inhibitors on solid-phase, part I	5
Scheme S5. Synthesis of inhibitors on solid-phase, part II	6
Scheme S6. Synthesis of inhibitors on solid-phase, part III	7
Scheme S7. Synthesis of inhibitors on solid-phase, part IV	8
Scheme S8. Synthesis of inhibitors on solid-phase, part V	9
Scheme S9. Synthesis of Fmoc-hArg(Boc)2-OH	10
Scheme S10. Synthesis of tenovin-6 and S2iL5	10
Scheme S11. Non-commercial building blocks used in study	11
Figure S1. Dose-response curves – SIRT2 deacetylation	12
Figure S2. Dose-response curves – SIRT2 demyristoylation	12
Figure S3. Dose-response curves – SIRT1 and SIRT3 deacetylation	13
Figure S4. Dose-response curves from cell viability assays	13
Figure S5. Chemical stability of selected compounds in assay buffer	14
Figure S6. Stability of selected compounds in cell media and human serum	15
Figure S7. Degradation of compound 3 in human serum	15
Figure S8. Cellular thermal shift assays against SIRT1–3	16
Figure S9. Supplementary immunofluorescent images	17
Table S1. Data collection and refinement statistics for X-ray co-crystal structures	18
Table S2. Inhibitory potencies against SIRT1–3 deacylation	19
Table S3. Continous assay kinetic data	22
Table S4. Inhibitory potencies for selected compounds against different sirtuin subtypes	22
Table S5. Inhibitory potencies against SIRT1/2 deacetylation of H3K9ac	23
Table S6. cLogP and PSA values	23
Table S7. Compound half-lives in human male serum	24
Table S8. EC ₅₀ values of SIRT2 inhibitors in cell viability assays	25
General experimental methods	26
Compound syntheses	29
Drug treatment for analysis of cytotoxicity in cells	69
Supporting references	70
Full Western blot images	71
Analytical HPLC spectra of final compounds	83
NMR spectra	88

Scheme S1. Additional inhibitors for the structure-activity relationship study

Potencies against recombinant SIRT2 (100 nM) are given as mean IC₅₀ values \pm SD or %-inhibition against QPKKac^{**} and ETDKmyr (*bold*) substrates tested at 50 μ M.

Scheme S2. Synthesis of inhibitors in solution, part I

Scheme S3. Synthesis of inhibitors in solution, part II

Note: Compound **8** was synthesized using an on-resin guanidinylation approach, as attempts loading $Fmoc-norArg(Boc)_2$ -OH onto the resin gave rise to poor yields. We suggest this might be caused by an intramolecular cyclization upon activation of the amino acid *C*-terminus.

Scheme S5. Synthesis of inhibitors on solid-phase, part II

Scheme S6. Synthesis of inhibitors on solid-phase, part III

S7

Scheme S7. Synthesis of inhibitors on solid-phase, part IV

S8

Scheme S8. Synthesis of inhibitors on solid-phase, part V

Scheme S9. Synthesis of Fmoc-hArg(Boc)₂-OH

Compounds **S29–S32**,¹ **S33**,² **S34**³ and **S35**⁴ were synthesized as previously reported.

Figure S1. Dose-response curves – SIRT2 deacetylation

Concentration–response curves against inhibition of SIRT2 deacetylation for representative compounds using QPKKac as substrate. IC_{50} values are reported in Table 1 and Table S1.

Figure S2. Dose-response curves – SIRT2 demyristoylation

Concentration–response curves against inhibition of SIRT2 demyristoylation for representative compounds using ETDKmyr as substrate. IC_{50} values are reported in Table 1 and Table S1.

Figure S3. Dose-response curves – SIRT1 and SIRT3 deacetylation

Concentration–response curves against inhibition of SIRT1 and SIRT3 deacetylation for representative compounds using QPKKac as substrate. IC_{50} values are reported in Table S1.

Figure S4. Dose-response curves from cell viability assays

Figure S5. Chemical stability of selected compounds in assay buffer

Figure S6. Stability of selected compounds in cell media and human serum

(a) Stability of compound **25-D** (thiourea) and **26-D** (thioamide) in cell media (MEM, 10% (v/v) FBS) at 37 °C over 24 h. (**b-c**) Serum stability assays for all tested compounds for up to 24 h. Data are shown as mean values relative to the peak intensity at t = 0 h ± SEM (n = 2–3).

UV (A_{254}) and TIC (ES^+) chromatogram and mass spectra of compound **3** in human serum after 30 min. Rapid degradation was observed with the formation of several metabolites, in particular, an [M-16] mass adduct (**2**) corresponding to oxourea conversion could be identified.

Figure S8. Cellular thermal shift assays against SIRT1-3

Western blot analysis of whole cell lysates from HEK293T cells after 1 h treatment with **26** (0.01 μ M), **26-D** (0.10 μ M), **TM** (10 μ M) or respective volumes of DMSO followed by heat treatment. For full blots and protein marker see the full Western blot section (n = 3).

Figure S9. Supplementary immunofluorescent images

Immunofluorescent images (40x) of MCF-7 cells treated with inhibitor (25 μ M, except for **26** and **TSA**: 5 μ M) or DMSO (vehicle) for 6 h. The data are representative images from two individual experiments performed in duplicate. DAPI (blue, nuclear counterstain) and Ac- α -tubulin (green).

Data collection		SIRT2: 13	SIRT2: 23
X-ray source		SLS X06DA	SLS X06DA
Space group		P212121	$P2_{1}2_{1}2_{1}$
Unit cell	<i>a</i> (Å)	35.9	35.8
	b (Å)	65.3	65.5
	<i>c</i> (Å)	114.0	114.9
Wavelength (Å)		1.000	1.000
Resolution (Å)		37.9–1.61	43.2–1.54
		(1.64–1.61)	(1.59–1.54)
Unique reflections		36305	40773
Completeness (%) ^a		100 (100)	99.8 (99.1)
R _{merge} (%) ^a		4.7 (84.8)	5.1 (95.3)
//σ(<i>I</i>) ^a		9.3 (0.9)	19.8 (2.2)
Wilson <i>B</i> (Ų)		20.8	37.6

Table S1. Data collection and refinement statistics for X-ray co-crystal structures

^a Values in parentheses are for the highest resolution shell

Refinement statistics

Resolution range (Å)	34.2–1.70	20.0–1.70
No. of reflections	28752	29045
No. of non-hydrogen atoms	2428	2365
R _{work} (%)	21.6	27.2
R free (%)	25.6	31.7
R.m.s. deviations		
Bond length (Å)	0.005	0.003
Bond angle (degree)	1.20	1.14
<i>B</i> -factors (Ų)	31.1	43.9
Protein	33.3	43.9
Inhibitor	48.4	66.1
Waters	29.9	40.1
Ramachandran plot (%)		
Favored region	98.2	97.8
Allowed region	1.8	2.2
Outlier region	0.0	0.0

Compound	SIRT1	SIRT2	SIRT3
1	1.4 ± 0.4 μM	14% [1 µM]	15% [10 μM]
2	NI [10 μM]	1.2 ± 0.2 μM	NI [10 μM]
3	47% [10 μM]	0.45 ± 0.04 μM (22% [100 μM])	NI [10 μM]
4	10% [100 µM]	19% [100 µM]	ND
5	NI [100 μM]	29% [100 µM]	ND
6	71% [10 µM]	0.22 ± 0.02 μM (3.6 ± 0.6 μM)	21% [10 µM]
7	29% [10 µM]	0.26 ± 0.03 μM (16% [100 μM])	NI [10 μM]
8	30% [1 µM]	0.16 ± 0.02 μM (7.3 ± 0.8 μM)	48% [10 μM]
9	52% [1 µM]	0.15 ± 0.01 μM (5.3 ± 0.5 μM)	62% [10 μM]
10	76% [1 µM]	0.21 ± 0.03 μM (2.4 ± 0.6 μM)	20% [10 µM]
11	28% [1 µM]	0.10 ± 0.01 μM (9.6 ± 1.1 μM)	21% [10 µM]
12	NI [10 μM]	0.51 ± 0.03 μM (NI [100 μM])	18% [10 µM]
13	81% [1 µM]	0.11 ± 0.01 μM (0.42 ± 0.06 μM)	48% [1 μM]
14	25% [1 µM]	0.09 ± 0.01 μM (0.50 ± 0.08 μM)	54% [1 µM]
15	56% [1 µM]	0.08 ± 0.01 μM (0.24 ± 0.04 μM)	62% [10 μM]
16	57% [1 µM]	0.22 ± 0.02 μM (3.9 ± 0.3 μM)	63% [10 µM]
17	53% [1 µM]	0.21 ± 0.02 μM (1.2 ± 0.1 μM)	18% [1 µM]
18	56% [1 µM]	0.09 ± 0.01 μM (0.19 ± 0.05 μM)	28% [1 μM]
19	17% [10 µM]	53% [1 μM] (40% [100 μM])	NI [10 μM]
20	61% [1 µM]	0.14 ± 0.02 μM (0.47 ± 0.05 μM)	20% [1 µM]
21	78% [10 µM]	0.13 ± 0.02 μM (24 ± 2 μM)	11% [10 µM]
22	77% [1 µM]	0.17 ± 0.01 μM (0.20 ± 0.02 μM)	56% [1 µM]

Table S2. Inhibitory potencies against SIRT1-3 deacylation

Compound	SIRT1	SIRT2	SIRT3
23	55% [10 µM]	0.13 ± 0.02 μM (95 ± 3 μM)	NI [10 µM]
24	0.53 ± 0.11 μM	0.05 ± 0.01 μM (0.23 ± 0.05 μM)	2.2 ± 0.4 μM
24-р	34% [1 µM]	0.10 ± 0.01 μM (8.6 ± 0.6 μM)	21% [10 µM]
25	0.37 ± 0.07 μM	0.04 ± 0.01 μM (0.17 ± 0.03 μM)	1.9 ± 0.3 μM
25-д	3.6 ± 0.7 μM	0.05 ± 0.01 μM (9.1 ± 0.8 μM)	35 ± 3 μΜ
26	0.33 ± 0.05 μM	0.07 ± 0.01 μM (0.12 ± 0.02 μM)	2.0 ± 0.4 μM
26-р	3.7 ± 0.2 μM	0.09 ± 0.01 μM (3.7 ± 0.2 μM)	31% [10 µM]
S1	64% [1 µM]	20% [1 µM]	43% [10 µM]
S2	83% [1 µM]	39% [10 µM]	9% [10 µM]
S3	1.0 ± 0.2 μM	36% [1 µM]	59% [10 µM]
S4	1.0 ± 0.1 μM	26% [1 µM]	14% [10 µM]
S5	15% [10 µM]	84% [1 μM] (37% [100 μM])	NI [10 μM]
S6	9% [10 μM]	86% [1 μM] (31% [100 μM])	NI [10 μM]
S7	49% [1 µM]	0.17 ± 0.01 μM (7.5 ± 0.9 μM)	21% [10 µM]
S8	44% [1 µM]	0.16 ± 0.01 μM (4.9 ± 1.0 μM)	41% [10 μM]
S9	55% [10 µM]	0.51 ± 0.03 μM (47% [100 μM])	NI [10 μM]
S10	21% [1 µM]	0.19 ± 0.02 μM (6.6 ± 0.6 μM)	17% [10 μM]
S11	71% [10 μM]	0.40 ± 0.05 μM	NI [10 μM]
S12	NI [10 μM]	13% [10 µM]	NI [10 μM]
S13	14% [10 μM]	31% [10 μM]	NI [10 μM]
S14	12% [100 μM]	16% [100 μM]	NI [10 μM]
S15	ND	51 ± 12 μM	16% [100 μM]
S16	16% [100 μM]	13% [100 µM]	NI [10 μM]
S17	23% [10 μM]	0.74± 0.07 μM	10% [10 μM]

Compound	SIRT1	SIRT2	SIRT3
S18	38% [10 µM]	0.75 ± 0.05 μM	NI [10 μM]
S19	14% [100 μM]	NI [100 μM]	10% [100 µM]
S20	7.7 ± 2.9 μM	0.11 ± 0.01 μM	34% [100 µM]
S21	4.8 ± 0.8 μM	0.09 ± 0.01 μM (13 ± 2 μM)	55 ± 5 μM
S22	0.46 ± 0.12 μM	0.03 ± 0.01 μM (0.18 ± 0.03) μM	2.9 ± 0.5 μM
S23	0.51 ± 0.11 μM	0.03 ± 0.01 μM (0.14 ± 0.03) μM	3.7 ± 0.9 μM
ТМ	NI [100 μM]	1.5 ± 0.3 μM (NI [100 μM])	NI [100 μM]
S2iL5	0.24 ± 0.03 μM	0.09 ± 0.01 μM (2.1 ± 0.1 μM)	0.30 ± 0.03 μM
SirReal2	37% [10 μM]	0.91 ± 0.08 μM (NI [100 μM])	NI [10 µM]
AGK-2	62% [100 µM]	50 ± 10 μM (NI [10 μM])	69% [100 µM]
Suramin	74% [10 μM]	17 ± 1 μM (NI [10 μM])	6% [100 μM]
tenovin-6	36% [100 µM]	19 ± 1 μM (NI [10 μM])	38% [100 µM]

Potencies against recombinant SIRT2 (100 nM) are given as mean IC₅₀ values \pm SD or %-inhibition against QPKKac and ETDKmyr (parenthesis) substrates (50 μ M). NI = no inhibition; ND = not determined.

The K_M of QPKKac has been determined by to be >333 μ M for SIRT1–3 by Lin and co-workers.⁵

Table S3. Continous assay kinetic data

Mechanis	m b	
Е =	K _s	ES $\xrightarrow{k_{cat}}$ E + P
$k_1 \mid k_{-1}$	fast	$K_{i,1} = \frac{k_{-1}}{k_1}$
EI		
$k_2 \mid k_{-2}$	slow	$K_{i,2} = \frac{k_{-2}}{k_2 + k_{-2}}$
EI*	$K_{\rm i} = \frac{k_{-1}}{k_1} - \frac{k_{-1}}{k_1}$	$\frac{k_{-2}}{k_2 + k_{-2}} = K_{i,1} \frac{k_{-2}}{k_2 + k_{-2}}$

Mechanism A	26-D	Mechanism B	25	26
SIRT2		SIRT2		
<i>k</i> ₁ (nM⋅min⁻¹)	~6 × 10 ⁻⁷	<i>k</i> ₂ (min ⁻¹)	0.10 ± 0.01	0.07 ± 0.01
<i>k</i> ₋₁ (min⁻¹)	~0	<i>k</i> ₋₂ (min⁻¹)	~2 × 10 ⁻¹³	~6 × 10 ⁻⁹
		<i>K</i> _{i,1} (nM)	240 ± 180	130 ± 80
<i>K</i> i (nM)	_†	<i>K</i> i (nM)	< 10 ⁻³	< 10 ⁻³
Dis. <i>t</i> ½ (min)	> 10 ⁵	Dis. t _{1/2} (min)	> 10 ⁵	> 10 ⁵

[†] K_i values depend on k_2 values and, since k_2 values approached 0, K_i could not be determined.

Table S4. Inhibitory potencies for selected compounds against different sirtuin subtypes

Compound	SIRT5*	SIRT6 [†]
3	NI [100 μM]	NI [10 μM]
25	NI [100 μM]	30% [10 μM]
25-D	NI [100 μM]	14% [10 μM]
26	NI [100 μM]	41% [10 μM]
26-D	NI [100 μM]	29% [10 µM]
тм	NI [100 μM]	NI [10 μM]
S2iL5	25% [100 μM]	NI [10 μM]
SirReal2	NI [100 μM]	NI [10 μM]
AGK-2	15% [100 μM]	NI [10 μM]
Suramin	85% [100 μM]	NI [10 μM]

Potencies against recombinant SIRT5 (100 nM) or SIRT6 (600 nM) given as %-inhibition using *LGKglu as substrate or †ETDKmyr as substrates (50 μ M).

Compound	26	26-D	ТМ	S2iL5
SIRT1	2.3 ± 0.5 μM	7.7 ± 1.3 μM	NI [100 μM]	2.0 ± 0.6 μM
SIRT2	16 ± 4 nM*	22 ± 11 nM*	40 ± 9 µM	0.57 ± 0.09

Table S5. Inhibitory potencies against SIRT1/2 deacetylation of H3K9ac.

Potencies against recombinant SIRT1 and SIRT2 (20 nM) using H3K9ac (50 μM) as substrate. *stoichiometric inhibition.

Table S6. cLogP and PSA values.

Compound	cLogP	PSA (Ų)
SirReal2	5.14	72.0
тм	8.62	96.4
Tenovin-6	5.39	98.5
AGK-2	5.08	77.5
S2iL5	-	_
25	1.88	263
25-D	1.90	264
26	2.03	252
26-D	2.52	253

Calculated LogP (cLogP) and polar surface area (PSA) values were calculated using QikProp.⁶

The cLogP values were approximately 3-fold lower for compounds **25**, **25-D**, **26**, and **26-D** than **SirReal2**, **tenovin-6**, and **AGK-2**, while that of **TM** was substantially higher at 8.6. For the PSA, our compounds were generally higher than all control compounds. On the other hand, the higher PSA values for our compounds compared to the small molecule control compounds also gives rise to better aqueous solubility enabling biological studies without the need for drug formulation.

Table S7. Compound half-lives in human male serum

Compound	Serum half-life ($t_{\frac{1}{2}}$)
ТМ	12 ± 3 h
S2iL5	0.5 ± 0.1 h
SirReal2	>>24 h
tenovin-6	0.8 ± 0.5 h
2	13 ± 2 h
3	0.4 ± 0.1 h
25	0.5 ± 0.1 h
25- D	0.6 ± 0.1 h
26	2.8 ± 0.3 h
26-D	5.8 ± 1.2 h

Compound	HeLa	MCF-7	HEK293T	Jurkat
1	27.8–40.7	62.8–69.0	30.8–45.6	65.0–76.0
3	15.6–19.2	25.6–28.9	2.36–3.17	34.3–45.4
20	41.4–53.1	64.7–76.6	102–121	ND
21	25.8–34.9	28.7–45.6	32.3–60.4	1.17–6.89
25	28.9–39.1	63.7–84.3	~ 100 (wide)	ND
25-D	23.6–40.8	31.9–53.3	4.88–18.3	3.24–6.12
26	19.4–29.3	28.4–34.3	23.4–100+	ND
26-D	18.8–32.1	29.0–55.0	10.3–21.3	7.20–14.7
S15	> 100	> 100	> 100	ND
S18	23.1–41.4	69.2–78.9	28.6–38.0	25.4–40.8
S19	52.1–75.8	47.6–62.8	3.68–46.1	21.2–28.1
S21	89.8–126	64.7–93.7	>100	35.5–64.4
ТМ	1.87–11.5	6.88–8.41	12.4–35.9	7.27–16.0
S2iL5	90.8–173	32.0–162	ND	ND
SirReal2	13.8–20.8	27.6–44.9	84.5–109	ND

Table S8. EC₅₀ values of SIRT2 inhibitors in cell viability assays

 EC_{50} values reported from 95% confidence intervals (μ M) from cell viability (MTT) assays. Data are based on three individual experiments performed in duplicate. ND = not determined.

General experimental methods

All reagents and solvents were of analytical grade and used without further purification as obtained from commercial suppliers. Anhydrous solvents were obtained from a PureSolv-system. Reactions were conducted under an atmosphere of nitrogen whenever anhydrous solvents were used. Reactions were monitored by thin-layer chromatography (TLC) using silica gel coated plates (analytical SiO₂-60, F-254) or by LC-MS. TLC plates were visualized under UV light and by dipping in either (a) a solution of potassium permanganate (10 g/L), potassium carbonate (67 g/L) and sodium hydroxide (0.83 g/L) in water, (b) a solution of ninhydrin (3 g/L) in 3% acetic acid in water (v/v), or (c) a solution of molybdate-phosphoric acid (12.5 g/L) and cerium(IV)sulfate (5 g/L) in 3% conc. sulfuric acid in water (v/v) followed by heating with a heat gun. Vacuum liquid chromatography (VLC) was performed with silica gel 60 (particle size 15-40 µm). After column chromatography, appropriate fractions were pooled and dried at high vacuum (<2 mbar) for at least 12 h to give obtained products in high purity (>95%) unless stated otherwise. Evaporation of solvents was carried out under reduced pressure at a temperature below 40 °C. LC-MS analyses were performed on a Phenomenex Kinetex column (1.7 µm, 50×2.10 mm) using a Waters Acquity ultra high-performance liquid chromatography (UPLC) system. Gradient A with eluent I (0.1% HCOOH in H₂O) and eluent II (0.1% HCOOH in MeCN) rising linearly from 0% to 95% of II during t = 0.00-5.20 min was applied at a flow rate of 0.6 mL/min. Preparative reversed-phase HPLC purification was performed on a C18 Phenomenex Luna column (5 µm, 100 Å, 250×20 mm) or a C8 Phenomenex Luna column (5 µm, 100 Å, 250×21.2 mm) using an Agilent 1260 LC system equipped with a diode array UV detector and an evaporative light scattering detector (ELSD). Gradient B with eluent III (H₂O/MeCN/TFA, 95:5:0.1, v:v) and eluent IV (0.1% TFA in MeCN) rising linearly from 0-30% to 95% of IV during t = 5-45 min at a flow rate of 20 mL/min was applied. Analytical HPLC was performed on a C18 phenomenex Luna column (3 μ m, 100 Å, 150×4.60 mm) or a C8 phenomenex Luna column (5 μ M, 100 Å, 250×4.60 mm) using an Agilent 1100 series system equipped with a diode array UV detector. Gradient C using eluent III and eluent IV, rising linearly from 0% to 95% of IV during t = 5-20 or t = 5-35 min was applied at a flow rate of 1.2 mL/min. High-resolution mass spectrometry (HRMS) measurements were recorded either on a maXis G3 quadrupole time-of-flight (TOF) mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ionization (ESI) source or on an Agilent 1290 UHPLC equipped with a diode array detector and coupled to Agilent 6550 QTOF mass spectrometer operated in positive electrospray or on a Bruker Solarix WR by either matrix assisted laser desorption/ionization, or ESI. Nuclear magnetic resonance (NMR) spectra were recorded either on a Bruker Avance III HD equipped with a cryogenically cooled probe (¹H NMR and ¹³C NMR recorded at 600 and 151 MHz, respectively) or a Bruker Avance III (¹H NMR, ¹³C NMR and ¹⁹F NMR recorded at 400, 101, and 377 MHz, respectively). All spectra were recorded at 298 K. Chemical shifts are reported in ppm relative to deuterated solvent as internal standard ($\delta_{\rm H}$ DMSO- $d_{\rm 6}$ 2.50 ppm; $\delta_{\rm C}$ DMSO- d_6 39.52 ppm; $\delta_{\rm H}$ CDCl₃ 7.26 ppm; $\delta_{\rm C}$ CDCl₃ 77.16 ppm; $\delta_{\rm H}$ MeOD- d_4 3.31 ppm;

 δ_c MeOD 49.0 ppm). Assignments of NMR spectra are based on 2D correlation spectroscopy (COSY, HSQC, TOCSY and HMBC spectra). Compound stock concentrations were determined by quantitative NMR (qNMR) using maleic acid as internal standard.

General solid phase peptide synthesis procedure (SPPS)

Peptides were synthesized on a ChemMatrix[®] or TentaGel[®]-resin using a Rink amide (RAM) linker by standard solid-phase peptide synthesis. Resin loading was determined spectrophotometrically, quantifying the amount of released fluorene upon cleavage of the Fmoc group from a small sample.⁷ Each elongation step was performed by applying the relevant amino acid (3 equiv.), HATU (2.9 equiv.) and *i*Pr₂NEt (6 equiv.) *or* the relevant amino acid (1.5 equiv.), PyOxim (1.5 equiv.) and *i*Pr₂NEt (6 equiv.) in DMF. Fmoc-deprotection was performed by treatment with DMF/piperidine (4:1, v/v, 4 mL; 2 min then 15 min), followed by washing with DMF (3×4 mL). The reaction progress was monitored by Kaiser's tests⁸ or by test cleaveage and subsequent UPLC-MS analysis.

General procedure for global deprotection and cleavage from the resin

Peptides were cleaved from the resin by TFA/H₂O/TIPS (95:2.5:2.5 (v/v), 4 mL; 1 h) and solvent removed under a stream of nitrogen. The resulting crude was triturated with ice-cold diethyl ether and purified by preparative reversed-phase HPLC. Yields were determined based on resin loading.

General procedure for on-resin Teoc deprotection

A solution of TBAF trihydrate (10 equiv.) in DMF (2.0 mL/0.1 mmol resin) was added to the fritted syringe containing the resin bound peptide and the reaction mixture was agitated for 1 h at 50 °C. The procedure was repeated and the resin was then washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL).

General on-resin thioacetylation procedure

Ethyl dithioacetate (2 equiv.) was dissolved in DMF (2.0 mL/0.1 mmol resin) and *i*Pr₂NEt (2 equiv.) and added to a fritted syringe containing the resin bound peptide and the reaction mixture was agitated for 3-4 h. After washing with DMF (3×4 mL) and CH₂Cl₂ (2×4 mL) the reaction progress was evaluated with a Kaiser's test. If the Kaiser's test indicated presence of unreacted amine, the procedure was repeated.

General on-resin thiourea formation procedure

Compound **S26** (2 equiv.) and *i*Pr₂NEt (2 equiv.) were dissolved in DMF (2.0 mL/0.1 mmol resin) and added to the fritted syringe containing the resin-bound peptide and the reaction mixture was agitated for 3-4 h. After washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) the reaction progress was evaluated with a Kaiser's test. If the Kaiser's test indicated presence of unreacted amine, the procedure was repeated.

For compounds containing other thiourea functionalities (compounds S11–S12, S14–S16), a solution of the desired amine (2 equiv.) and iPr_2NEt (3 equiv.) in CH₂Cl₂ (3.0 mL) was added dropwise over 5 min to a solution of bis(1-benzotriazolyl)methanethione (2 equiv.) in CH₂Cl₂ (1.5 mL) at 0 °C. The reaction mixture was concentrated under reduced pressure and the resulting crude residue and iPr_2NEt (2 equiv.) were dissolved in DMF (2.0 mL/0.1 mmol resin) and then added to the fritted syringe containing the resin bound peptide.

Compound syntheses

 N^2 -((benzyloxy)carbonyl)- N^6 -tetradecanoyl-L-lysine (S24). Trimethylsilyl chloride (0.27 mL, 2.14 mmol) was added to a solution of Cbz-Lys-OH (300 mg, 1.07 mmol) and iPr_2NEt (0.75 mL, 4.28 mmol) in anh. CH₂Cl₂ (20 mL). The reaction mixture was stirred at

2.14 mmol) was added to a solution of Cbz-Lys-OH (300 mg, 1.07 mmol) and *i*Pr₂NEt (0.75 mL, 4.28 mmol) in anh. CH₂Cl₂ (20 mL). The reaction mixture was stirred at ambient temperature for 30 min and myristoyl chloride (0.35 mL, 1.28 mmol) was added. After 90 min, the reaction mixture was poured into aq. citric acid (25% (w/w),

50 mL) and extracted with CH₂Cl₂ (4×25 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (0→4.5% MeOH and 0.5% AcOH in CH₂Cl₂) affording the desired amide **S24** (181 mg, 35%) as a colorless solid. TLC (3% MeOH and 0.5% AcOH in CH₂Cl₂): $R_f = 0.3$. ¹H NMR (600 MHz, MeOD-*d*₄) δ 7.48–7.18 (m, 5H, H_{Ar,Cbz}), 5.09 (s, 2H, CH_{2,Cbz}), 4.14 (dd, *J* = 9.2, 4.7 Hz, 1H, H_{α,Lys}), 3.16 (t, *J* = 6.9 Hz, 2H, H_{ε,Lys}), 2.15 (t, *J* = 7.5 Hz, 2H, (C=O)CH₂), 1.90–1.79 (m, 1H, H_{β,Lys,A}), 1.75–1.64 (m, 1H, H_{β,Lys,B}), 1.64–1.36 (m, 6H, H_{δ,Lys}, H_{γ,Lys}, (C=O)CH₂CH₂), 1.36–1.22 (m, 20H, (C<u>H₂)10</u>CH₃), 0.90 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, MeOD-*d*₄) δ 176.3 (NH_{ε,Lys}CO), 175.9 (COOH), 158.7 (CO_{Cbz}), 138.2 (C1_{Ar,Cbz}), 129.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 129.0 (C4_{Ar,Cbz}), 128.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 67.6 (CH_{2,Cbz}), 55.3 (C_{α,Lys}), 40.0 (C_{ε,Lys}), 37.2 ((C=O)CH₂), 33.1 (CH₂CH₂CH₃), 32.4 (C_{β,Lys}), 30.8–30.3 (8C, (CH₂)1₀CH₃), 29.9 (C_{δ,Lys}), 27.1 ((C=O)CH₂CH₂), 24.3 (C_{γ,Lys}), 23.7 (CH₂CH₃), 14.5 (CH₃). ESI-MS *m/z* calcd for C₂₈H₄₇N₂O₅⁺ [M+H]⁺, 491.3; found 491.4. CAS RN: 213017-44-8.

N²-((benzyloxy)carbonyl)-N²-tetradecanethioyl-L-lysine (S25). Lawesson's reagent (136 mg, 0.33 mmol) was added to a solution of amide **S24** (160 mg, 0.33 mmol) in anh. THF (10 mL). The reaction mixture was stirred at ambient temperature for 2 h and then poured into aq. HCl (2 M, 50 mL) and extracted with CH₂Cl₂ (3x40 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (0→1.5% MeOH and 0.5% AcOH in CH₂Cl₂) affording the desired thioamide **S25** (119 mg, 72%) as a colorless solid. TLC (1.5% MeOH and 0.5% AcOH in CH₂Cl₂): $R_{\rm f}$ = 0.4. ¹H NMR (600 MHz, MeOD-*d*₄) δ 7.43–7.20 (m, 5H, H_{Ar,Cbz}), 5.14–5.06 (m, 2H, CH_{2,Cbz}), 4.16 (dd, *J* = 9.2, 4.7 Hz, 1H, H_{α,Lys}), 3.58 (t, *J* = 7.1 Hz, 2H, H_{ε,Lys}), 2.62–2.54 (m, 2H, (C=S)CH₂), 1.93–1.81 (m, 1H, H_{β,Lys}A), 1.76–1.60 (m, 5H, H_{β,Lys}B, H_{δ,Lys}, (C=S)CH₂C<u>H₂</u>), 1.52–1.38 (m, 2H, H_{Y,Lys}), 1.30 (d, *J* = 13.9 Hz, 20H, (C<u>H</u>₂)₁₀CH₃), 0.90 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, MeOD-*d*₄) δ 206.5 (C=S), 175.9 (COOH), 158.7 (CO_{Cbz}), 138.2 (C1_{Ar,Cbz}), 47.1 ((C=S)<u>C</u>H₂), 46.6 (C_{ε,Lys}), 33.1 (<u>C</u>H₂CH₂CH₃), 32.5 (C_{β,Lys}), 30.8–29.9 (9C, (<u>C</u>H₂)₁₁CH₃), 28.2 (C_{δ,Lys}), 24.4 (C_{Y,Lys}), 23.7 (<u>C</u>H₂CH₃), 14.5 (CH₃). ESI-MS *m/z* calcd for C₂₈H₄₅N₂O₅⁺ [M+H]⁺, 505.3; found 505.3. CAS RN: 1429749-38-1.

Benzyl (S)-(1-oxo-1-(phenylamino)-6-tetradecanethioamidohexan-2-yl)carbamate (TM).

Carboxylic acid **S25** (50 mg, 0.10 mmol), aniline (13 μ L, 0.15 mmol), HOBt (20 mg, 0.15 mmol), and *i*Pr₂NEt (34 μ L, 0.20 mmol) were dissolved in anh. CH₂Cl₂ (2.0 mL) and cooled to 0 °C. EDC (28 mg, 0.15 mmol) was added and the reaction mixture was stirred at 0 °C for 5 min and then overnight at ambient temperature. The reaction mixture was cooled to 0 °C and additional EDC (28 mg, 0.15 mmol)

was added and the reaction mixture was stirred at 0 °C for 5 min and then for another 72 h at ambient temperature. The reaction mixture was concentrated under reduced pressure and resuspended in EtOAc (65 mL) and washed with aq. KHSO₄ (5%, 3×50 mL), saturated aq. NaHCO₃ (3×50 mL) and brine (2x50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography ($0 \rightarrow 1.25\%$ MeOH in CH₂Cl₂) affording the desired thioamide TM (37 mg, 65%) as a colorless solid. ¹H NMR (600 MHz, DMSO d_6) δ 9.99 (s, 1H, CO_{Lys}NH), 9.86 (t, J = 5.5 Hz, 1H, NH_{ϵ ,Lys}), 7.60 (d, J = 8.0 Hz, 2H, H2_{Ph}, H6_{Ph}), 7.53 (d, J = 7.9 Hz, 1H, NH_{α,Lys}), 7.42–7.10 (m, 7H, H_{Ar,Cbz}, H3_{Ph}, H5_{Ph}), 7.04 (t, J = 7.4 Hz, 1H, H4_{Ph}), 5.03 (s, 2H, CH_{2,Cbz}), 4.14 (td, J = 8.6, 5.2 Hz, 1H, H_{α ,Lys}), 3.54–3.39 (m, 2H, H_{ϵ ,Lys}), 2.50–2.46 (m, 2H, (C=S)CH₂), 1.76–1.48 (m, 6H, H_{β,Lys}, H_{δ,Lys}, (C=S)CH₂CH₂), 1.48–1.29 (m, 2H, H_{γ,Lys}), 1.22 (d, J = 2.7 Hz, 20H, (CH₂)₁₀CH₃), 0.85 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 203.6 (C=S), 171.0 (CO_{Lvs}), 156.1 (CO_{Cbz}), 138.9 (C1_{Ph}), 137.0 (C1_{Ar.Cbz}), 128.6 (C3_{Ph}, C5_{Ph}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.74 (C4_{Ar,Cbz}), 127.65 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 123.2 (C4_{Ph}), 119.2 (C2_{Ph}, C6_{Ph}), 65.4 $(CH_{2,Cbz})$, 55.3 $(C_{\alpha,Lys})$, 45.0 $(C_{\epsilon,Lys})$, 44.9 $((C=S)CH_2)$, 31.6 $(C_{\beta,Lys})$, 31.3 $(CH_2CH_2CH_3)$, 29.0–28.2 (9C, (<u>C</u>H₂)₁₀CH₃), 26.9 (C_{δ,Lys}), 23.1 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 13.9 (CH₃). Analytical HPLC gradient 0– 95% eluent II in eluent I (C8; 35 min total runtime), t_R 32.9 min (>98%, UV₂₃₀). HRMS calcd for C₃₄H₅₂N₃O₃⁺ [M+H]⁺, 582.3724; found 582.3732. CAS RN: 1429749-41-6. The data is in agreement with literature.9

((S)-1-(((S)-3-(1*H*-indol-3-yl)-1-(isopropylamino)-1-oxopropan-2-yl)amino)-1-oxo-6-tetradecanethioamidohexan-2-yl)carbamate (2). Compounds S28 (22 mg, 0.04 mmol), S29 (15 mg, 0.04 mmol), *i*Pr₂NEt (11 μL, 0.06 mmol) and HOBt (9 mg, 0.07 mmol) were dissolved in anh. CH₂Cl₂ (3.0 mL) and cooled to 0 °C. EDC (14 mg, 0.07 mmol) was added and the reaction mixture was stirred at 0 °C for 5 min and then overnight at ambient temperature. The reaction mixture was concentrated under reduced pressure and resuspended in EtOAc (30 mL)

and washed with aq. KHSO₄ (5%, 3×30 mL), saturated aq. NaHCO₃ (3×30 mL), and brine (2×30 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (0 \rightarrow 2% MeOH in CH₂Cl₂) affording the desired amide **2** (22 mg, 68%) as a colorless solid. TLC (5% MeOH in CH₂Cl₂): $R_f = 0.5$. ¹H NMR (600 MHz, DMSO- d_6) δ 10.79 (d, J = 2.4 Hz, 1H, NH_{Indole}), 9.83 (t, J = 5.3 Hz, 1H, NH_{E,Lys}), 7.86 (d, J

= 8.1 Hz, 1H, NH_{α,Trp}), 7.66 (d, *J* = 7.7 Hz, 1H, CO_{Trp}NH), 7.56 (d, *J* = 7.9 Hz, 1H, H4_{Indole}), 7.45–7.23 (m, 7H, NH_{α,Lys}, H_{Ar,Cbz}, H7_{Indole}), 7.11 (d, *J* = 2.4 Hz, 1H, H2_{Indole}), 7.08–7.02 (m, 1H, H6_{Indole}), 6.96 (t, *J* = 7.4 Hz, 1H, H5_{Indole}), 5.08–4.98 (m, 2H, CH_{2,Cbz}), 4.53–4.41 (m, 1H, H_{α,Trp}), 3.96 (td, *J* = 8.5, 5.2 Hz, 1H, H_{α,Lys}), 3.84–3.72 (m, 1H, CH_{*i*Pr}), 3.47–3.37 (m, 2H, H_{ε,Lys}), 3.06 (m_{ABX}, *J* = 14.5, 6.1 Hz, 1H, H_{β,Trp},A), 2.97 (m_{ABX}, *J* = 14.6, 7.6 Hz, 1H, H_{β,Trp},B), 2.51–2.48 (m, 2H, (C=S)CH₂, overlap with solvent peak), 1.69–1.42 (m, 6H, (C=S)CH₂C<u>H</u>₂, H_{β,Lys}, H_{δ,Lys}), 1.38–1.10 (m, 22H, H_{γ,Lys}, (C<u>H</u>₂)₁₀CH₃), 1.00 (d, *J* = 6.6 Hz, 3H, CH_{3,*i*Pr,A}), 0.91 (d, *J* = 6.6 Hz, 3H, CH_{3,*i*Pr,B}), 0.85 (t, *J* = 7.0 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 204.0 (C=S), 171.9 (CO_{Lys}), 170.5 (CO_{Trp}), 156.4 (CO_{Cbz}), 137.4 (C1_{Ar,Cbz}), 136.4 (C7_{alndole}), 128.8 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 128.2 (C4_{Ar,Cbz}), 128.1 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.9 (C3_{alndole}), 65.9 (CH_{2,Cbz}), 55.3 (C_{a,Lys}), 53.8 (C_{a,Trp}), 45.5 ((C=S)CH₂), 45.4 (C_{e,Lys}), 40.9 (CH_{*i*Pr}), 32.0 (C_{β,Lys}), 31.8 (CH₂CH₂CH₃), 29.5–28.7 (9C, (CH₂)₁₁CH₃), 28.4 (C_{β,Trp}), 27.3 (C_{5,Lys}), 23.4 (C_{γ,Lys}), 22.7 (CH_{3,*i*Pr,A}), 22.6 (CH_{3,*i*Pr,B}), 14.4 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 33.8 min (>98%, UV₂₃₀). HRMS calcd for C₄₂H₆₄N₅O₄S⁺ [M+H]⁺, 734.4674; found 734.4666.}

N-dodecyl-1*H*-benzo[*d*][1,2,3]triazole-1-carbothioamide (S26). A solution of dodecylamine (189 mg, 1.02 mmol) and *i*Pr₂NEt (0.2 mL, 1.15 mmol) in anh. CH₂Cl₂ (5.0 mL) was added dropwise over 10 min to a solution of bis(1-benzotriazolyl)methanethione (311 mg, 1.11 mmol) in anh. CH₂Cl₂ (8 mL) at 0 °C. The reaction mixture was stirred overnight at ambient temperature and concentrated under reduced pressure. The crude residue was purified by column chromatography (0→6% EtOAc in heptane), affording the desired compound S26 (304 mg, 86%) as a colorless solid. TLC (25% EtOAc in heptane): $R_f = 0.6$. ¹H NMR (600 MHz, CDCl₃) δ 9.07 (br s, 1H, NH), 8.96–8.91 (m, 1H, H7_{Bt}), 8.12–8.07 (m, 1H, H4_{Bt}), 7.64 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H, H6_{Bt}), 7.47 (ddd, J = 8.2, 7.0, 1.0 Hz, 1H, H5_{Bt}), 3.84 (td, J = 7.3, 5.5 Hz, 2H, NHCH₂), 1.81 (p, J = 7.4 Hz, 2H, NHCH₂CH₂), 1.49–1.42 (m, 2H, NH(CH₂)₂CH₂), 1.42–1.20 (m, 16H, (CH₂)₈CH₃), 0.88 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 174.5 (C=S), 147.2 (C7a_{Bt}), 132.6 (C3a_{Bt}), 130.4 (C6_{Bt}), 125.8 (C5_{Bt}), 120.4 (C4_{Bt}), 116.2 (C7_{Bt}), 45.3 (NHCH₂), 32.0 ((CH₂)₈CH₃), 29.8–29.4 (6C, (CH₂)₈CH₃), 28.3 ((CH₂)₈CH₃), 27.2 (NHCH₂CH₂), 22.8 (NH(CH₂)₂CH₂), 14.3 (CH₃). HRMS calcd for C₁₉H₃₀N₄NaS⁺ [M+Na]⁺, 369.2089; found 369.2081. Note: The crude is sufficiently pure to be used without further purification. Bt = benzotriazole.

Benzyl

((5*S*,8*S*)-5-((1*H*-indol-3-yl)methyl)-2-methyl-4,7-dioxo-14-thioxo-3,6,13,15tetraazaheptacosan-8-yl)carbamate (3). Compounds S26 (42 mg, 1.21 mmol), S30 (50 mg, 0.08 mmol), and *i*Pr₂NEt (21 μ L, 0.12 mmol) were dissolved in anh. DMF (3.0 mL). The reaction mixture was stirred at ambient temperature for 2 h and concentrated under reduced pressure. The crude residue was purified by column chromatography (0 \rightarrow 100% EtOAc in heptane), affording the desired thiourea 3 (34 mg, 38%) as a colorless solid. TLC (75%)

EtOAc in heptane): $R_{\rm f} = 0.6$. ¹H NMR (600 MHz, DMSO- d_6) δ 10.79 (br s, 1H, NH_{Indole}), 7.86 (d, J =8.1 Hz, 1H, NH_{α,Trp}), 7.66 (d, J = 7.7 Hz, 1H, CO_{Trp}NH), 7.55 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.45–7.18 (m, 9H, NH_{α,Lvs}, NH_{ε,Lvs}, H_{Ar,Cbz}, H7_{Indole}, NHCH₂), 7.10 (d, *J* = 2.4 Hz, 1H, H2_{Indole}), 7.04 (t, *J* = 7.5 Hz, 1H, H6_{Indole}), 6.95 (t, J = 7.4 Hz, 1H, H5_{Indole}), 5.08–4.97 (m, 2H, CH_{2,Cbz}), 4.51–4.41 (m, 1H, H_{α ,Trp}), 3.95 (td, J = 8.4, 5.1 Hz, 1H, $H_{\alpha,Lys}$), 3.77 (h, J = 6.7 Hz, 1H, CH_{iPr}), 3.27 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.06 (m_{ABX}, J = 14.6, 6.1 Hz, 1H, H_{β,Trp,A}), 2.97 (m_{ABX}, J = 14.6, 7.7 Hz, 1H, H_{β,Trp,B}), 1.61–1.35 (m, 6H, $H_{\beta,Lys}$, $H_{\delta,Lys}$, NHC<u>H</u>₂), 1.32–1.13 (m, 22H, $H_{\gamma,Lys}$, (C<u>H</u>₂)₁₀CH₃), 1.00 (d, J = 6.6 Hz, 3H, CH_{3,*i*Pr,A}), 0.90 (d, J = 6.5 Hz, 3H, CH_{3,*i*Pr,B}), 0.85 (t, J = 6.8 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 182.0 (C=S), 171.5 (CO_{Lys}), 170.0 (CO_{Trp}), 156.0 (CO_{Cbz}), 137.0 (C1_{Ar,Cbz}), 135.9 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C4_{Ar,Cbz}, C6_{Ar,Cbz}), 127.4 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.7 (C6_{Indole}), 118.4 (C4_{Indole}), 118.1 (C5_{Indole}), 111.1 (C7_{Indole}), 109.8 (C3_{Indole}), 65.4 (CH_{2,Cbz}), 54.9 (C_{α,Lys}), 53.3 (C_{α,Trp}), 43.4 (C_{ε,Lys}), 40.4 (CH_iPr), 31.6 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0– 28.5 (9C, (<u>C</u>H₂)₁₁CH₃), C_{δ,Lys}), 27.9 (C_{β,Trp}), 26.4 ((<u>C</u>H₂)₁₁CH₃), 22.9 (C_{y,Lys}), 22.2 (2×CH_{3,Pr}), 22.1 (CH₂CH₃), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 31.0 min (>98%, UV₂₃₀). The peak for C_{$\epsilon,Lys}$ was broad and of low intensity and the peak</sub> for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. HRMS calcd for C₄₁H₆₃N₆O₄S⁺ [M+H]⁺, 735.4626; found 735.4617.

Benzyl ((S)-1-(((S)-3-(1H-indol-3-yl)-1-(isopropylamino)-1-oxopropan-2-yl)amino)-1-oxo-5-(2-

tetradecanoylhydrazinyl)pentan-2-yl)carbamate (4). Myristoyl chloride (45 μ L, 0.16 mmol) and *i*Pr₂NEt (29 μ L, 0.16 mmol) were added to a solution of **S31** (50 mg, 0.08 mmol) in anh. CH₂Cl₂ (2.0 mL) at 0 °C. The reaction mixture was stirred at ambient temperature overnight and was then concentrated under reduced pressure. The crude residue was purified by column chromatography (0 \rightarrow 2% MeOH and 1.0% AcOH in CH₂Cl₂) to afford an off-white solid (35 mg),

tentatively assigned as *tert*-butyl 1-((*S*)-5-(((*S*)-3-(1*H*-indol-3-yl)-1-(isopropylamino)-1-oxopropan-2yl)amino)-4-(((benzyloxy)carbonyl)amino)-5-oxopentyl)-2-tetradecanoyl-1,4-diazane-1-carboxylate (ESI-MS *m*/*z* calcd for C₄₆H₇₁N₆O₇⁺ [M+H]⁺, 819.5; found 819.6), which was used without further purification. TFA (1.5 mL) was added to a solution of the colorless solid (35 mg) in anh. CH₂Cl₂ (3.0 mL) and stirred for 1 h at ambient temperature. The reaction mixture was then concentrated under reduced pressure and excess TFA was removed by coevaporations: CH₂Cl₂/toluene (1:1, 2x25 mL) and CH₂Cl₂/MeCN (1:1, 2x25 mL). The crude residue was purified by column chromatography (0 \rightarrow 3.5% MeOH and 1.0% AcOH in CH₂Cl₂) affording the desired hydrazide 4 (15 mg, 25%) as a colorless fluffy material after lyophilization. TLC (3.5% MeOH and 1% AcOH in CH_2CI_2): $R_f = 0.4$. ¹H NMR (600 MHz, DMSO- d_6) δ 10.82 (br s, 1H, NH_{Indole}), 9.23 (s, 1H, NHN<u>H</u>CO), 7.95 (d, J = 8.0 Hz, 1H, NH_{a,Trp}), 7.70 (d, J = 7.6 Hz, 1H, CO_{Trp}NH), 7.55 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.45 (d, J = 7.8 Hz, 1H, NH_{a,Lvs}), 7.39–7.20 (m, 6H, H_{Ar,Cbz}, H7_{Indole}), 7.11 (d, J = 2.3 Hz, 1H, H2_{Indole}), 7.03 (t, J = 7.3 Hz, 1H, H6_{Indole}), 6.95 (t, J = 7.4 Hz, 1H, H5_{Indole}), 5.02 (q, J = 12.6 Hz, 2H, CH_{2,Cbz}), 4.74 (br s, 1H, N<u>H</u>NHCO), 4.56–4.38 (m, 1H, H_{α,Trp}), 4.09–3.90 (m, 1H, H_{α,Lys}), 3.90–3.67 (m, 1H, CH_{*i*Pr}), 3.06 (m_{ABX}, *J* = 14.5, 5.9 Hz, 1H, H_{β,Trp,A}), 2.97 (m_{ABX}, *J* = 14.5, 7.7 Hz, 1H, H_{β,Trp,B}), 2.66–2.53 (m, 2H, $H_{\delta,Lys}$), 1.99 (t, J = 7.4 Hz, 2H, NHNHCOC \underline{H}_2), 1.64–1.40 (m, 4H, $H_{\beta,Lys}$, $H_{\gamma,Lys}$), 1.40–1.08 (m, 24H, $(CH_2)_{12}CH_3$), 1.00 (d, J = 6.6 Hz, 3H, $CH_{3,iPr,A}$), 0.91 (d, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, 3H, $CH_{3,iPr,B}$), 0.85 (t, J = 6.5 Hz, $CH_{3,iPr,B}$), 0.85 (t, J = 6.= 7.0 Hz, 3H, (CH₂)C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 171.5 (CO_{Lys}), 171.0 (NHNHCO), 170.1 (CO_{Trp}), 156.0 (CO_{Cbz}), 137.0 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.7 (C4_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.4 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.7 (C6_{Indole}), 118.4 (C4_{Indole}), 118.1 $(C5_{Indole})$, 111.1 $(C7_{Indole})$, 109.9 $(C3_{Indole})$, 65.4 $(CH_{2,Cbz})$, 54.9 $(C_{\alpha,Lys})$, 53.4 $(C_{\alpha,Trp})$, 50.7 $(C_{\delta,Lys})$, 40.4 (CH_{iPr}), 33.5 (NHNHCO<u>C</u>H₂), 31.3 (<u>C</u>H₂CH₂CH₃), 29.4 (C_{β,Lvs}), 29.0–28.6 (9C, (<u>C</u>H₂)₁₁CH₃), 25.2 (C_{β,Trp}), 23.8 (C_{V,Lvs}), 22.2 (CH₂CH₃), 22.1 (CH_{3,Pr}), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 29.4 min (N/A, UV₂₃₀*). HRMS calcd for C₄₁H₆₃N₆O₅⁺ [M+H]⁺, 719.4854; found 719.4871.

*Degrades during reversed-phase HPLC.

Benzyl

((S)-1-(((S)-3-(1*H*-indol-3-yl)-1-(isopropylamino)-1-oxopropan-2-yl)amino)-8-(dodecylamino)-1,8-dioxooctan-2-yl)carbamate (5). Compound S32 (51 mg, 0.09 mmol), HOBt (19 mg, 0.14 mmol), dodecylamine (25 mg, 0.14 mmol) and *i*Pr₂NEt (32 μL, 0.18 mmol) were dissolved in anh. CH₂Cl₂
(2.0 mL) and cooled to 0 °C. EDC (26 mg, 0.14 mmol) was added and the reaction mixture was stirred at 0°C for 15 min and then overnight at ambient temperature. The reaction mixture was diluted with EtOAc (50 mL) and washed

with aq. KHSO₄ (5%, 3×50 mL), saturated aq. NaHCO₃ (3×50 mL) and brine (2×50 mL). The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (0 \rightarrow 3% MeOH and 1% AcOH in CH₂Cl₂) affording the desired amide **5** (39 mg, 59%) as a colorless solid. TLC (3% MeOH and 1% AcOH in CH₂Cl₂): $R_f = 0.3$. ¹H NMR (600 MHz, DMSO- d_6) δ 10.82 (s, 1H, NH_{Indole}), 7.88 (d, J = 8.1 Hz, 1H, NH_{α ,Trp}), 7.73 (t, J = 5.4 Hz, 1H, CON<u>H</u>CH₂), 7.69 (d, J = 7.7 Hz, 1H, CO_{Trp}NH), 7.55 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.44 (d, J = 7.8 Hz, 1H, NH_{α ,Asu}), 7.39–7.22 (m, 6H, H_{Ar,Cbz}, H7_{Indole}), 7.10 (d, J = 2.4 Hz, 1H, H2_{Indole}), 7.03 (t, J = 7.5 Hz, 1H, H6_{Indole}), 6.95 (t, J = 7.4 Hz, 1H H5_{Indole}), 5.10–4.95 (m, 2H, CH_{2,Cbz}), 4.52–4.38 (m,

1H, H_a,T_{rp}), 3.99–3.86 (m, 1H, H_a,A_{su}), 3.83–3.68 (m, 1H, CH_{Pr}), 3.14–2.89 (m, 4H, H_β,T_{rp}, CONHC<u>H</u>₂), 2.00 (t, *J* = 7.4 Hz, 2H, H_ζ,A_{su}), 1.55–1.47 (m, 1H, H_β,A_{su},A), 1.47–1.30 (m, 5H, H_β,A_{su},B, H_γ,A_{su}, H_ε,A_{su}), 1.29–1.10 (m, 22H, (C<u>H</u>₂)₁₀CH₃, H_δ,A_{su}), 0.99 (d, *J* = 6.6 Hz, 3H, CH₃,P_r,A), 0.91 (d, *J* = 6.5 Hz, 3H, CH₃,P_r,B), 0.85 (t, *J* = 6.9 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 171.9 (CO_a,A_{su}), 171.5 (CO_η,A_{su}), 170.1 (CO_{Trp}), 156.0 (CO_{cbz}), 137.0 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.4 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.8 (C6_{Indole}), 118.5 (C4_{Indole}), 118.1 (C5_{Indole}), 111.2 (C7_{Indole}), 109.9 (C3_{Indole}), 65.4 (CH_{2,Cbz}), 55.0 (C_a,A_{su}), 53.3 (C_a,T_{rp}), 40.4 (C_a,L_{ys}), 38.4 (CONH<u>C</u>H₂), 35.4 (C_ζ,A_{su}), 31.8 (C_β,A_{su}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.2 (C_ε,A_{su}), 29.0 ((<u>C</u>H₂)₁₀CH₃), 28.8 ((<u>C</u>H₂)₁₀CH₃), 28.4 ((<u>C</u>H₂)₁₀CH₃), 27.9 (C_β,T_{rp}), 26.4 ((<u>C</u>H₂)₁₀CH₃), 25.2 (C_γ,A_{su}), 25.1 (C_δ,A_{su}), 22.3 (CH₃,P_r,A), 22.1 (CH₃,P_r,B), 14.0 (CH₂<u>C</u>H₃). Analytical HPLC gradient 0–95% eluent I in eluent I (C8; 35 min total runtime), *t_R* 31.3 min (>98%, UV₂₃₀). HRMS calcd for C₄₂H₆₄N₅O₅⁺ [M+H]⁺, 718.4902; found 718.4911. Asu = aminosuberic acid.

Benzyl ((5S,8S,11S)-8-((1*H*-indol-3-yl)methyl)-1-amino-5-carbamoyl-7,10-dioxo-17-thioxo-6,9,16,18-tetraazatriacontan-11-yl)carbamate (6). Starting from Cbz-Lys-Trp-Lys(Boc)-resin (101 mg, estimated loading: 0.42 mmol/g) synthesized from Fmoc-Lys(Boc)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC

purification afforded the desired thiourea 6 (4 mg, 10% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.82 (d, *J* = 2.4 Hz, 1H, NH_{Indole}), 7.97 (d, J = 7.6 Hz, 1H, NH_{α ,Trp}), 7.92 (d, J = 8.1 Hz, 1H, NH_{α ,Lys}), 7.70 (s, 3H, NH₃⁺), 7.57 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.45–7.24 (m, 9H, NH_{α,Lys(Dtu}), NH_{ε,Lys}, H_{Ar,Cbz}, H7_{Indole}, N<u>H</u>CH₂), 7.20 (s, 1H, CONH_{2,A}), 7.14 (d, J = 2.3 Hz, 1H, H2_{Indole}), 7.09–7.03 (m, 2H, H6_{Indole}, CONH_{2,B}), 6.96 (t, J = 7.4 Hz, 1H, H5_{Indole}), 8.4, 5.1 Hz, 1H, $H_{\alpha,Lys}$), 3.94 (td, J = 8.6, 4.8 Hz, 1H, $H_{\alpha,Lys(Dtu)}$), 3.27 (br s, 2H, $H_{\epsilon,Lys(Dtu)}$, overlap with residual water), 3.15 (m_{ABX}, J = 14.8, 4.9 Hz, 1H, H_{β,Trp,A}), 2.99 (m_{ABX}, J = 14.9, 8.6 Hz, 1H, H_{β,Trp,B}), 2.80–2.69 (m, 2H, H_{ϵ ,Lys}), 1.72–1.35 (m, 10H, H_{β ,Lys(Dtu)}, H_{δ ,Lys(Dtu)}, H_{β ,Lys}, H_{δ ,Lys}, (CH₂)₁₁CH₃), 1.24 (s, 24H, $H_{y,Lys(Dtu)}$, $H_{y,Lys}$, $(CH_2)_{11}CH_3$, 0.85 (t, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.3 (CO_{Lys}), 172.0 (CO_{Lys(Dtu})), 171.2 (CO_{Trp}), 158.0 (d, J = 33.1 Hz, residual CO_{TFA}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 117.3 (q, J = 283.1 Hz, residual CF_{3,TFA}), 111.2 (C7_{Indole}), 109.8 (C3_{Indole}), 65.5 (CH_{2,Cbz}), 54.9 (C_{α ,Lys(Dtu})), 53.4 $(C_{\alpha,Trp})$, 52.2 $(C_{\alpha,Lys})$, 43.3 $(C_{\epsilon,Lys(Dtu)})$, 38.7 $(C_{\epsilon,Lys})$, 31.6 $(C_{\beta,Lys})$, 31.4 $(C_{\beta,Lys(Dtu)})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.0–28.7 (9C, (<u>C</u>H₂)₁₁CH₃), 27.3 (C_{β,Trp}), 26.7 (C_{δ,Lys}(Dtu)), 26.4 (C_{δ,Lys}), 23.0 (C_{y,Lys}(Dtu)), 22.1 (C_{y,Lys}), 22.1 (CH₂CH₃), 14.0 (CH₃). The peak for C_{$\epsilon,Lys(Dtu)$} was broad and of low intensity and the peak for

C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 25.4 min (>98%, UV₂₃₀). HRMS calcd for C₄₄H₆₉N₈O₅S⁺ [M+H]⁺, 821.5106; found 821.5105. Dtu = 1-dodecylthiourea.

((3S,6S,9S)-6-((1H-indol-3-yl)methyl)-1-amino-3-carbamoyl-1,5,8-trioxo-15-thioxo-4,7,14,16-tetraazaoctacosan-9-yl)carbamate (7). Starting from Cbz-Lys-Trp(Boc)-Asn(Trt)-resin (267 mg, estimated loading: 0.37 mmol/g) synthesized from Fmoc-Asn(Trt)-OH, Fmoc-Trp(Boc)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative

reversed-phase HPLC purification afforded the desired thiourea 7 (3 mg, 4% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 10.82 (d, J = 2.4 Hz, 1H, NH_{Indole}), 8.08 (d, J = 8.0 Hz, 1H, NH_{α ,Trp}), 8.03 (d, J = 7.4 Hz, 1H, NH_{α ,Asn}), 7.56 (d, J = 7.9Hz, 1H, H4_{Indole}), 7.40–7.24 (m, 9H, NH_{α ,Lys}, NH_{ϵ ,Lys}, H_{Ar,Cbz}, H7_{Indole}, N<u>H</u>CH₂), 7.16 (d, J = 2.4 Hz, 1H, H2_{Indole}), 7.06–7.01 (m, 2H, H6_{Indole}, CONH_{2, Asn,α,B}), 6.96 (t, J = 7.4 Hz, 1H, H5_{Indole}), 6.93 (s, 1H, CONH_{2,v,A}), 6.85 (s, 1H, CONH_{2,v,B}), 5.04 (d, J = 12.6 Hz, 1H, CH_{2,Cbz, A}), 4.98 (d, J = 12.5 Hz, 1H, CH_{2,Cbz, B}), 4.52–4.41 (m, 2H, H_{α ,Trp}, H_{α ,Asn}), 3.95 (td, *J* = 8.7, 4.9 Hz, 1H, H_{α ,Lys}), 3.31 (br s, 2H, H_{ϵ ,Lys}, overlap with residual water), 3.15 (m_{ABX}, J = 14.9, 4.7 Hz, 1H, H_{β,Trp,A}), 2.97 (m_{ABX}, J = 14.9, 8.8 Hz, 1H, H_{β ,Trp,B}), 2.44 (d, *J* = 6.5 Hz, 2H, H_{β ,Asn}), 1.63–1.34 (m, 6H, H_{β ,Lys}, H_{δ ,Lys}, (C<u>H</u>₂)₁₁CH₃), 1.32–1.11 (m, 22H, H_{Y,Lvs}, (CH₂)₁₁CH₃), 0.85 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 172.7 (CO_{α,Asn}), 172.2 (CO_{Lys}), 171.7 (CO_{Asn,y}), 171.0 (CO_{Trp}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C2_{Ar,Cbz}, C5_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.8 (C6_{Indole}), 118.3 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 (C7_{Indole}), 109.8 (C3_{Indole}), 65.6 (CH_{2,Cbz}), 54.7 (C_{α,Lys}), 53.6 (C_{α,Trp}), 49.4 (C_{α,Asn}), 43.5 (C_{ε,Lys}), 36.7 (C_{β,Asn}), 31.5 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.7 (9C, $(\underline{C}H_2)_{11}CH_3$, 27.3 $(C_{\beta,Trp})$, 26.4 $(C_{\delta,Lys})$, 22.9 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 13.9 (CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 27.3 min (>98%, UV₂₃₀). HRMS calcd for C₄₂H₆₂N₈O₆SNa⁺ [M+Na]⁺, 829.4405; found 829.4416.

Benzyl ((5S,8S,11S)-8-((1H-indol-3-yl)methyl)-1-amino-5-carbamoyl-1-imino-7,10-dioxo-17-

thioxo-2,6,9,16,18-pentaazatriacontan-11-yl)carbamate (8). Starting from Cbz-Lys(Fmoc)-Trp-Dab(Alloc)-resin (128 mg, estimated loading: 0.47 mmol/g) synthesized from Fmoc-Dab(Alloc)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by addition of borane dimethylamine complex (24 mg, 0.40 mmol) and $Pd(PPh_3)_4$ (20 mg, 0.017 mmol) in anh. CH_2Cl_2 (2.0 mL) to the resin under

agitation for 15 min. The procedure was repeated and the resin was washed with CH₂Cl₂ (3×4 mL), DMF (3×4 mL) and CH₂Cl₂ (3×4 mL). A solution of pyrazol(Boc)₂ (56 mg, 0.18 mmol) and *i*Pr₂NEt (63 µL, 0.32 mmol) in DMF (4 mL) was added to the resin and agitated for 3 h at 37 °C. The resin was washed with DMF (3×4 mL) followed by Fmoc-deprotection and subsequent on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 8 (4 mg, 8% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO d_6) δ 10.83 (d, J = 2.3, 1H, NH_{Indole}), 8.19–8.02 (m, 2H, NH_{$\alpha,Agb}$, NH_{$\alpha,Trp}), 7.58 (d, <math>J = 7.9$ Hz, 1H,</sub></sub> H4_{Indole}), 7.50 (t, J = 5.8 Hz, 1H, NH_{v,Agb}), 7.41 (d, J = 7.8 Hz, 1H, NH_{a,Lys}), 7.38–7.27 (m, 8H, NH_{e,Lys}, H_{Ar,Cbz}, H7_{Indole}, NHCH₂), CONH_{2,A}), 7.18–7.10 (m, 3H, CONH₂, H2_{Indole}), 7.07–7.04 (m, 2H, H6_{Indole}), 6.97 (t, J = 7.4 Hz, 1H, H5_{Indole}), 5.08–4.92 (m, 2H, CH_{2,Cbz}), 4.56–4.46 (m, 1H, H_{α ,Trp}), 4.27–4.19 (m, 1H, $H_{\alpha,Agb}$), 3.99–3.91 (m, 1H, $H_{\alpha,Lvs}$), 3.30 (br s, 2H, $H_{\epsilon,Lvs}$, overlap with residual water), 3.21–3.10 (m, 2H, $H_{\beta,Trp,B}$, $H_{\gamma,Agb,A}$), 3.09–2.97 (m, 2H, $H_{\beta,Trp,B}$, $H_{\gamma,Agb,B}$), 2.89 (s, trace DMF), 2.73 (s, trace DMF), 1.98–1.88 (m, 1H, H_{β,Agb,A}), 1.73–1.63 (m, 1H, H_{β,Agb,B}), 1.59–1.55 (m, 1H, H_{β,Lys,A}), 1.49–1.31 (m, 5H, $H_{\beta,Lys,B}$, $H_{\delta,Lys}$, $(C\underline{H}_2)_{11}CH_3$, 1.32–1.09 (m, 24H, $H_{\gamma,Lys}$, $(C\underline{H}_2)_{11}CH_3$), 0.85 (t, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.8 (CO_{Agb}), 172.4 (CO_{Lys}), 171.6 (CO_{Trp}), 156.7 (NHC(=NH)NH₂), 158.3 (q, J = 32.6 Hz, residual CO_{TFA}), 156.1 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar.Cbz}, C5_{Ar.Cbz}), 127.8 (C4_{Ar.Cbz}), 127.7 (C2_{Ar.Cbz}, C6_{Ar.Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.9 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 111.3 (C7_{Indole}), 109.8 (C3_{Indole}), 65.5 $(CH_{2,Cbz})$, 54.8 $(C_{\alpha,Lys})$, 53.8 $(C_{\alpha,Trp})$, 50.2 $(C_{\alpha,Agb})$, 43.4 $(C_{\epsilon,Lys})$, 37.8 $(C_{\gamma,Agb})$, 31.5 $(C_{\beta,Lys}, C_{\beta,Agb})$, 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.5 (10C, C_{δ,Agb} (<u>C</u>H₂)₁₁CH₃), 27.0 (C_{β,Trp}), 26.4 (C_{δ,Lys}), 23.0 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 13.9 (CH₃). The peak for C_{$\epsilon,Lvs}$ was broad and of low intensity and the peak for C=S was</sub> not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 26.3 min (>95%, UV₂₅₄). HRMS calcd for $C_{43}H_{67}N_{10}O_5S^+$ [M+H]⁺, 835.5011; found 835.5005. Agb = 2-amino-guanidinobutyric acid.

Benzyl

thioxo-2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (9). Starting from Cbz-Lys-Trp-Arg(Pbf)-resin (101 mg, estimated loading: 0.42 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by onresin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative

((6S,9S,12S)-9-((1H-indol-3-yl)methyl)-1-amino-6-carbamoyl-1-imino-8,11-dioxo-18-

reversed-phase HPLC purification afforded the desired thiourea **9** (1 mg, 4% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.81 (br s, 1H, NH_{Indole}), 8.01–7.91 (m, 2H, NH_{α ,Arg}, NH_{α ,Trp}), 7.56 (d, *J* = 7.9 Hz, 1H, H4_{Indole}), 7.54–7.48 (m, 1H, NH_{δ ,Arg}), 7.42–7.27 (m, 9H, NH_{α ,Lys}, NH_{ϵ ,Lys}, H_{Ar,Cbz}, H7_{Indole}, N<u>H</u>CH₂), 7.25 (s, 1H, CONH_{2,A}), 7.14 (d,
J = 2.3 Hz, 1H, H2_{Indole}), 7.10 (s, 1H, CONH_{2,B}), 7.07–7.03 (m, 1H, H6_{Indole}), 6.96 (t, J = 7.4 Hz, 1H, H5_{Indole}), 6.54 (s, 2H, residual CO₂H_{TFA}), 5.08–4.95 (m, 2H, CH_{2.Cbz}), 4.54 (td, J = 8.0, 4.7 Hz, 1H, $H_{\alpha,Trp}$), 4.21 (td, J = 8.0, 5.6 Hz, 1H, $H_{\alpha,Arg}$), 3.94 (td, J = 8.7, 4.8 Hz, 1H, $H_{\alpha,Lys}$), 3.27 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.15 (m_{ABX}, J = 14.8, 4.7 Hz, 1H, H_{β,Trp,A}), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.99 $H_{\beta,Lys}$, $H_{\delta,Lys}$, $(CH_2)_{11}CH_3$), 1.24 (s, 22H, $H_{\gamma,Lys}$, $(CH_2)_{11}CH_3$), 0.85 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.1 (CO_{Arg}), 172.0 (CO_{Lvs}), 171.2 (CO_{Trp}), 157.9 (q, J = 30.9 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 117.3 (q, J = 300.1 Hz, residual CF_{3,TFA}), 111.2 (C7_{Indole}), 109.8 $(C3_{Indole}), 65.5 (CH_{2,Cbz}), 54.8 (C_{\alpha,Lvs}), 53.4 (C_{\alpha,Trp}), 51.9 (C_{\alpha,Arg}), 43.4 (C_{\epsilon,Lvs}), 40.4 (C_{\delta,Arg}), 31.6 (C_{\beta,Lvs}), 40.4 (C_{\delta,Arg}), 31.6 (C_{\beta,Lvs}), 31.6 (C_{\beta,L$ 31.3 (<u>C</u>H₂CH₂CH₃), 29.2 (C_{β,Arg}), 29.0–28.5 (9C, (<u>C</u>H₂)₁₁CH₃), 27.4 (C_{β,Trp}), 26.4 (C_{δ,Lys}), 25.0 (C_{γ,Arg}), 23.0 ($C_{V,Lys}$), 22.1 (<u>CH</u>₂CH₃), 13.9 (CH₃). The peak for $C_{\varepsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast guadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 25.8 min (>95%, UV_{230}). HRMS calcd for $C_{44}H_{69}N_{10}O_5S^+$ [M+H]⁺, 849.5168; found 849.5189.

Benzyl ((7S,10S,13S)-10-((1H-indol-3-yl)methyl)-1-amino-7-carbamoyl-1-imino-9,12-dioxo-19-

thioxo-2,8,11,18,20-pentaazadotriacontan-13-yl)carbamate (10). Starting from Cbz-Lys-Trp(Boc)-hArg(Boc₂)-resin (267 mg, estimated loading: 0.37 mmol/g) synthesized from Fmoc-hArg(Boc₂)-OH (**S28**), Fmoc-Trp(Boc)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the

resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **10** (4 mg, 5% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.81 (d, *J* = 2.4, 1H, NH_{indole}), 8.01–7.89 (m, 2H, NH_{α,hArg}, NH_{α,Trp}), 7.57 (d, *J* = 7.9 Hz, 1H, H4_{indole}), 7.47–7.43 (m, 1H, NH_{ε,hArg}), 7.40 (d, *J* = 7.9 Hz, 1H, NH_{α,Lys}), 7.38–7.26 (m, 8H, NH_{ε,Lys}, H_{Ar,Cbz}, H7_{Indole}, N<u>H</u>CH₂), 7.24 (br s, 1H, CONH_{2,A}), 7.14 (d, *J* = 2.4 Hz, 1H, H2_{Indole}), 7.07–7.02 (m, 2H, H6_{indole}, CONH_{2,B}), 6.96 (t, *J* = 7.3 Hz, 1H, H5_{Indole}), 5.04 (d, *J* = 12.6, 1H, CH_{2,Cbz,A}), 4.98 (d, *J* = 12.6, 1H, CH_{2,Cbz,B}), 4.54 (td, *J* = 8.0, 4.8 Hz, 1H, H_{α,Trp}), 4.19 (td, *J* = 8.2, 5.5 Hz, 1H, H_{α,hArg}), 3.96–3.91 (m, 1H, H_{α,Lys}), 3.29 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.15 (m_{ABX}, *J* = 14.8, 4.8 Hz, 1H, H_{β,Trp,A}), 3.08–3.03 (m, 2H, H_{ε,hArg}), 2.99 (m_{ABX}, *J* = 14.9, 8.6 Hz, 1H, H_{β,Trp,B}), 1.70–1.62 (m, 1H, H_{β,hArg,A}), 1.58–1.35 (m, 9H, H_{β,hArg,B}, H_{γ,hArg}, H_{β,Lys}, H_{δ,Lys}, (CH₂)₁₁CH₃), 1.32–1.19 (m, 24H, H_{γ,Lys}, H_{δ,hArg}, (C<u>H</u>₂)₁₁CH₃), 0.85 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.3 (CO_{harg}), 172.0 (CO_{Lys}), 171.1 (CO_{Trp}), 156.6 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 123.6 (C7a_{indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{indole}), 123.6

(C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 (C7_{Indole}), 109.8 (C3_{Indole}), 65.5 (CH_{2,Cbz}), 54.9 (C_{$\alpha,Lys}$), 53.3 (C_{$\alpha,Trp}), 52.2 (C_{<math>\alpha,hArg}$), 43.4 (C_{$\epsilon,Lys}), 40.4 (C_{<math>\epsilon,hArg}), 31.6 (C_{<math>\beta,hArg}), 31.6 (C_{<math>\beta,hArg}), 31.3 (CH₂CH₂CH₃), 29.0–28.5 (10C, C_{<math>\delta,hArg}, (CH₂)₁₁CH₃), 27.4 (C_{<math>\beta,Trp}), 26.4 (C_{<math>\delta,Lys}), 23.0 (C_{<math>\gamma,Lys}), 22.3 (C_{<math>\gamma,hArg}), 22.1 (CH₂CH₃), 13.9 (CH₃). The peak for C_{<math>\epsilon,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime),$ *t_R*14.0 min (>98%, UV₂₃₀). HRMS calcd for C₄₅H₇₁N₁₀O₅S⁺ [M+H]⁺, 863.5324; found 863.5313. hArg = homoarginine.</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>

(4S,7S,10S)-7-((1H-indol-3-yl)methyl)-10-(((benzyloxy)carbonyl)amino)-4-carbamoyl-6,9-

dioxo-16-thioxo-5,8,15,17-tetraazanonacosanoic acid (11). Starting from Cbz-Lys-Trp-Glu(O*t*Bu)-resin (87 mg, estimated loading: 0.51 mmol/g) synthesized from Fmoc-Glu(O*t*Bu)-OH, Fmoc-Trp(Boc)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative

reversed-phase HPLC purification afforded the desired thiourea 11 (5 mg, 12% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 12.10 (br s, COOH), 10.80 (br s, 1H, NH_{Indole}), 8.00 (d, J = 7.7 Hz, 1H, NH_{α,Trp}), 7.90 (d, J = 8.0 Hz, 1H, NH_{Glu}), 7.56 (d, J = 8.0 Hz, 1H, H4_{Indole}), 7.41 (d, J = 7.7 Hz, 1H, NH_{$\alpha,Lys}), 7.38-7.20$ (m, 8H, NH_{$\epsilon,Lys}, H_{Ar,Cbz},</sub></sub>$ H7_{Indole.} NHCH₂), 7.19–7.14 (m, 2H, H2_{Indole}, CONH_{2,A}), 7.11–7.02 (m, 2H, CONH_{2,B}, H6_{Indole}), 6.96 (t, J = 7.3 Hz, 1H, H5_{Indole}), 5.07–4.94 (m, 2H, CH_{2,Cbz}), 4.53 (td, J = 8.1, 4.8 Hz, 1H, H_{a,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.8 Hz, 1H, H_{A,Trp}), 4.20 (td, J = 8.1, 4.20 (td, J= 8.2, 5.0 Hz, 1H, $H_{\alpha,Glu}$), 3.93 (td, J = 8.5, 4.8 Hz, 1H, $H_{\alpha,Lys}$), 3.29 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.16 (m_{ABX}, J = 14.9, 4.9 Hz, 1H, H_{β,Trp,A}), 2.99 (m_{ABX}, J = 14.9, 8.6 Hz, 1H, H_{β,Trp,B}), 2.26–2.14 (m, 2H, H_{v,Glu}), 1.97–1.85 (m, 1H, H_{β,Glu,A}), 1.97–1.85 (m, 1H, H_{β,Glu,A}), 1.70–1.60 (m, 1H, $H_{\beta,Glu,B}$), 1.60–1.04 (m, 28H, $H_{\beta,Lys}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), 0.85 (t, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 174.0 (COOH_{Glu}), 172.9 (CO_{Glu}), 172.0 (CO_{Lvs}), 171.2 (CO_{Trp}), 156.1 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.74 (C4_{Ar,Cbz}), 127.69 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 $(C7_{Indole})$, 109.9 $(C3_{Indole})$, 65.5 $(CH_{2,Cbz})$, 54.9 $(C_{\alpha,Lys})$, 53.4 $(C_{\alpha,Trp})$, 51.8 $(C_{\alpha,Glu})$, 43.4 $(C_{\epsilon,Lys})$, 31.5 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 30.1 (C_{y,Glu}), 29.0–28.7 (9C, (<u>C</u>H₂)₁₁CH₃), 27.4 (C_{β,Trp}), 27.2 (C_{β,Glu}), 26.4 $(C_{\delta,Lys})$, 23.0 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 13.9 (CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 26.7 min (>98%, UV₂₁₀). HRMS calcd for C₄₃H₆₄N₇O₇S⁺ [M+H]⁺, 822,4582; found 822.4569.

Benzyl ((4S,7S,10S)-7-((1H-indol-3-yl)methyl)-4-carbamoyl-2-methyl-6,9-dioxo-16-thioxo-

5,8,15,17-tetraazanonacosan-10-yl)carbamate (12). Starting from Cbz-Lys-Trp-Leu-resin (76 mg, estimated loading: 0.51 mmol/g) synthesized from Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification

afforded the desired thiourea 12 (6 mg, 18% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 10.84 (d, J = 2.4, 1H, NH_{indole}), 8.01 (d, J = 7.9Hz, 1H, NH_{α ,Trp}), 7.85 (d, J = 8.0 Hz, 1H, NH_{Leu}), 7.56 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.45–7.19 (m, 9H, $NH_{\alpha,Lys}$, $NH_{\epsilon,Lys}$, $H_{Ar,Cbz}$, $H7_{Indole}$, $NHCH_2$), 7.18–7.08 (m, 2H, H2_{Indole}, CONH_{2,A}), 7.08–7.00 (m, 1H, 1H) H6_{Indole}), 6.99–6.91 (m, 2H, CONH_{2,B}, H5_{Indole}), 5.08–4.94 (m, 2H, CH_{2,Cbz}), 4.55 (td, J = 8.1, 5.3 Hz, 1H, $H_{\alpha,Trp}$), 4.22 (q, J = 7.8, 1H, $H_{\alpha,Leu}$), 3.95 (td, J = 8.4, 4.9 Hz, 1H, $H_{\alpha,Lys}$), 3.29 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.14 (m_{ABX}, J = 14.8, 5.3 Hz, 1H, H_{β,Trp,A}), 2.97 (m_{ABX}, J = 14.8, 8.3 Hz, 1H, $H_{\beta,Trp,B}$), 1.59–1.50 (m, 2H, $H_{\beta,Lys}$, $H_{\gamma,Leu}$), 1.49–1.10 (m, 29H, $H_{\beta,Lys,B}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, $H_{\beta,Leu}$, $(CH_2)_{11}CH_3)$, 0.88–0.83 (m, 6H, $H_{\delta,Leu,1}$, CH_2CH_3), 0.81 (d, J = 6.5 Hz, 3H, $H_{\delta,Leu,2}$). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.9 (CO_{Leu}),zz 172.0 (CO_{Lys}), 171.0 (CO_{Trp}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar.Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar.Cbz}, C5_{Ar.Cbz}), 127.75 (C4_{Ar.Cbz}), 127.66 (C2_{Ar.Cbz}, C6_{Ar.Cbz}), 127.3 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 (C7_{Indole}), 109.9 (C3_{Indole}), 65.4 (CH_{2,Cbz}), 54.8 (C_{α ,Lys}), 53.3 (C_{α ,Trp}), 50.9 (C_{α ,Glu}), 43.4 (C_{ϵ ,Lys}), 41.0 (C_{β ,Leu}), 31.6 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.7 (9C, (<u>C</u>H₂)₁₁CH₃), 27.2 (C_{β,Trp}), 26.4 (C_{δ,Lys}), 24.1 (C_{γ,Leu}), 23.0 (C_{v,Lvs}), 22.9 (C_{δ,Leu,1}), 22.1 (<u>C</u>H₂CH₃), 21.6 (C_{δ,Leu,2}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{ε,Lvs} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 27.9 min (>98%, UV₂₃₀). HRMS calcd for C₄₄H₆₈N₇O₅S⁺ [M+H]⁺, 806.4997; found 806.4987.

Benzyl

thioxo-2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (13). Starting from Cbz-Lys-Arg(Pbf)-Arg(Pbf)-resin (87 mg, estimated loading: 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection

and cleavage from the resin, followed by preparative reversed-phase

((6S,9S,12S)-1-amino-6-carbamoyl-9-(3-guanidinopropyl)-1-imino-8,11-dioxo-18-

HPLC purification afforded the desired thiourea **13** (2 mg, 6% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.01 (d, *J* = 7.7 Hz, 1H, NH_{Arg,1}), 7.92 (d, *J* = 7.9 Hz, 1H, NH_{Arg,2}), 7.56–7.48 (m, 2H, NH_{δ ,Arg,1}, NH_{δ ,Arg,2}), 7.43 (d, *J* = 7.9 Hz, 1H,

NH_{α,Lys}), 7.42–7.26 (m, 8H, NH_{ε,Lys}, N<u>H</u>CH₂, H_{Ar,Cbz}, CONH_{2,A}), 7.09 (s, 1H, CONH_{2,B}), 5.09–4.95 (m, 2H, CH_{2,Cbz}), 4.28 (td, *J* = 7.9, 5.5 Hz, 1H, H_{α,Arg} 1), 4.20 (td, *J* = 7.8, 5.7 Hz, 1H, H_{α,Arg} 2), 3.99 (td, *J* = 8.8, 4.5 Hz, 1H, H_{α,Lys}), 3.30 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.14–3.03 (m, 4H, H_{δ,Arg} 1, H_{δ,Arg} 2), 1.74–1.57 (m, 3H, H_{β,Arg} 1, A, H_{β,Arg} 2, A, H_{β,Lys},A), 1.57–1.38 (m, 11H, H_{β,Arg} 1,B, H_{β,Arg} 2,B, H_{β,Lys,B}, H_{Y,Arg} 1, H_{Y,Arg} 2, (C<u>H</u>₂)₁₁CH₃), 1.37–1.19 (m, 22H, H_{Y,Lys}, H_{δ,Lys}, (C<u>H</u>₂)₁₁CH₃), 0.85 (t, *J* = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.1 (CO_{Arg} 2), 172.1 (CO_{Arg} 1), 171.1 (CO_{Lys}), 156.6 (NHC(=NH)NH_{2,Arg} 1, NHC(=NH)NH_{2,Arg} 2), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.7 (C_{α,Lys}), 52.1 (C_{α,Arg} 1), 51.9 (C_{α,Arg} 2), 43.4 (C_{ε,Lys}), 40.5 (C_{δ,Arg} 1), 40.4 (C_{δ,Arg} 2), 31.6 (C_{β,Lys}), 31.3 (CH₂CH₂CH₃), 29.2–28.7 (11C, C_{β,Arg,1}, C_{β,Arg,2}, (CH₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.0 (C_{γ,Arg} 2), 24.9 (C_{γ,Arg} 1), 23.1 (C_{γ,Lys}), 22.1 (CH₂CH₃), 13.9 (CH₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 24.7 min (>98%, UV₂₃₀). HRMS calcd for C₃₉H₇₁N₁₂O₅S⁺ [M+H]⁺, 819.5386; found 819.5374.

reversed-phase HPLC purification afforded the desired thiourea **14** (2 mg, 6% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.98 (d, *J* = 7.8 Hz, 1H, NH_{a,Lys}), 7.89 (d, *J* = 7.8 Hz, 1H, NH_{a,Lys}), 7.62–7.35 (m, 3H, NH₃+,_{ε,Lys}), 7.55 (t, *J* = 5.8 Hz, 1H, NH_{b,Arg}), 7.42 (d, *J* = 7.9 Hz, 1H, NH_{a,Lys(Dtu}), 7.40–7.29 (m, 8H, NH_{ε,Lys(Dtu}), N<u>H</u>CH₂, H_{Ar,Cbz}, CONH_{2,A}), 7.09 (s, 1H, CONH_{2,B}), 5.06–4.98 (m, 2H, CH_{2,Cbz}), 4.24 (td, *J* = 8.4, 5.0 Hz, 1H, H_{Lys}), 4.19 (td, *J* = 7.9, 5.8 Hz, 1H_{a,Arg}), 4.03–3.93 (m, 1H, H_{a,Lys(Dtu}), 3.30 (br s, 2H, H_{ε,Lys(Dtu}), overlap with residual water), 3.09 (q, *J* = 6.7 Hz, 2H, H_{b,Arg}), 2.80–2.69 (m, 2H, H_{b,Lys}), 1.71–1.58 (m, 3H, H_{β,Arg,A}, H_{β,Lys,A}, H_{β,Lys(Dtu}), 1.57–1.39 (m, 11H, H_{β,Arg,B}, H_{γ,Arg}, H_{β,Lys,B}, H_{β,Lys(Dtu}), B, H_{b,Lys(Dtu}), (C<u>H</u>₂)₁₁CH₃), 1.37–1.19 (m, 24H, H_{γ,Lys}, H_{b,Lys}, H_{γ,Lys(Dtu}), (C<u>H</u>₂)₁₁CH₃), 0.85 (t, *J* = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 172.1 (CO_{Lys}), 127.8 (C4_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.7 (C_{a,Lys(Dtu})), 52.2 (C_{a,Lys}), 51.8 (C_{a,Arg}), 43.4 (C_{e,Lys(Dtu})), 40.4 (C_{b,Arg}), 31.58 (C_{β,Lys}), 31.56 (C_{β,Lys(Dtu})), 31.3 (<u>C</u>H₂CH₂CH₃), 22.06 (<u>C</u>H₂CH₃), 13.9 (CH₃). The peak for C_{e,Lys(Dtu}) was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via

the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 25.7 min (>95%, UV₂₅₄). HRMS calcd for C₃₉H₇₁N₁₀O₅S⁺ [M+H]⁺, 791.5324; found 791.5313. Dtu = 1-dodecylthiourea.

(S)-5-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-4-((S)-2-(((benzyloxy)carbonyl)-

amino)-6-(3-dodecylthioureido)hexanamido)-5-oxopentanoic acid (15). Starting from Cbz-Lys-Glu(O*t*Bu)-Arg(Pbf)-resin (87 mg, estimated loading: 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Glu(O*t*Bu)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by

preparative reversed-phase HPLC purification afforded the desired thiourea 15 (3 mg, 9% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.11 (s, 1H, COOH_{Glu}), 8.02 (d, J = 7.6 Hz, 1H. NH_{Glu}), 7.89 (d, J = 7.9 Hz, 1H, NH_{α,Arg}), 7.53 (t, J = 5.8 Hz, 1H, NH_{δ ,Arg}), 7.43 (d, J = 7.9 Hz, 1H, NH_{α ,Lys}), 7.40–7.26 (m, 8H, NH_{ϵ ,Lys}, N<u>H</u>CH₂, H_{Ar,Cbz}, $CONH_{2,A}$), 7.08 (s, 1H, $CONH_{2,B}$), 5.08–4.97 (m, 2H, $CH_{2,Cbz}$), 4.25 (td, J = 8.2, 5.3 Hz, 1H, $H_{\alpha,Glu}$), 4.18 (td, J = 7.9, 5.6 Hz, 1H, $H_{\alpha,Arg}$), 3.98 (td, J = 8.9, 4.7 Hz, 1H, $H_{\alpha,Lys}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.12–3.06 (q, J = 6.7 Hz, 2H, $H_{\delta,Arg}$), 2.32–2.18 (m, 2H, $H_{\gamma,Glu}$), 1.96–1.87 (m, 1H, $H_{\beta,Glu,A}$), 1.80–1.72 (m, 1H, $H_{\beta,Glu,B}$), 1.71–1.58 (m, 2H, $H_{\beta,Arg,A}$, $H_{\beta,Lys,A}$), 1.56–1.37 (m, 8H, $H_{\beta,Arg,B}$, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, $_{2}(CH_{2})_{11}CH_{3}$), 1.36–1.10 (m, 22H, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, (CH₂)₁₀CH₃), 0.85 (t, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 174.0 (CO_{δ,Glu}), 173.1 (CO_{Arg}), 172.1 (CO_{Lys}), 170.9 (CO_{α,Glu}), 156.6 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.7 (C_{α ,Lys}), 52.0 (C_{α ,Glu}), 51.9 (C_{α ,Arg}), 43.4 (C_{ϵ ,Lys}), 40.4 $(C_{\delta,Arg})$, 31.5 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 30.1 $(C_{\gamma,Glu})$, 29.1–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 27.3 $(C_{\beta,Glu})$, 26.4 $(C_{\delta,Lys})$, 25.0 $(C_{\gamma,Arg})$, 23.0 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 14.0 (CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime), *t*_R 13.0 min (>96%, UV₂₃₀). HRMS calcd for C₃₈H₆₆N₉O₇S⁺ [M+H]⁺, 792.4800; found 792.4791.

Benzyl

((6S,9S,12S)-1-amino-6-carbamoyl-1-imino-9-isobutyl-8,11-dioxo-18-thioxo 2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (16). Starting
 from Cbz-Lys-Leu-Arg(Pbf)-resin (87 mg, estimated loading:
 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Leu-OH and
 Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by the general on-resin thiourea formation as described in the general

procedures. Global deprotection and cleavage from the resin, followed by preparative reversedphase HPLC purification afforded the desired thiourea **16** (1 mg, 3% based on resin loading) as a

colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 7.96 (d, J = 7.9 Hz, 1H, NH_{Leu}), 7.83 (d, J = 8.0 Hz, 1H, $NH_{\alpha,Arg}$), 7.49 (t, J = 6.0 Hz, 1H, $NH_{\delta,Arg}$), 7.41 (d, J = 8.0 Hz, 1H, NH_{α,Lys}), 7.39–7.25 (m, 8H, NH_{ε,Lys}, N<u>H</u>CH, H_{Ar,Cbz}, CONH_{2,A}), 7.08 (s, 1H, CONH_{2,B}), 5.07–4.99 (m, 2H, CH_{2,Cbz}), 4.31–4.23 (m, 1H, H_{α ,Leu}), 4.18 (td, J = 8.0, 5.6 Hz, 1H, H_{α ,Arg}), 3.98 (td, J = 8.6, 4.9 Hz, 1H, $H_{\alpha,Lvs}$), 3.30 (br s, 2H, $H_{\epsilon,Lvs}$, overlap with residual water), 3.12–3.04 (m, 2H, $H_{\delta,Arg}$), 1.71–1.58 (m, 3H, H_{β,Arg,A}, H_{ν,Leu}, H_{β,Lvs,A}), 1.55–1.37 (m, 10H, H_{β,Arg,B}, H_{β,Lvs,B}, H_{ν,Arg}, H_{β,Leu}, (CH₂)₁₁CH₃), 1.35– 1.19 (m, 22H, H_{γ,Lys}, H_{δ,Lys}, (C<u>H</u>₂)₁₁CH₃), 0.91–0.79 (m, 9H, H_{δ,Leu}, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.1 (CO_{Arg}), 172.0 (CO_{Leu}), 171.8 (CO_{Lys}), 156.6 (NHC(=NH)NH₂), 156.0 (CO_{Cb2}), 137.0 (C1_{Ar,Cbz}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.7 $(C_{\alpha,Lys})$, 51.8 $(C_{\alpha,Arg})$, 51.2 $(C_{\alpha,Leu})$, 43.4 $(C_{\epsilon,Lys})$, 40.5 $(C_{\beta,Leu})$, 40.4 $(C_{\delta,Arg})$, 31.6 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.2–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 ($C_{\delta,Lys}$), 25.0 ($C_{\gamma,Arg}$), 24.1 ($C_{\gamma,Leu}$), 23.1 $(C_{\delta,Leu,1})$, 23.0 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 21.5 $(C_{\delta,Leu,2})$, 13.9 $(CH_2\underline{C}H_3)$. The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime), *t_R* 13.9 min (>98%, UV₂₃₀). HRMS calcd for C₃₉H₇₀N₉O₅S⁺ [M+H]⁺, 776.5215; found 776.5211.

Benzyl ((6S,9S,12S)-1-amino-6-carbamoyl-9-(4-hydroxybenzyl)-1-imino-8,11-dioxo-18-thioxo-

2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (17). Starting from Cbz-Lys-Tyr(*t*Bu)-Arg(Pbf)-resin (87 mg, estimated loading: 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Tyr(*t*Bu)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative

reversed-phase HPLC purification afforded the desired thiourea **17** (3 mg, 9% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.15 (s, 1H, OH_{Tyr}), 7.99 (d, *J* = 8.1Hz, 1H, NH_{Arg}), 7.86 (d, *J* = 7.9 Hz, 1H, NH_{Tyr}), 7.51 (t, *J* = 5.8 Hz, 1H, NH_{δ,Arg}), 7.41–7.27 (m, 8H, NH_{α,Lys}, NH_{c,Lys}, NHCH₂, H_{Ar,Cbz}), 7.24 (br s, 1H, CONH_{2,A}), 7.10 (br s, 1H, CONH_{2,B}), 7.00 (d, *J* = 8.1 Hz, 2H, H2_{Ar,Tyr}, H6_{Ar,Tyr}), 6.62 (d, *J* = 8.3 Hz, 2H, H3_{Ar,Tyr}, H5_{Ar,Tyr}), 5.08–4.96 (m, 2H, CH_{2,Cbz}), 4.43 (td, *J* = 8.3, 4.6 Hz, 1H, H_{α,Tyr}), 4.20 (td, *J* = 8.0, 5.6 Hz, 1H, H_{α,Arg}), 3.96–3.88 (m, 1H, H_{α,Lys}), 3.30 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.09 (q, *J* = 6.7 Hz, 2H, H_{δ,Arg}), 2.91 (dd, *J* = 14.1, 4.6 Hz, 1H, H_{β,Lys,A}), 2.71 (dd, *J* = 14.0, 9.0 Hz, 1H, H_{β,Tyr,B}), 1.73–1.64 (m, 1H, H_{β,Arg,A}), 1.58–1.48 (m, 2H, H_{β,Arg,B}, H_{β,Lys,A}), 1.47–1.35 (m, 7H, H_{β,Lys,B}, H_{γ,Arg}, (CH₂)₁₁CH₃), 1.29–1.10 (m, 22H, H_{γ,Lys}, H_{δ,Lys}, (CH₂)₁₁CH₃), 0.85 (t, *J* = 6.9 Hz, 3H, CH₃).¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.1 (CO_{Arg}), 171.8 (CO_{Lys}), 170.9 (CO_{Tyr}), 156.7 (NHC(=NH)NH₂), 155.9 (CO_{Cbz}), 155.8 (C4_{Ar,Tyr}), 136.9 (C1_{Ar,Cbz}), 127.5 (C1_{Ar,Tyr}, C6_{Ar,Tyr}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 54.8 (C_{A,r,Cbz}), 54.1 (C_{α,Tyr}), 51.9

 $(C_{\alpha,Arg})$, 43.4 $(C_{\epsilon,Lys})$, 40.4 $(C_{\delta,Arg})$, 36.5 $(C_{\beta,Tyr})$, 31.6 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.2–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 $(C_{\delta,Lys})$, 25.0 $(C_{\gamma,Arg})$, 23.0 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 13.9 (CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime), t_R 26.6 min (>98%, UV₂₃₀). HRMS calcd for $C_{42}H_{68}N_9O_5S^+$ [M+H]⁺, 826.5008; found 826.5003.

Benzyl ((6S,9S,12S)-1-amino-6-carbamoyl-9-(4-hydroxy-3-nitrobenzyl)-1-imino-8,11-dioxo-18-

Starting from Cbz-Lys-Tyr(3-NO₂)-Arg(Pbf)-resin (87 mg, estimated loading: 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Tyr(3-NO₂)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by

thioxo-2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate

preparative reversed-phase HPLC purification afforded the desired thiourea 18 (4 mg, 11% based on resin loading), as a yellow fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.15 (s, 1H, ArOH_{NTvr}), 8.12 (d, J = 8.0 Hz, 1H, NH_{a,Ara}), 7.94 (d, J = 8.2 Hz, 1H, NH_{NTvr}), 7.78 (d, J = 2.2Hz, 1H, H2_{Ar,NTyr}), 7.51 (t, *J* = 5.8 Hz, 1H, NH_{δ,Arg}), 7.42 (dd, *J* = 8.5, 2.2 Hz, 1H, H6_{Ar,NTyr}), 7.39–7.22 (m, 9H, NH_{α ,Lys}, NH_{ϵ ,Lys}, N<u>H</u>CH₂, H_{Ar,Cbz}, CONH_{2,A}), 7.10 (br s, 1H, CONH_{2,B}), 7.01 (d, J = 8.5 Hz, 1H, $H5_{Ar,NTyr}$), 5.05–4.94 (m, 2H, CH_{2,Cbz}), 4.53 (td, J = 8.8, 4.2 Hz, 1H, $H_{\alpha,NTyr}$), 4.22 (td, J = 7.9, 5.6 Hz, 1H, $H_{\alpha,Arg}$, 3.88 (td, J = 8.8, 4.9 Hz, 1H, $H_{\alpha,Lys}$), 3.28 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.10 (q, J = 6.6 Hz, 2H, H_{δ ,Arg}), 3.02 (dd, J = 14.0, 4.2 Hz, 1H, H_{β ,NTyr,A}), 2.77 (dd, J = 14.0, 9.6 Hz, 1H, H_{β,NTyr,B}), 1.73–1.65 (m, 1H, H_{β,Arg,A}), 1.59–1.33 (m, 9H, H_{β,Arg,B}, H_{β,Lys}, H_{γ,Arg}, (CH₂)₁₁CH₃), 1.31– 1.10 (m, 22H, $H_{y,Lys}$, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), 0.85 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSOd₆) δ 173.0 (CO_{Arg}), 171.9 (CO_{Lys}), 170.5 (CO_{NTyr}),156.6 (NHC(=NH)NH₂), 155.8 (CO_{Cbz}), 150.9 (C4_{Ar,NTyr}), 136.9 (C1_{Ar,Cbz}), 136.5 (C6_{Ar,NTyr}), 136.0 (C3_{Ar,NTyr}), 128.8 (C1_{Ar,NTyr}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 125.5 (C2_{Ar,NTyr}), 118.7 (C5_{Ar,NTyr}), 65.4 (CH_{2,Cbz}), 54.9 ($C_{\alpha,Lys}$), 53.4 ($C_{\alpha,NTyr}$), 52.0 ($C_{\alpha,Arg}$), 43.4 ($C_{\epsilon,Lys}$), 40.4 ($C_{\delta,Arg}$), 36.2 ($C_{\beta,NTyr}$), 31.7 ($C_{\beta,Lys}$), 31.3 $(\underline{C}H_{2}CH_{2}CH_{3}), \ 29.2-28-7 \ (10C, \ C_{\beta,Arg}, \ (\underline{C}H_{2})_{11}CH_{3}), \ 26.4 \ (C_{\delta,Lys}), \ 25.0 \ (C_{\gamma,Arg}), \ 23.0 \ (C_{\gamma,Lys}), \ 22.1 \ (C_{\gamma,Lys}), \$ (<u>C</u>H₂CH₃), 13.9 (CH₃). The peak for C_{$\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was</sub> not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime), t_R 13.9 min (>97%, UV₂₃₀). HRMS calcd for C₄₂H₆₇N₁₀O₈S⁺ [M+H]⁺, 871.4859; found 871.4849.

(18).

Benzyl ((S)-1-((S)-2-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)carbamoyl)pyrrolidin-1-yl)-6-

(3-dodecylthioureido)-1-oxohexan-2-yl)carbamate (19). Starting from $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ formation as described in the general procedures. Global deprotection

and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 19 (3 mg, 10% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 7.88 (d, J = 8.0 Hz, 1H, NH_{a,Ara}), 7.52 (t, J = 5.9 Hz, 1H, NH_{δ ,Arg}), 7.47 (d, J = 7.8 Hz, 1H, NH_{α ,Lvs}), 7.41–7.27 (m, 7H, NH_{ϵ ,Lvs}, NHCH₂, H_{Ar,Cbz}), 7.25 (br s, 1H, CONH_{2.A}), 7.06 (br s, 1H, CONH_{2.B}), 5.06–4.98 (m, 2H, CH_{2.Cbz}), 4.34 (dd, *J* = 8.5, 4.4 Hz, 1H, $H_{\alpha,Pro}$), 4.26–4.20 (m, 1H, $H_{\alpha,Lys}$), 4.16 (td, J = 8.1, 5.3 Hz, 1H, $H_{\alpha,Arg}$), 3.72–3.63 (m, 1H, $H_{\delta,Pro,A}$), 3.60–3.53 (m, 1H, $H_{\delta,Pro,B}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.09 (q, J = 6.8 Hz, 2H, H_{δ,Arg}), 2.10–2.03 (m, 1H, H_{β,Pro,A}), 1.96–1.77 (m, 3H, H_{β,Pro,B}, H_{γ,Pro}), 1.75–1.68 (m, 1H, H_{β,Arg,A}), 1.65– 1.57 (m, 1H, $H_{\beta,Lys,A}$), 1.58–1.40 (m, 8H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys,B}$, (CH₂)₁₁CH₃), 1.39–1.31 (m, 2H, $H_{\gamma,Lys}$), 1.30–1.20 (m, 20H, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), 0.86 (t, J = 7.0 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.3 (CO_{Arg}), 171.3 (CO_{Pro}), 170.8 (CO_{Lvs}), 156.7 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 137.0 (C1_{Ar.Cbz}), 128.3 (C3_{Ar.Cbz}, C5_{Ar.Cbz}), 127.8 (C4_{Ar.Cbz}), 127.7 (C2_{Ar.Cbz}, C6_{Ar.Cbz}), 65.4 (CH_{2.Cbz}), 59.6 (C_{α.Pro}), 52.4 $(C_{\alpha,Lys})$, 51.8 $(C_{\alpha,Arg})$, 46.9 $(C_{\delta,Pro})$, 43.4 $(C_{\epsilon,Lys})$, 40.4 $(C_{\delta,Arg})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 30.5 $(C_{\beta,Lys})$, 29.0– 28.7 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.0 (C_{γ,Arg}), 24.6 (C_{γ,Pro}), 22.6 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 13.9 (CH₃). The peak for $C_{E,Lvs}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast guadrupolar relaxation via the nearby ¹⁴N-nuclei. Two sets of signals (approximately 10:1) were detectable due to rotamers. Only peaks for the major rotamer is given. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 26.4 min (>98%, UV₂₃₀). HRMS calcd for C₃₈H₆₆N₉O₅S⁺ [M+H]⁺, 760.4902; found 760.4900.

Benzyl

 Image: Market OH by SPPS, the title compound was synthesized by on-resin thiourea

formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 20 (3 mg, 10% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.05 (d, J = 7.0 Hz, 1H, NH_{Ala}), 7.83 (d, J = 8.1 Hz, 1H, NH_{α ,Arg}), 7.52 (t, J = 5.8 Hz, 1H, $NH_{\delta,Arg}$), 7.42 (d, J = 8.0 Hz, 1H, $NH_{\alpha,Lys}$), 7.38–7.29 (m, 8H, $NH_{\epsilon,Lys}$, $NHCH_2$, $H_{Ar,Cbz}$, $CONH_{2,A}$), 7.08 (s, 1H, CONH_{2.B}), 5.06–4.98 (m, 2H, CH_{2.Cbz}), 4.25 (p, J = 7.1 Hz, 1H, H_{a,Ala}), 4.18 (td, J = 8.0, 5.6

Hz, 1H, H_{α ,Arg}), 3.97 (ddd, J = 9.5, 7.9, 4.7 Hz, 1H, H_{α ,Lys}), 3.21 (br s, 2H, H_{ϵ ,Lys}, overlap with residual water), 3.12–3.05 (m, 2H, H_{δ,Ara}), 1.73–1.59 (m, 2H, H_{β,Ara,A}, H_{β,Lvs,A}), 1.56–1.39 (m, 8H, H_{β,Ara,B}, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, $(CH_2)_{11}CH_3$, 1.36–1.24 (m, 22H, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, $(CH_2)_{11}CH_3$), 1.22 (d, J = 7.0 Hz, 3H, H_{β,Ala}), 0.85 (t, J = 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.1 (CO_{Arg}), 172.0 (CO_{Ala}), 171.8 (CO_{Lvs}), 156.6 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 137.0 (C1_{Ar.Cbz}), 128.3 (C3_{Ar.Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.6 (C_{α,Lys}), 51.8 (C_{α,Arg}), 48.3 $(C_{\alpha,Ala})$, 43.4 $(C_{\epsilon,Lvs})$, 40.4 $(C_{\delta,Arg})$, 31.6 $(C_{\beta,Lvs})$, 31.3 $(CH_2CH_2CH_3)$, 29.2–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3)$, 26.4 $(C_{\delta,Lys})$, 25.0 $(C_{\gamma,Arg})$, 23.0 $(C_{\gamma,Lys})$, 22.1 $(\underline{C}H_2CH_3)$, 18.0 $(C_{\beta,Ala})$, 13.9 $(CH_2\underline{C}H_3)$. The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 20 min total runtime), t_R 13.3 min (>96%, UV₂₃₀). HRMS calcd for C₃₆H₆₄N₉O₅S⁺ [M+H]⁺, 734.4746; found 734.4743.

Benzyl

 $H_{H} \rightarrow H_{2}N_{H}$ **2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (21).** Starting h from Cbz-Lys-D-Ala-Arg(Pbf)-resin (87 mg estimated) 0.46 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-

resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **21** (2 mg, 7% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.15 (d, J = 7.2 Hz, 1H, NH_{D-Ala}), 7.93 (d, J = 8.4 Hz, 1H, NH_{$\alpha,Arg}),</sub>$ 7.50 (t, J = 5.8 Hz, 1H, NH_{δ ,Arg}), 7.44 (d, J = 7.5 Hz, 1H, NH_{α ,Lys}), 7.40–7.26 (m, 8H, NH_{ϵ ,Lys}, N<u>H</u>CH₂, H_{Ar,Cbz}, CONH_{2,A}), 7.10 (s, 1H, CONH_{2,B}), 5.10–4.95 (m, 2H, CH_{2,Cbz}), 4.28 (p, *J* = 7.1 Hz, 1H, H_{α,D-} _{Ala}), 4.19 (td, J = 8.6, 5.1 Hz, 1H, $H_{\alpha,Arg}$), 3.97 (q, $J = 7.6, 1H, H_{\alpha,Lys}$), 3.30 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.11–3.02 (m, 2H, H_{δ,Arg}), 1.80–1.70 (m, 1H, H_{β,Arg,A}), 1.65–1.57 (m, 1H, H_{β,Lys,A}), 1.56–1.37 (m, 8H, $H_{\beta,Arg,B}$, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, $CH_2(CH_2)_{11}CH_3$), 1.36–1.08 (m, 25H, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, $(CH_2)_{11}CH_3$, $H_{\beta,D-Ala}$, 0.85 (t, J = 6.8 Hz, 3H, CH_2CH_3). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 172.0 (CO_{D-Ala}), 171.8 (CO_{Lys}), 156.6 (NHC(=NH)NH₂), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.4 (CH_{2,Cbz}), 54.7 (C_{α,Lys}), 51.8 (C_{α,Arg}), 48.4 ($C_{\alpha,D-Ala}$), 43.3 ($C_{\epsilon,Lvs}$), 40.3 ($C_{\delta,Arg}$), 31.5 ($C_{\beta,Lvs}$), 31.3 (<u>CH</u>₂CH₂CH₃), 29.0–28.7 (10C, $C_{\beta,Arg}$, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.0 (C_{γ,Arg}), 22.9 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 18.2 (C_{β,Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{$\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due</sub> to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 13.3 min (>98%, UV₂₅₄). HRMS calcd for C₃₆H₆₄N₉O₅S⁺ [M+H]⁺, 734.4746; found 734.4740.

Benzyl

((6S,12S)-1-amino-6-carbamoyl-1-imino-9-methylene-8,11-dioxo-18-thioxo-2, NH 2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (22). Starting NH from Cbz-Lys(Fmoc)-Cys(StBu)-Arg(Pbf)-resin (166 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Cys(StBu)-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was

synthesized by addition of dithiotreitol (DTT, 77 mg, 0.50 mmol) and *I*Pr₂NEt (173 µL, 1.00 mmol) in anh. DMF (2.0 mL) to the resin under agitation for 6 h. The resin was washed with DMF (3×4 mL) after which 1,4-dibromobutane (65 mg, 0.30 mmol) in 1.5 mL anh. DMF and K₂CO₃ (69 mg, 0.5 mmol) were added. The resin was agitated for 6 h and washed with DMF, H₂O, MeOH and CH₂Cl₂ (3×4 mL each) followed by subsequent Fmoc-deprotection and general on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 22 (1 mg, 2% based on resin loading) as a white fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO d_6) δ 9.23 (s, 1H, NH_{Dha}), 8.29 (d, J = 8.0 Hz, 1H, NH_{a,Arg}), 7.73 (d, J = 7.6 Hz, 1H, NH_{a,Lvs}), 7.49 (t, J = 5.8 Hz, 1H, NH_{5,Arg}), 7.39–7.28 (m, 8H, NH_{$\epsilon,Lys}$, N<u>H</u>CH₂, H_{Ar,Cbz}, CONH_{2,A}), 7.10 (d, J = 2.0 Hz,</sub> 1H, CONH_{2,B}), 6.08 (s, 1H, H_{β,Dha,A}), 5.59 (s, 1H, H_{β,Dha,B}), 5.09–5.01 (m, 2H, CH_{2,Cbz}), 4.29–4.20 (m, 1H, H_{α ,Arg}), 3.97 (dt, *J* = 11.6, 7.6 Hz, 1H, H_{α ,Lys}), 3.30 (br s, 2H, H_{ϵ ,Lys}, overlap with residual water), 3.13–3.06 (m, 2H, $H_{\delta,Arg}$), 1.83–1.74 (m, 1H, $H_{\beta,Arg,A}$), 1.72–1.40 (m, 10H, $H_{\beta,Arg,B}$, $H_{\beta,Lvs}$, $H_{v,Arg}$, H_{v,Lvs,A_r} $CH_2(CH_2)_{10}CH_3$, $CH_2(CH_2)_{10}CH_3$), 1.38–1.20 (m, 21H, $H_{\gamma,Lys,B}$, $H_{\delta,Lys}$, $CH_2(CH_2)_{10}CH_3$), 0.85 (t, J = 6.9Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 171.6 (CO_{Lys}), 163.8 (CO_{Dha}), 156.6 (NHC(=NH)NH₂), 156.2 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 135.0 (C_{α,Dha}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 104.1 (C_{β,Dha}), 65.6 (CH_{2,Cbz}), 55.6 (C_{α,Lvs}), 52.9 (C_{α,Arg}), 43.4 $(C_{\epsilon,Lys})$, 40.4 $(C_{\delta,Arg})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 31.0 $(C_{\beta,Lys})$, 29.0–28.5 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 $(C_{\delta,Lys})$, 25.4 $(C_{\gamma,Arg})$, 23.1 $(C_{\gamma,Lys})$, 22.1 (CH_2CH_3) , 13.9 (CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t*_R 26.7 min (>97%, UV₂₃₀). HRMS calcd for C₃₆H₆₂N₉O₅S⁺ [M+H]⁺, 732.4589; found 732.4585. Dha = dehydroalanine.

Benzyl

((6S,12S)-1-amino-6-carbamoyl-1-imino-9,9-dimethyl-8,11-dioxo-18-thioxo-2,NH 2,7,10,17,19-pentaazahentriacontan-12-yl)carbamate (23). Starting NH from Cbz-Lys-Aib-Arg(Pbf)resin (258 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Aib-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-

resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **23** (3 mg, 5% based on resin loading) as a white fluffy material after lyophilization. ¹H NMR

(600 MHz, DMSO-*d*₆) δ 8.26 (s, 1H, NH_{Aib}), 7.52–7.46 (m, 2H, NH_{α,Lys}, NH_{δ,Arg}), 7.39–7.28 (m, 8H, NH_{α,Lys}, NH_{ε,Lys}, N<u>H</u>CH₂, H_{Ar,Cbz}), 7.18 (s, 1H, CONH_{2,A}), 7.07 (s, 1H, CONH_{2,B}), 5.08–4.97 (m, 2H, $CH_{2,Cbz}$), 4.10 (td, J = 8.8, 4.5 Hz, 1H, $H_{\alpha,Arg}$), 3.93 (dt, J = 8.7, 6.0 Hz, 1H, $H_{\alpha,Lys}$), 3.30 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.07–3.00 (m, 2H, H_{δ,Arg}), 1.81–1.73 (m, 1H, H_{β,Arg,A}), 1.67–1.58 (m, 1H, $H_{\beta,Lys,A}$), 1.49–1.39 (m, 8H, $H_{\beta,Arg,B}$, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, (CH₂)₁₁CH₃), 1.37–1.30 (m, 7H, $H_{\beta,Aib}$, $H_{y,Lys,A}$), 1.29–1.19 (m, 21H, $H_{y,Lys,B}$, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), 0.85 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.7 (CO_{Aib}), 173.4 (CO_{Arg}), 172.3 (CO_{Lvs}), 156.6 (NHC(=NH)NH₂), 156.2 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.6 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 65.5 (CH_{2,Cbz}), 56.0 (C_{α,Aib}), 55.1 (C_{α,Lys}), 52.0 (C_{α,Arg}), 43.4 (C_{ε,Lys}), 40.3 (C_{δ,Arg}), 31.3 (<u>C</u>H₂CH₂CH₃), 31.0 $(C_{\beta,Lvs})$, 29.0–28.4 (10C, $C_{\beta,Arg}$, $(CH_2)_{11}CH_3$), 26.4 $(C_{\delta,Lvs})$, 25.2 $(C_{\beta,Aib,1})$, 24.9 $(C_{v,Arg})$, 24.7 $(C_{\beta,Aib,2})$, 22.9 ($C_{y,Lys}$), 22.1 (<u>CH₂CH₃</u>), 13.9 (CH₂<u>C</u>H₃). The peak for $C_{\varepsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴Nnuclei. Analytical HPLC gradient 0-95% eluent II in eluent I (C18; 35 min total runtime), t_R 25.6 min (>98%, UV₂₃₀). HRMS calcd for C₃₇H₆₆N₉O₅S⁺ [M+H]⁺, 748.4902; found 748.4898.

(S)-2-acetamido-N-((S)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-

yl)-6-(3-dodecylthioureido)hexanamide (24). Starting from H-Lys(Teoc)-Ala-Arg(Pbf)-resin (104 mg, estimated loading: 0.49 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS the title OH by SPPS, the title compound was synthesized by addition of

Ac₂O:DMF (1:3, v/v, 1.5 mL) to the resin under agitation for 2 h. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 24 (4 mg, 11% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-d₆) δ 8.06 (d, J = 7.0 Hz, 1H, NH_{Ala}), 8.02 (d, J = 7.6 Hz, 1H, NH_{α,Lys}), 7.76 (d, J = 8.0 Hz, 1H, NH_{α,Arg}), 7.57 (t, *J* = 5.8 Hz, 1H, NH_{δ,Arg}), 7.38–7.26 (m, 3H, NH_{ε,Lys}, N<u>H</u>CH₂, CONH_{2,A}), 7.08 (s, 1H, CONH_{2,B}), 4.26–4.12 (m, 3H, $H_{\alpha,Ala}$, $H_{\alpha,Lys}$, $H_{\alpha,Arg}$), 3.32 (br s, 2H, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.09 (q, J = 6.7 Hz, 2H, H_{δ ,Arq}), 1.85 (s, 3H, COCH₃), 1.73–1.60 (m, 2H, H_{β ,Arq,A}, H_{β ,Lvs,A}), 1.57–1.40 (m, 8H, $H_{\beta,Arg,B}, H_{\beta,Lys,B}, H_{\gamma,Arg}, (C\underline{H}_2)_{11}CH_3), 1.35-1.19 (m, 25H, H_{\gamma,Lys}, H_{\delta,Lys}, (C\underline{H}_2)_{11}CH_3, H_{\beta,Ala}), 0.85 (t, J = 1.10)$ 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 172.0 (CO_{Ala}), 171.9 (CO_{Lys}), 169.6 (<u>C</u>OCH₃), 156.7 (NHC(=NH)NH₂), 52.8 (C_{α ,Lys}), 51.9 (C_{α ,Arg}), 48.4 (C_{α ,Ala}), 43.4 (C_{ϵ ,Lys}), 40.4 $(C_{\delta,Arg})$, 31.5 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.1–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 $(C_{\delta,Lys})$, 25.0 (C_{γ,Arg}), 22.9 (C_{γ,Lys}), 22.5 (CO<u>C</u>H₃), 22.1 (<u>C</u>H₂CH₃), 17.8 (C_{β,Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast guadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 23.9 min (>98%, UV₂₃₀). HRMS calcd for C₃₀H₅₉N₉NaO₄S⁺ [M+Na]⁺, 664.4302; found 664.4299.

(S)-2-acetamido-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-

yl)-6-(3-dodecylthioureido)hexanamide (24-D). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SDD2 the fit Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of Ac₂O:CH₂Cl₂ (1:3, v/v, 1.5 mL) to the resin under agitation for 2 h. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 24-D (4 mg, 11% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO d_6) δ 8.26 (d, J = 7.3 Hz, 1H, NH_{D-Ala}), 8.09 (d, J = 7.0 Hz, 1H, NH_{α ,Lys}), 7.87 (d, J = 8.4 Hz, 1H, $NH_{\alpha,Arg}$), 7.51 (t, J = 5.7 Hz, 1H, $NH_{\delta,Arg}$), 7.35–7.29 (m, 2H, $NH_{\epsilon,Lys}$, $NH(CH_2)_{11}CH_3$), 7.28 (d, J = 2.1Hz, 1H, CONH_{2,A}), 7.09 (d, *J* = 2.1 Hz, 1H, CONH_{2,B}), 4.24 (p, *J* = 7.2 Hz, 1H, H_{α,D-Ala}), 4.19–4.09 (m, 2H, H_{α ,Lys}, H_{α ,Arg}), 3.31 (br s, 2H, H_{ϵ ,Lys}, overlap with residual water), 3.06 (q, J = 6.8 Hz, 2H, H_{δ ,Arg}), 1.84 (s, 3H, COCH₃), 1.77–1.68 (m, 1H, H_{β,Arg,A}), 1.64–1.53 (m, 1H, H_{β,Lys,A}), 1.55–1.36 (m, 8H, $H_{\beta,Arg,B}$, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, $CH_2(CH_2)_{10}CH_3$, $CH_2(CH_2)_{10}CH_3$), 1.29–1.19 (m, 25H, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, $CH_2(CH_2)_{10}CH_3$, $H_{\beta,D-Ala}$), 0.85 (t, J = 7.0Hz, 3H, CH_2CH_3). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.3 (CO_{Arg}), 172.0 (CO_{D-Ala}), 171.9 (CO_{Lvs}), 169.7 (<u>C</u>OCH₃), 156.6 (NHC(=NH)NH₂), 53.2 (C_{α,Lvs}), 52.0 $(C_{\alpha,Arg}), \ 48.3 \ (C_{\alpha,D-Ala}), \ 43.3 \ (C_{\epsilon,Lys}), \ 40.4 \ (C_{\delta,Arg}), \ 31.3 \ (C_{\beta,Lys}, \ \underline{C}H_2CH_2CH_3), \ 29.0-28.7 \ (10C, \ C_{\beta,Arg}, \ L_{\alpha,Arg}), \ 40.4 \ (C_{\alpha,Arg}), \ 40.$ $(\underline{C}H_2)_{11}CH_3), \ 26.4 \ (C_{\delta,Lys}), \ 25.1 \ (C_{\gamma,Arg}), \ 22.8 \ (C_{\gamma,Lys}), \ 22.4 \ (CO\underline{C}H_3), \ 22.1 \ (\underline{C}H_2CH_3), \ 17.9 \ (C_{\beta,D-Ala}), \ 17.9 \ (C_{\beta,$ 14.0 (CH₂<u>C</u>H₃). The peak for C_{ϵ ,Lvs} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0-95% eluent II in eluent I (C8; 35 min total runtime), t_R 23.1 min (>98%, UV₂₃₀). HRMS calcd for C₃₀H₆₀N₉O₄S⁺ [M+H]⁺, 642.4483; found 642.4479.

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$

addition of methanesulfonyl chloride (18 µL, 0.24 mmol) and *i*Pr₂NEt (83 µL, 0.48 mmol) in anh. CH₂Cl₂ (2.0 mL) to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 25 (3 mg, 5% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-d₆) δ 8.17 (d, J = 7.1 Hz, 1H, NH_{Ala}), 7.90 (d, J = 8.0 Hz, 1H, NH_{a,Arg}), 7.54 (t, J = 5.8 Hz, NH_{δ,Arg}), 7.38–7.28 (m, 4H, $NH_{\alpha,Lvs}$, $NHCH_2$, $NH_{\epsilon,Lvs}$, $CONH_{2,A}$), 7.07 (d, J = 2.2 Hz, 1H, $CONH_{2,B}$), 4.29 (p, J = 7.1 Hz, 1H, $H_{\alpha,Ala}$), 4.18 (td, J = 8.0, 5.6 Hz, 1H, $H_{\alpha,Arg}$), 3.78 (td, J = 8.8, 5.2 Hz, 1H, $H_{\alpha,Lys}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.12–3.06 (m, 2H, H_{δ,Arg}), 2.85 (s, 3H, CH₃SO₂), 1.72–1.58 (m, 2H, H_{β,Arg,A}, $H_{\beta,Lys,A}$), 1.55–1.19 (m, 33H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys,B}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), $H_{\beta,Ala}$), 0.85 (t, J = 6.9Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.1 (CO_{Arg}), 171.8 (CO_{Ala}), 171.3 (CO_{Lvs}), 156.7 (NHC(=NH)NH₂), 56.3 ($C_{\alpha,Lys}$), 51.9 ($C_{\alpha,Arg}$), 48.3 ($C_{\alpha,Ala}$), 43.3 ($C_{\epsilon,Lys}$), 40.7 (CH₃SO₂), 40.4 $(C_{\delta,Arg})$, 32.4 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.2–28.4 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 $(C_{\delta,Lys})$, 25.0 (C_{γ,Arg}), 22.7 (C_{γ,Lys}), 22.1 (CH₂CH₃), 18.1 (C_{β,Ala}), 13.9 (CH₂CH₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 24.1 min (>97%, UV₂₃₀). HRMS calcd for C₂₉H₅₉N₉NaO₅S₂⁺ [M+Na]⁺, 700.3972; found 700.3964.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-6-(3-

dodecylthioureido)-2-(methylsulfonamido)hexanamide Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 m loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH (25-D). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride (13 μ L, 0.17 mmol) and *i*Pr₂NEt (59 μ L, 0.34 mmol) in anh. DMF (1.0 mL) to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea 25-D (3 mg, 8% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO d_6) δ 8.37 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.3 Hz, 1H, NH_{α ,Arg}), 7.53 (t, J = 5.8 Hz, NH_{δ ,Arg}), 7.36 (d, J = 9.0 Hz, 1H, NH_{$\alpha,Lys}), 7.32$ (br s, 2H, N<u>H</u>CH₂, NH_{$\epsilon,Lys}), 7.27$ (d, J = 2.2 Hz, 1H, CONH_{2,A}),</sub></sub> 7.12 (d, J = 2.2 Hz, 1H, CONH_{2,B}), 6.84 (s, 1H, residual CO₂H_{TFA}), 4.25 (p, J = 7.0 Hz, 1H, H_{a,D-Ala}), 4.15 (td, J = 8.4, 5.0 Hz, 1H, $H_{\alpha,Arg}$), 3.83 (td, J = 8.8, 5.5 Hz, 1H, $H_{\alpha,Lys}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.79 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, H_{β,Arg,A}), 1.61–1.54 (m, 1H, H_{β,Lys,A}), 1.52–1.31 (m, 10H, H_{β,Arg,B}, H_{β,Lys,B}, H_{γ,Arg}, H_{γ,Lys}, (C<u>H</u>₂)₁₁CH₃), 1.30–1.23 (m, 20H, $H_{\delta,Lys}$, (CH₂)₁₁CH₃), 1.22 (t, J = 7.0 Hz, 3H, $H_{\beta,D-Ala}$), 0.85 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lys}), 158.1 (q, J = 31.0 Hz, residual CO_{TFA}), 156.6 (NHC(=NH)NH₂), 117.3 (q, *J* = 300.2 Hz, residual CF_{3,TFA}), 56.0 (C_{α,Lys}), 51.8 (C_{α,Arg}), 48.7 (C_{α,D-Ala}), 43.4 (C_{ε,Lys}), 40.7 (CH₃SO₂), 40.3 (C_{δ,Arg}), 32.5 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.7 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lvs}), 25.1 (C_{v,Arg}), 22.7 (C_{v,Lvs}), 22.1 (<u>C</u>H₂CH₃), 17.8 (C_{β,D-} _{Ala}), 14.0 (CH₂<u>C</u>H₃). The peak for C_{$\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 22.9 min (>98%, UV₂₃₀). HRMS calcd for C₂₉H₆₀N₉O₅S₂⁺ [M+H]⁺, 678.4153; found 678.4145.</sub>

(S)-S-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-2-

(methylsulfonamido)-6-tetradecanethioamidohexanamide (26). Starting from H-Lys(thiomyristoyl)-Ala-Arg(Pbf)-resin (204 mg, estimated loading: 0.49 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Ala-OH and Fmoc-Lys(thiomyristoyl)-OH (**S34**) by SPPS, the title compound was

synthesized by addition of methanesulfonyl chloride (25 µL, 0.32 mmol) and *i*Pr₂NEt (111 µL, 0.64 mmol) in 3 mL anh. CH₂Cl₂ to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by global deprotection, cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thioamide 26 (17 mg, 25% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO) δ 9.88 (t, J = 5.3 Hz, 1H, NH_{ϵ ,Lys}), 8.16 (d, J = 7.1 Hz, 1H, NH_{Ala}), 7.91 (d, J = 8.1 Hz, 1H, $NH_{\alpha,Arg}$), 7.51 (t, J = 5.8 Hz, 1H, $NH_{\delta,Arg}$), 7.35 (d, J = 8.7 Hz, 1H, $NH_{\alpha,Lvs}$), 7.32 (d, J = 2.2 Hz, 1H, CONH_{2,A}), 7.07 (d, J = 2.1 Hz, 1H, CONH_{2,B}), 4.30 (p, J = 7.1 Hz, 1H, H_{α ,Ala}), 4.22–4.14 (m, 1H, $H_{\alpha,Arg}$), 3.82–3.76 (m, 1H, $H_{\alpha,Lys}$), 3.50–3.42 (m, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.09 (q, J =6.7 Hz, 2H, H_{δ,Arg}), 2.85 (s, 3H, CH₃SO₂), 2.49 (s, 1H), 1.71–1.18 (m, 35H, H_{β,Lys}, H_{γ,Lys}, H_{δ,Lys}, H_{β,Arg}, $H_{\gamma,Arg}$, $H_{\beta,Ala}$, (CH₂)₁₁CH₃), 0.85 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 203.6 (C=S), 173.1 (CO_{Arg}), 172.3 (CO_{Ala}), 171.2 (CO_{Lvs}), 156.6 (NHC(=NH)NH₂), 56.2 (C_{α,Lvs}), 51.8 (C_{α,Arg}), 48.3 ($C_{\alpha,Ala}$), 45.02 ($CS\underline{C}H_2$), 44.99 ($C_{\epsilon,Lys}$), 40.7 (CH_3SO_2), 40.4 ($C_{\delta,Arg}$), 32.3 ($C_{\beta,Lys}$), 31.3 $(\underline{C}H_{2}CH_{2}CH_{3}), 29.2-28.7 (10C, C_{\beta,Arg}, (\underline{C}H_{2})_{11}CH_{3}), 26.7 (C_{\delta,Lys}), 25.0 (C_{\gamma,Arg}), 22.8 (C_{\gamma,Lys}), 22.1 (C_{\delta,Lys}), 22.1$ (CH₂CH₃), 18.1 (C_{β,Ala}), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 25.5 min (>96%, UV₂₅₄). HRMS calcd for C₃₀H₆₀N₈NaO₄S₂⁺ [M+Na]⁺, 699.4020; found 699.4016.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-2-

(methylsulfonamido)-6-tetradecanethioamidohexanamide(26-D).StartingfromH-Lys(thiomyristoyl)-D-Ala-Arg(Pbf)-resin(228 mg,estimatedloading:0.47 mmol/g)synthesized fromFmoc-Arg(Pbf)-OH,Fmoc-D-Ala-OH and Fmoc-Lys(thiomyristoyl)-OH(S34) by SPPS, the title

compound was synthesized by addition of methanesulfonyl chloride (25 μ L, 0.32 mmol) and *i*Pr₂NEt (111 μ L, 0.64 mmol) in 2.0 mL anh. DMF to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂(3×4 mL) followed by global deprotection, cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thioamide **26- D** (2 mg, 3% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR

(600 MHz, DMSO-*d*₆) δ 9.88 (t, *J* = 5.4 Hz, 1H, NH_{ε,Lys}), 8.37 (d, *J* = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, *J* = 8.3 Hz, 1H, NH_{α,Arg}), 7.55 (t, *J* = 5.8 Hz, 1H, NH_{δ,Arg}), 7.36 (d, *J* = 8.9 Hz, 1H, NH_{α,Lys}), 7.27 (d, *J* = 2.2 Hz, 1H, CONH_{2,A}), 7.12 (d, *J* = 2.2 Hz, 1H, CONH_{2,B}), 4.28–4.21 (m, 1H, H_{α,D-Ala}), 4.15 (td, *J* = 8.5, 5.0 Hz, 1H, H_{α,Arg}), 3.84 (td, *J* = 8.8, 5.5 Hz, 1H, H_{α,Lys}), 3.50–3.40 (m, 2H, H_{ε,Lys}), 3.12–3.04 (m, 2H, H_{δ,Arg}), 2.79 (s, 3H, CH₃SO₂), 2.50–2.46 (m, 2H, CSCH₂, overlap with solvent peak), 1.79–1.71 (m, 1H, H_{β,Arg,A}), 1.67–1.10 (m, 34H, H_{β,Arg,B}, H_{γ,Arg}, H_{β,Lys}, H_{γ,Lys}, H_{δ,Lys}, H_{β,D-Ala}, (CH₂)₁₁CH₃), 0.85 (t, *J* = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 203.6 (C=S), 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lys}), 156.7 (NHC(=NH)NH₂), 55.9 (C_{α,Lys}), 51.9 (C_{α,Arg}), 48.7 (C_{α,D-Ala}), 45.0 (CSCH₂), 44.9 (C_{ε,Lys}), 40.7 (CH₃SO₂), 40.4 (C_{δ,Arg}), 32.4 (C_{β,Lys}), 31.3 (CH₂CH₂CH₃), 29.0–28.7 (10C, C_{β,Arg}, (CH₂)₁₁CH₃), 26.7 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.8 (C_{γ,Lys}), 22.1 (CH₂CH₃), 17.8 (C_{β,D-Ala}), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 25.2 min (>98%, UV₂₅₄). HRMS calcd for C₃₀H₆₁N₈O₄S₂⁺ [M+H]⁺, 677.4201; found 677.4201. Note: A large amount of oxo-byproduct was observed upon acidic cleaveage from the resin, which could be collected on reversed-phase HPLC to afford compound **S17**.

Benzyl ((6S,9S,12S)-9-((1H-indol-3-yl)methyl)-1-amino-6-carbamoyl-1-imino-8,11-dioxo-18-

thioxo-2,7,10,17-tetraazanonadecan-12-yl)carbamate (S1). Starting from Cbz-Lys-Trp-Arg(Pbf)-resin (100 mg, estimated loading: 0.38 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by onresin thioacetylation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative

reversed-phase HPLC purification afforded the desired thioamide **S1** (1 mg, 3% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.80 (s, 1H, NH_{indole}), 9.91 (t, *J* = 5.4 Hz, 1H, NH_{ε,Lys}), 8.04–7.92 (m, 2H, NH_{α,Trp}, NH_{α,Arg}), 7.57 (d, *J* = 7.9 Hz, 1H, H4_{indole}), 7.48 (t, *J* = 5.8 Hz, 1H, NH_{ε,Lys}), 7.43–7.28 (m, 7H, NH_{α,Trp}, H_{Ar,Cbz}, H7_{indole}), 7.25 (s, 1H, CONH_{2,A}), 7.14 (d, *J* = 2.4 Hz, 1H, H2_{indole}), 7.09 (s, 1H, CONH_{2,B}), 7.05 (t, *J* = 7.5 Hz, 1H, H6_{indole}), 6.96 (t, *J* = 7.5 Hz, 1H, H5_{indole}), 6.53 (s, residual COOH_{TFA}), 5.08–4.94 (m, 2H, CH_{2,Cbz}), 4.55 (td, *J* = 8.2, 4.8 Hz, 1H, H_{α,Trp}), 4.21 (td, *J* = 7.5, 5.6 Hz, 1H, H_{α,Lys}), 3.95 (td, *J* = 8.5, 4.8 Hz, 1H, H_{α,Trp},), 3.11–3.04 (m, 2H, H_{ε,Lys}, overlap with residual water), 3.15 (m_{ABX}, *J* = 14.9, 4.8 Hz, 1H, H_{β,Trp},A), 3.11–3.04 (m, 2H, H_{δ,Arg}), 1.29–1.20 (m, 2H, H_{γ,Lys}). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 198.7 (C=S), 173.1 (CO_{Arg}), 171.9 (CO_{Lys}), 171.2 (CO_{Trp}), 157.8 (q, *J* = 31.2 Hz, residual CO_{TFA}), 156.6 (NH(CNH)NH₂), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{indole}), 120.8 (C6_{indole}), 118.4 (C4_{indole}), 118.2 (C5_{indole}), 117.3 (q, *J* = 306.1 Hz, residual CF_{3,TFA}), 111.2 (C7_{indole}), 109.8 (C3_{indole}), 65.5 (CH_{2,Cbz}), 54.7 (C_{α,Lys}), 53.4 (C_{α,Trp}), 51.9 (C_{α,Arg}), 45.3 (C_{ε,Lys}), 32.8 (C_{δ,Arg}), 31.5 (C_{β,Lys}), 29.2 (C_{β,Arg}),

27.4 ($C_{\beta,Trp}$), 26.9 ($C_{\delta,Lys}$), 25.0 ($C_{\gamma,Arg}$), 23.1 ($C_{\gamma,Lys}$). Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 16.2 min (>95%, UV₂₃₀). HRMS calcd for $C_{33}H_{46}N_9O_5S^+$ [M+H]⁺, 680.3337; found 680.3329. TA = thioacetyl.

(5S,8S,11S)-8-((1H-indol-3-yl)methyl)-11-carbamoyl-5-(4-ethanethioamidobutyl)-3,6,9-trioxo-

1-phenyl-2-oxa-4,7,10-triazatetradecan-14-oic acid (S2). Starting from Cbz-Lys-Trp-Glu(*t*Bu)-resin (100 mg, estimated loading: 0.42 mmol/g) synthesized from Fmoc-Glu(O*t*Bu)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thioacetylation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC

purification afforded the desired thioamide S2 (1 mg, 5% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.06 (s, 1H, COOH), 10.80 (d, *J* = 2.5 Hz, 1H, NH_{indole}), 9.89 (t, J = 5.3 Hz, 1H, NH_{ε,Lvs}), 7.99 (d, J = 7.7 Hz, 1H, NH_{α,Trp}), 7.89 (d, J = 8.0 Hz, 1H, NH_{α ,Glu}), 7.56 (d, J = 7.9 Hz, 1H, H4_{Indole}), 7.45–7.25 (m, 7H, NH_{α ,Lys}, H_{Ar,Cbz}, H7_{Indole}), 7.19–7.12 (m, 2H, CONH_{2,A}, H2_{Indole}), 7.09–7.01 (m, 2H, CONH_{2,B}, H6_{Indole}), 6.96 (t, J = 7.4 Hz, 1H, H5_{Indole}), 5.08–4.94 (m, 2H, CH_{2,Cbz}), 4.53 (td, J = 8.1, 4.9 Hz, 1H, H_{a,Trp}), 4.19 (td, J = 8.2, 5.1 Hz, 1H, $H_{\alpha,Glu}$), 3.94 (td, J = 8.6, 5.0 Hz, 1H, $H_{\alpha,Lys}$), 3.48–3.28 (m, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.16 (m_{ABX}, J = 14.8, 5.0 Hz, 1H, H_{β,Trp,A}), 2.99 (m_{ABX}, J = 14.8, 8.6 Hz, 1H, H_{β,Trp,B}), 2.36 (s, 3H, CH₃), 2.25–2.13 (m, 2H, H_{y,Glu}), 1.96–1.89 (m, 1H, H_{β,Glu,A}), 1.79–1.70 (m, 1H, H_{β,Glu,A}), 1.63–1.39 (m, 4H, H_{β,Lys}, H_{δ,Lys}), 1.33–1.13 (m, 2H, H_{y,Lys}). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 198.7 (C=S), 173.9 (COOH), 172.9 (CO_{α,Glu}), 172.0 (CO_{Lys}), 171.2 (CO_{Trp}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.5 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 (C7_{Indole}), 109.9 (C3_{Indole}), 65.5 $(CH_{2,Cbz})$, 54.8 $(C_{\alpha,Lys})$, 53.4 $(C_{\alpha,Trp})$, 51.8 $(C_{\alpha,Glu})$, 45.3 $(C_{\epsilon,Lys})$, 32.8 (CH_3) , 31.5 $(C_{\beta,Lys})$, 30.1 $(C_{\gamma,Glu})$, 27.4 (C_{β,Glu}), 27.3 (C_{β,Trp}), 26.9 (C_{δ,Lys}), 23.1 (C_{y,Lys}). Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 17.0 min (>97%, UV₂₃₀). HRMS calcd for C₃₂H₄₀N₆O₇S⁺ [M+H]⁺, 675.2571; found 675.2572. TA = thioacetyl.

Benzyl ((S)-1-(((S)-1-(((S)-1,6-diamino-1-oxohexan-2-yl)amino)-3-(1H-indol-3-yl)-1-oxopropan-

2-yl)amino)-6-ethanethioamido-1-oxohexan-2-yl)carbamate (S3). Starting from Cbz-Lys-Trp-Lys(Boc)-resin (101 mg, estimated loading: 0.42 mmol/g) synthesized from Fmoc-Lys(Boc)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by onresin thioacetylation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-

phase HPLC purification afforded the desired thioamide **S3** (2 mg, 7% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 10.83 (d, J = 2.4 Hz, 1H,

 NH_{Indole} , 9.96 (t, J = 5.3 Hz, 1H, $NH_{\epsilon,Lys(TA)}$), 8.00 (d, J = 7.6 Hz, 1H, $NH_{\alpha,Trp}$), 7.93 (d, J = 8.1 Hz, 1H, $NH_{\alpha,Lys(TA)}$), 7.77 (br s, 3H, NH_3^+), 7.57 (d, J = 7.9 Hz, 1H, $H4_{Indole}$), 7.53–7.17 (m, 8H, $H_{Ar,Cbz}$, $H7_{Indole}$, NH_{α,Lys}, CONH_{2,A}), 7.15 (d, *J* = 2.4 Hz, 1H, H2_{Indole}), 7.08–7.01 (m, 2H, H6_{Indole}, CONH_{2,B}), 6.99–6.93 (m, 1H, H5_{Indole}), 6.56 (s, residual COOH_{TFA}), 5.13–4.91 (m, 2H, CH_{2.Cb2}), 4.54 (td, J = 8.1, 5.0 Hz, 1H, $H_{\alpha,Trp}$), 4.17 (td, J = 8.4, 5.1 Hz, 1H, $H_{\alpha,Lys(TA)}$), 4.03–3.87 (m, 1H, $H_{\alpha,Lys}$), 3.44–3.37 (m, 2H, $H_{\epsilon,Lys(TA)}$, overlap with residual water), 3.15 (m_{ABX}, J = 14.8, 4.9 Hz, 1H, $H_{\beta,Trp,A}$), 2.99 (m_{ABX}, J = 14.9, 8.6 Hz, 1H, H_{β,Trp,B}), 2.80–2.66 (m, 2H,), 2.37 (s, 3H, CH₃), 1.73–1.37 (m, 8H, H_{β,Lys(TA)}, H_{δ,Lys(TA)}, H_{β,Lys}, H_{δ,Lys}), 1.36–1.13 (m, 4H, H_{γ,Lys}(TA), H_{γ,Lys}). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 198.8 (C=S), 173.3 (CO_{Lys(TA)}), 172.0 (CO_{Trp}), 171.2 (CO_{Lys}), 157.9 (q, J = 32.0 Hz, CO_{TFA}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.4 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.8 (C6_{Indole}), 118.4 (C4_{Indole}), 118.2 (C5_{Indole}), 117.3 (q, J = 302.2 Hz, $CF_{3,TFA}$, 111.2 ($C7_{Indole}$), 109.8 ($C3_{Indole}$), 65.5 ($CH_{2,Cbz}$), 54.8 ($C_{\alpha,Lys}$), 53.4 ($C_{\alpha,Trp}$), 52.2 ($C_{\alpha,Lys(TA)}$), 45.3 ($C_{\epsilon,Lvs(TA)}$), 38.7 ($C_{\epsilon,Lvs}$), 32.8 (CH_3), 31.5 ($C_{\beta,Lvs}$), 31.4 ($C_{\beta,Lvs(TA)}$), 27.3 ($C_{\beta,Trp}$), 26.9 ($C_{\delta,Lvs(TA)}$), 26.6 ($C_{\delta,Lys}$), 23.1 ($C_{\gamma,Lys}(TA)$), 22.1 ($C_{\gamma,Lys}$). Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 16.0 min (>96%, UV₂₃₀). HRMS calcd for C₃₃H₄₆N₇O₅S⁺ [M+H]⁺, 652.3276; found 652.3279. TA = thioacetyl.

((S)-1-(((S)-1-(((S)-1,4-diamino-1,4-dioxobutan-2-yl)amino)-3-(1*H*-indol-3-yl)-1oxopropan-2-yl)amino)-6-ethanethioamido-1-oxohexan-2-

yl)carbamate (S4). Starting from Cbz-Lys-Trp-Asn(Trt)-resin (80 mg, estimated loading: 0.42 mmol/g) synthesized from Fmoc-Ans(Trt)-OH, Fmoc-Trp-OH and Cbz-Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-resin thioacetylation as described in the general procedures. Global deprotection and cleavage from the resin, followed by

preparative reversed-phase HPLC purification afforded the desired thioamide **S4** (2 mg, 7% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.79 (d, *J* = 2.5 Hz, 1H, NH_{Indole}), 9.90 (t, *J* = 5.2 Hz, 1H, NH_{ε,Lys}), 8.08 (d, *J* = 8.0 Hz, 1H, NH_{α,Asn}), 8.03 (d, *J* = 7.3 Hz, 1H, NH_{α,Trp}), 7.56 (d, *J* = 7.9 Hz, 1H, H4_{Indole}), 7.46–7.21 (m, 8H, H_{Ar,Cbz}, H7_{Indole}, NH_{α,Lys}, CONH_{2,Asn,α,A}), 7.16 (d, *J* = 2.4 Hz, 1H, H2_{Indole}), 7.07–7.01 (m, 2H, H6_{Indole}, CONH_{2,Asn,α,B}), 6.99–6.89 (m, 2H, H5_{Indole}, CONH_{2,Asn,γ,A}), 6.84 (s, 1H, CONH_{2,Asn,γ,A}), 5.12–4.92 (m, 2H, CH_{2,Cbz}), 4.55–4.38 (m, 2H, H_{α,Trp}, H_{α,Asn}), 3.96 (td, *J* = 8.7, 4.9 Hz, 1H, H_{α,Lys}), 3.51–3.27 (m, 2H, H_{ε,Lys}), 3.15 (m_{ABX}, *J* = 14.9, 4.9 Hz, 1H, H_{β,Trp,A}), 2.97 (m_{ABX}, *J* = 14.9, 8.7 Hz, 1H, H_{β,Trp,B}), 2.48–2.41 (m, 2H, H_{δ,Asn}), 2.36 (s, 3H, CH₃), 1.67–1.39 (m, 4H, H_{β,Lys}, H_{δ,Lys}), 1.35–1.14 (m, 2H, H_{γ,Lys}). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 198.7 (C=S), 172.7 (CO_{Asn,α}), 172.2 (CO_{Lys}), 171.7 (CO_{Asn,γ}), 171.1 (CO_{Trp}), 156.0 (CO_{Cbz}), 136.9 (C1_{Ar,Cbz}), 136.0 (C7a_{Indole}), 128.3 (C3_{Ar,Cbz}, C5_{Ar,Cbz}), 127.8 (C4_{Ar,Cbz}), 127.7 (C2_{Ar,Cbz}, C6_{Ar,Cbz}), 127.3 (C3a_{Indole}), 123.6 (C2_{Indole}), 120.8 (C6_{Indole}), 118.3 (C4_{Indole}), 118.2 (C5_{Indole}), 111.2 (C7_{Indole}), 109.8 (C3_{Indole}), 65.5 (CH_{2,Cbz}), 54.7 (C_{α,Lys}), 53.7 (C_{α,Trp}), 49.6 (C_{α,Asn}), 45.3 (C_{ε,Lys}), 36.8 (C_{β,Asn}), 32.8 (CH₃), 31.5 (C_{β,Lys}), 27.3 (C_{β,Trp}), 26.9 (C_{δ,Lys}), 23.1 (C_{γ,Lys}). Analytical HPLC gradient 0-95% eluent II in eluent I (C18; 35 min total runtime), t_R 16.6 min (>95%, UV₂₃₀). HRMS calcd for C₃₁H₃₉N₇O₆SNa⁺ [M+Na]⁺, 660.2575; found 660.2569. TA = thioacetyl.

(S)-2-amino-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-

 $\begin{array}{c} \begin{array}{c} & & \\$ Lys(Fmoc)-OH by SPPS, the title compound was synthesized by on-

resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **S5** (31 mg, 24% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.67 (d, J = 7.5 Hz, 1H, NH_{D-Ala}), 8.25 (d, J = 8.4 Hz, 1H, NH_{α,Arg}), 8.08 (br s, 3H, NH₃⁺_{α,Lvs}), 7.74–7.69 (m, 1H, NH_{δ,Ara}), 7.43–7.34 (m, 3H, NH_{ε,Lvs}, NHCH₂, CONH_{2,A}), 7.09 (d, J = 2.2 Hz, 1H, CONH_{2,B}), 4.48 (p, J = 7.1 Hz, 1H, H_{α ,D-Ala}), 4.23 (td, J = 8.4, 5.4 Hz, 1H, $H_{\alpha,Arg}$), 3.81 (t, J = 6.5, 1H, $H_{\alpha,Lys}$), 3.32 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.12–3.04 (m, 2H, H_{δ,Arg}), 1.74–1.65 (m, 3H, H_{β,Arg,A}, H_{β,Lys}), 1.55–1.39 (m, 7H, H_{β,Arg,B}, H_{γ,Arg}, (C<u>H</u>₂)₁₁CH₃), 1.32–1.17 (m, 25H, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, (CH₂)₁₁CH₃, $H_{\beta,D-Ala}$), 0.85 (t, J = 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 171.5 (CO_{D-Ala}), 168.1 (CO_{Lys}), 158.3 (q, J = 31.1 Hz, residual CO_{TFA}), 156.8 (NHC(=NH)NH₂), 118.2 (q, J = 299.2 Hz, residual CF_{3,TFA}), 52.0 (C_{α,Lys}), 51.7 (C_{α,Arg}), 48.3 (C_{α,D-} _{Ala}), 43.2 (C_{$\epsilon,Lys}), 40.3$ (C_{$\delta,Arg}), 31.3 (<u>C</u>H₂CH₂CH₃), 31.0 (C_{<math>\beta,Lys}), 29.2-28.7$ (10C, C_{$\beta,Arg}, (<u>C</u>H₂)₁₁CH₃),</sub></sub>$ </sub></sub> 26.4 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.1 (<u>C</u>H₂CH₃), 21.6 (C_{γ,Lys}), 18.9 (C_{β,D-Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 21.9 min (>98%, UV₂₃₀). HRMS calcd for C₂₈H₅₈N₉O₃S⁺ [M+H]⁺, 600.4378; found 600.4373.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-2-

Compound S5 (6 mg, 0.010 mmol) was dissolved in anh. THF (1.0 mL) followed by addition of benzaldehyde (1 µL, 0.010 mmol), NaBH(OAc)₃ (103 mg, 0.049 mmol) and AcOH (2-3 drops) to the reaction mixture, which was stirred overnight at ambient temperature.

(benzylamino)-6-(3-dodecylthioureido)hexanamide

The reaction mixture was neutralized with NaOH (2 M, aq) and directly subjected to preparative reversed-phase HPLC purification to afford the desired thiourea S6 (1 mg, 15%) as a colorless fluffy material after lyophilization. Unreacted starting material (S5) could be recovered and reused. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.28 (br s, 1H, NH_{α,Lys,A}), 9.20 (br s, 1H, NH_{α,Lys,B}), 8.91 (br s, 1H, NH_{D-Ala}), 8.29 (d, J = 8.4 Hz, 1H, NH_{α ,Arg}), 7.62 (t, J = 5.8 Hz, 1H, NH_{δ ,Arg}), 7.50–7.30 (m, 8H, NH_{ϵ ,Lys},

(S6).

N<u>H</u>CH₂, CONH_{2,A}, H_{Ar,Bn}), 7.17 (d, J = 2.3 Hz, 1H, CONH_{2,B}), 4.47–4.41 (m, 1H, H_{α ,D-Ala}), 4.25 (td, J= 8.3, 5.3 Hz, 1H, $H_{\alpha,Arg}$, 4.05 (br s, 1H, $CH_{2,Bn,A}$), 3.98 (br s, 1H, $CH_{2,Bn,B}$), 3.77 (br s, 1H, $H_{\alpha,Lys}$), 3.32 (br s, 2H, $H_{\epsilon,Lvs}$, overlap with residual water), 3.10 (q, J = 6.6 Hz, 2H, $H_{\delta,Arg}$), 1.83–1.67 (m, 3H, $H_{\beta,Arg,A}, H_{\beta,Lys}), 1.55-1.41 (m, 7H, H_{\beta,Arg,B}, H_{\gamma,Arg}, (C\underline{H}_2)_{11}CH_3), 1.28-1.17 (m, 25H, H_{\gamma,Lys}, H_{\delta,Lys}, H_{\lambda,Lys})$ $CH_2(CH_2)_{10}CH_3$, $H_{B,D-Ala}$, 0.85 (t, J = 7.0 Hz, 3H, CH_3). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 171.6 (CO_{D-Ala}), 167.1 (CO_{Lvs}), 158.0 (q, *J* = 30.9 Hz, CO_{TFA}), 156.7 (NHC(=NH)NH₂), 138.0 (C1_{Ar,Bn}), 130.3 (C4_{Ar,Bn}), 129.1 (C3_{Ar,Bn}, C5_{Ar,Bn}), 128.7 (C2_{Ar,Bn}, C6_{Ar,Bn}), 117.3 (q, *J* = 299.2 Hz, $CF_{3,TFA}$), 58.5 ($C_{\alpha,Lys}$), 51.8 ($C_{\alpha,Arg}$), 48.8 ($CH_{2,Bn}$), 48.7 ($C_{\alpha,D-Ala}$), 43.3 ($C_{\epsilon,Lys}$), 40.4 ($C_{\delta,Arg}$), 31.3 (<u>C</u>H₂CH₂CH₃), 29.2–28.5 (11C, C_{β,Lys}, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.1 (C_{y,Arg}), 22.1 (<u>C</u>H₂CH₃), 21.6 ($C_{\gamma,Lys}$), 18.1 ($C_{\beta,Ala}$), 13.9 (CH₃). The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 23.1 min (>95%, UV₂₃₀). HRMS calcd for C₃₅H₆₄N₉O₃S⁺ [M+H]⁺, 690.4847; found 690.4853.

N-((6S,9R,12S)-1-amino-6-carbamoyl-1-imino-9-methyl-8,11-dioxo-18-thioxo-2,7,10,17,19-

pentaazahentriacontan-12-yl)benzamide (S7). Starting from H-synthesized by addition of benzoyl chloride (13 µL, 0.11 mmol) and

*I*Pr₂NEt (59 µL, 0.34 mmol) in 1.0 mL anh. CH₂Cl₂ to the resin under agitation for 2 h. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **S7** (5 mg, 13% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.52 (d, *J* = 7.0 Hz, 1H, NH_{α,Lys}), 8.30 (d, *J* = 7.3 Hz, 1H, NH_{D-Ala}), 7.93 (d, *J* $= 8.4 \text{ Hz}, 1 \text{H}, \text{NH}_{\alpha,\text{Arg}}, 7.91 - 7.87 \text{ (m, 2H, H2}_{\text{Ar}}, \text{H6}_{\text{Ar}}), 7.57 - 7.43 \text{ (m, 4H, H3}_{\text{Ar}}, \text{H4}_{\text{Ar}}, \text{H5}_{\text{Ar}}, \text{NH}_{\delta,\text{Arg}}),$ 7.35–7.29 (m, 3H, NH_{ε,Lys}, N<u>H</u>CH₂, CONH_{2,A}), 7.11 (d, J = 2.1 Hz, 1H, CONH_{2,B}), 4.35 (q, J = 7.2 Hz, 1H, H_{a,Lvs}), 4.28 (p, J = 7.1 Hz, 1H, H_{a,D-Ala}), 4.17 (td, J = 8.8, 5.1 Hz, 1H, H_{a,Arg}), 3.31 (br s, 2H, H_{e,Lvs}, overlap with residual water), 3.12–3.04 (m, 2H, H_{δ,Arg}), 1.79–1.70 (m, 3H, H_{β,Lys}, H_{β,Arg,A}), 1.57–1.36 (m, 8H, H_{β ,Arg,B}, H_{γ ,Arg}, (C<u>H</u>₂)₁₁CH₃, H_{γ ,Lys,A}), 1.34–1.19 (m, 24H, H_{γ ,Lys,B}, H_{δ ,Lys}, CH₂(C<u>H</u>₂)₁₀CH₃, H_{β ,D-} _{Ala}), 0.85 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.3 (CO_{Arg}), 172.0 (CO_{D-} Ala), 171.9 (CO_{Lys}), 166.7 (<u>C</u>OPh), 156.6 (NHC(=NH)NH₂), 133.8 (C1_{Ar}), 131.4 (C4_{Ar}), 128.2 (C3_{Ar}, C5_{Ar}), 127.5 (C2_{Ar}, C6_{Ar}), 54.1 (C_{α ,Lys}), 51.9 (C_{α ,Arg}), 48.4 (C_{α ,D-Ala}), 43.3 (C_{ϵ ,Lys}), 40.3 (C_{δ ,Arg}), 31.3 $(\underline{C}H_2CH_2CH_3)$, 31.0 $(C_{\beta,Lys})$, 29.0–28.7 (10C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{11}CH_3$), 26.4 $(C_{\delta,Lys})$, 25.0 $(C_{\gamma,Arg})$, 23.2 $(C_{y,Lys})$, 22.1 (<u>C</u>H₂CH₃), 18.0 (C_{β,D-Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the

nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 24.5 min (>98%, UV₂₃₀). HRMS calcd for C₃₅H₆₂N₉O₄S⁺ [M+H]⁺, 704.4640; found 704.4638.

N-((6S,9R,12S)-1-amino-6-carbamoyl-1-imino-9-methyl-8,11-dioxo-18-thioxo-2,7,10,17,19-

pentaazahentriacontan-12-yl)cyclohexanecarboxamide (S8). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of cyclohexanecarbonyl chloride (23 µL,

0.17 mmol) and *i*Pr₂NEt (59 µL, 0.34 mmol) in anh. CH₂Cl₂ (1.0 mL) to the resin under agitation for 2 h. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S8 (7 mg, 18% based on resin loading), as a colorless fluffy material after Iyophilization ¹H NMR (600 MHz, DMSO- d_6) δ 8.11 (d, J = 7.4 Hz, 1H, NH_{D-Ala}), 7.94 (d, J = 8.4 Hz, 1H, NH_{α ,Arg}), 7.88 (d, J = 7.0 Hz, 1H, NH_{α ,Lys}), 7.58 (t, J = 5.7 Hz, 1H, NH_{δ ,Arg}), 7.35–7.28 (m, 3H, $NH_{\epsilon,Lvs}$, $NH(CH_2)_{11}CH_3$, $CONH_{2,A}$), 7.10 (d, J = 2.1 Hz, 1H, $CONH_{2,B}$), 4.25 (p, J = 7.1 Hz, 1H, $H_{\alpha,D}$ -_{Ala}), 4.16 (td, J = 8.8, 5.1 Hz, 1H, H_{a,Arg}), 4.12–4.05 (m, 1H, H_{a,Lys}), 3.31 (br s, 2H, H_{e,Lys}, overlap with residual water), 3.06 (q, J = 6.8 Hz, 2H, H_{δ,Arg}), 2.20 (tt, J = 11.5, 3.2 Hz, 1H, CH_{Cy}), 1.80–1.35 (m, 16H, H_{β,Arg}, H_{γ,Arg}, H_{γ,Lys,A}, H_{β,Lys}, CH_{2,Cy}, (CH₂)₁₁CH₃), 1.35–1.10 (m, 30H, H_{δ,Lys,B}, (CH₂)₁₁CH₃, CH_{2,Cy}, H_{β,D-Ala}), 0.85 (t, J = 6.9 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 175.7 (<u>C</u>OC₆H₁₁), 173.3 (CO_{Arg}), 172.0 (CO_{D-Ala}), 171.9 (CO_{Lvs}), 158.3 (q, J = 31.2 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 117.1 (q, J = 299.2 Hz, residual CF_{3,TFA}), 53.0 (C_{α ,Lys}), 52.0 (C_{α ,Arg}), 48.2 (C_{α ,D-Ala}), 43.5 (C1_{Cy}), 43.4 (C_{ε,Lys}), 40.3 (C_{δ,Arg}), 31.3 (<u>C</u>H₂CH₂CH₃), 31.2 (C_{β,Lys}), 29.4 (C2_{Cy}, C6_{Cy}), 29.0–28.7 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.4 (C3_{Cy}), 25.3 (C5_{Cy}), 25.2 (C_{γ,Arg}), 25.1 (C4_{Cy}), 22.8 (C_{γ,Lys}), 22.1 (<u>CH₂CH₃</u>), 18.0 (C_{β ,D-Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0-95% eluent II in eluent I (C18; 35 min total runtime), t_R 24.6 min (>98%, UV₂₃₀). HRMS calcd for C₃₅H₆₈N₉O₄S⁺ [M+H]⁺, 710.5109; found 710.5106. Cy = cyclohexane.

N-((6S,9R,12S)-1-amino-6-carbamoyl-1-imino-9-methyl-8,11-dioxo-18-thioxo-2,7,10,17,19-

Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by

addition of dodecanoyl chloride (40 µL, 0.17 mmol) and *I*Pr₂NEt (59 µL, 0.34 mmol) in anh. CH₂Cl₂ (1.0 mL) to the resin under agitation for 2 h. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3x4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general

procedures. Global deprotection and cleavage from the resin, followed by preparative reversedphase HPLC purification afforded the desired thiourea S9 (5 mg, 12% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.18 (d, J = 7.4 Hz, 1H, NH_{D-Ala}), 7.99 (d, J = 7.0 Hz, 1H, $NH_{\alpha,Lvs}$), 7.92 (d, J = 8.4 Hz, 1H, $NH_{\alpha,Arg}$), 7.51 (t, J = 5.7 Hz, 1H, $NH_{\delta,Arg}$, 7.36–7.27 (m, 3H, $NH_{\epsilon,Lys}$, $NH(CH_2)_{11}CH_3$, $CONH_{2,A}$), 7.09 (d, J = 2.1 Hz, 1H, $CONH_{2,B}$), 4.25 (p, J = 7.1 Hz, 1H, $H_{\alpha,D-Ala}$), 4.20–4.08 (m, 2H, $H_{\alpha,Arg}$, $H_{\alpha,Lvs}$), 3.31 (br s, 2H, $H_{\epsilon,Lvs}$, overlap with residual water), 3.09–3.02 (m, 2H, H_{δ,Arg}), 2.18–2.05 (m, 2H, CH₂CO), 1.78–1.70 (m, 1H, H_{β,Arg,A}), 1.64–1.57 (m, 1H, $H_{\beta,Lys,A}$), 1.56–1.36 (m, 10H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys,B}$, $H_{\gamma,Lys,A}$, (C<u>H</u>₂)₁₁CH₃, CH_2CH_3CO), 1.32–1.17 (m, 35H, $H_{y,Lys}$, $H_{\delta,Lys}$, $(CH_2)_{11}CH_3$, $COCH_2(CH_2)_6CH_3$, $H_{\beta,D-Ala}$), 0.85 (t, $J = 10^{-10}$ 6.9 Hz, 6H, CH₂CH_{3,A}, CH₂CH_{3,B}). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.3 (CO_{Arg}), 172.7 (<u>C</u>OCH₂), 172.0 (CO_{D-Ala}), 171.9 (CO_{Lys}), 158.0 (q, J = 31.0 Hz, residual CO_{TFA}), 156.6 (NHC(=NH)NH₂), 117.3 $(q, J = 300.5 \text{ Hz}, \text{ residual CF}_{3,\text{TFA}}), 53.1 (C_{\alpha,\text{Lys}}), 51.9 (C_{\alpha,\text{Arg}}), 48.3 (C_{\alpha,\text{D-Ala}}), 43.4 (C_{\epsilon,\text{Lys}}), 40.3 (C_{\delta,\text{Arg}}), 40.3 (C_{\delta,\text{Arg}$ 35.0 (<u>CH</u>₂CH₂CO), 31.28 (<u>CH</u>₂CH₂CH₃), 31.25 (C_{$\beta,Lys}$), 29.0–28.6 (16C C_{$\beta,Arq}, (<u>C</u>H₂)₆CH₃,</sub></sub>$ (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.2 (C_{γ,Arg}), 25.1 (<u>C</u>H₂CH_{3,A}), 22.8 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH_{3,B}), 18.0 (C_{β,D-Ala}), 13.94 (CH₂<u>C</u>H_{3,A}), 13.93 (CH₂<u>C</u>H_{3,B}). The peak for C_{$\epsilon,Lys}$ was broad and of low intensity and the peak</sub> for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 27.3 min (>98%, UV₂₃₀). HRMS calcd for C₃₇H₇₃N₉O₄S⁺ [M+H]⁺, 740.5579; found 740.5591.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-6-(3-

dodecylthioureido)-2-(phenylsulfonamido)hexanamide (S10). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of benzene sulfonyl chloride (22 μL,

0.17 mmol) and *i*Pr₂NEt (59 µL, 0.34 mmol) in 1.0 mL anh. DMF to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **S10** (3 mg, 8% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.04 (d, *J* = 7.3 Hz, 1H, NH_{D-Ala}), 7.97 (d, *J* = 8.3 Hz, 1H, NH_{α,Arg}), 7.95 (d, *J* = 8.3 Hz, 1H, NH_{α,Lys}), 7.78–7.73 (m, 2H, H2_{Ar}, H6_{Ar}), 7.61–7.55 (m, 1H, H4_{Ar}), 7.54–7.47 (m, 3H, H3_{Ar}, H5_{Ar}, NH_{δ,Arg}), 7.38 (d, *J* = 2.3 Hz, 1H, CONH_{2,A}), 7.29 (br s, 1H, N<u>H</u>CH₂), 7.22 (br s, 1H, NH_{α,Lys}), 7.14 (d, *J* = 2.2 Hz, 1H, CONH_{2,B}), 4.23 (td, *J* = 8.5, 5.2 Hz, 1H, H_{α,Arg}), 4.16 (p, *J* = 7.2 Hz, 1H, H_{α,D-Ala}), 3.70 (td, *J* = 8.3, 5.6 Hz, 1H, H_{α,Lys}), 3.19 (br s, 2H, H_{ε,Lys}), 3.12–3.04 (m, 2H, H_{δ,Arg}), 1.76–1.67 (m, 1H, H_{β,Arg,A}), 1.54–1.35 (m, 7H, H_{β,Arg}, H_{β,Lys}, (CH₂)₁₁CH₃), 1.34–0.99 (m, 27H, H_{γ,Lys}, H_{δ,Lys}, (CH₂)₁₁CH₃, H_{β,D-Ala}), 0.85 (t, *J* = 6.9 Hz, 3H, CH₂CH₃).

¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 171.7 (CO_{D-Ala}), 170.5 (CO_{Lys}), 156.6 (NHC(=NH)NH₂), 140.9 (C1_{Ar}), 132.4 (C4_{Ar}), 129.0 (C3_{Ar}, C5_{Ar}), 126.4 (C2_{Ar}, C6_{Ar}), 56.3 (C_{α,Lys}), 51.7 (C_{α,Arg}), 48.0 (C_{α,D-Ala}), 43.1 (C_{ε,Lys}), 40.4 (C_{δ,Arg}), 32.2 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.1–28.7 (C10, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.4 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 18.6 (C_{β,D-Ala}), 14.0 (CH₂<u>C</u>H₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t*_R 24.9 min (>98%, UV₂₃₀). HRMS calcd for C₃₄H₆₂N₉O₅S₂⁺ [M+H]⁺, 740.4310; found 740.4302.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-2-

(methylsulfonamido)-6-(3-octylthioureido)hexanamide (S11). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by

addition of methanesulfonyl chloride (13 µL, 0.17 mmol) and /Pr2NEt (59 µL, 0.34 mmol) in anh. DMF (2.0 mL) to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures using octylamine instead of dodecylamine. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea **S11** (6 mg, 16% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.37 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.3 Hz, 1H, NH_{\alpha,Arg}), 7.56 (t, J = 5.8 Hz, NH_{δ ,Arg}), 7.36 (d, J = 9.0 Hz, 1H, NH_{α ,Lys}), 7.32 (br s, 2H, N<u>H</u>CH₂, NH_{ϵ ,Lys}), 7.27 (d, J = 2.2 Hz, 1H, CONH_{2,A}), 7.12 (d, J = 2.2 Hz, 1H, CONH_{2,B}), 4.24 (p, J = 7.0 Hz, 1H, H_{α ,D-Ala}), 4.15 (td, J = 8.4, 5.0 Hz, 1H, $H_{\alpha,Arg}$), 3.83 (td, J = 8.8, 5.5 Hz, 1H, $H_{\alpha,Lys}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.12–3.05 (m, 2H, H_{δ,Arg}), 2.79 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, H_{β,Arg,A}), 1.61–1.54 (m, 1H, $H_{\beta,Lys,A}$), 1.54–1.40 (m, 9H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys,B}$, $H_{\gamma,Lys,A}$ (CH₂)₇CH₃,), 1.38–1.32 (m, 1H, $H_{y,Lys,B}$), 1.30–1.25 (m, 15H, $H_{\delta,Lys}$, (CH₂)₇CH₃, $H_{\beta,D-Ala}$), 0.85 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.7 (CO_{Lys}), 158.2 (q, J = 32.2 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 116.9 (q, J = 298.2 Hz, residual CF_{3,TFA}), 56.0 (C_{$\alpha,Lvs}$),</sub> 51.9 ($C_{\alpha,Arg}$), 48.7 ($C_{\alpha,D-Ala}$), 43.3 ($C_{\epsilon,Lys}$), 40.7 (CH_3SO_2), 40.4 ($C_{\delta,Arg}$), 32.5 ($C_{\beta,Lys}$), 31.2 ($\underline{C}H_2CH_2CH_3$), 28.73 ((<u>C</u>H₂)₇CH₃), 28.69 ((<u>C</u>H₂)₇CH₃), 28.4 (C_{β ,Arg}), 26.4 (C_{δ ,Lys}), 25.1 (C_{γ ,Arg}), 22.7 (C_{γ ,Lys}), 22.1 (<u>C</u>H₂CH₃), 17.8 (C_{β ,D-Ala}), 13.9 (CH₃). The peak for C_{ϵ ,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 17.9 min (>98%, UV_{230}). HRMS calcd for $C_{25}H_{52}N_9O_5S_2^+$ [M+H]⁺, 622.3527; found 622.3524.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-6-(3-

butylthioureido)-2-(methylsulfonamido)hexanamide (S12). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by

addition of methanesulfonyl chloride (13 µL, 0.17 mmol) and IPr2NEt (59 µL, 0.34 mmol) in anh. DMF (2.0 mL) to the resin under overnight agitation. Washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) was followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures using butylamine instead of dodecylamine. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S12 (2 mg, 6% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.37 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.2 Hz, 1H, NH_{g,Arg}), 7.52 (t, J= 5.7 Hz, NH_{δ ,Arg}), 7.36 (d, *J* = 8.9 Hz, 1H, NH_{α ,Lys}), 7.32 (br s, 2H, N<u>H</u>CH₂, NH_{ϵ ,Lys}), 7.27 (d, *J* = 2.2 Hz, 1H, CONH_{2,A}), 7.12 (d, J = 2.2 Hz, 1H, CONH_{2,B}), 4.24 (p, J = 7.0 Hz, 1H, H_{α,D-Ala}), 4.15 (td, J = 8.5, 5.0 Hz, 1H, $H_{\alpha,Arg}$), 3.83 (td, J = 8.8, 5.5 Hz, 1H, $H_{\alpha,Lys}$), 3.31 (br s, 2H, $H_{\epsilon,Lys}$, overlap with residual water), 3.12–3.04 (m, 2H, H_{δ,Arg}), 2.80 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, H_{β,Arg,A}), 1.62–1.32 (m, 11H, $H_{\beta,Arg,B}$, $H_{\beta,Lys}$, $H_{y,Arg}$, $(CH_2)_3CH_3$, $H_{y,Lys}$), 1.31–1.23 (m, 4H, $H_{\delta,Lys}$, $(CH_2)_3CH_3$), 1.22 (d, J = 7.0Hz, 3H, H_{β ,D-Ala}), 0.88 (t, J = 7.4 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 172.2 (CO_{D-Ala}), 171.6 (CO_{Lys}), 156.7 (NHC(=NH)NH₂), 56.0 (C_{α,Lys}), 51.8 (C_{α,Arg}), 48.7 (C_{α,D-Ala}), 43.3 $(C_{\epsilon,Lys})$, 40.7 (CH₃SO₂), 40.3 (C_{$\delta,Arg})$, 32.5 (C_{$\beta,Lys}), 30.9 (<u>C</u>H₂CH₂CH₃), 28.7 (C_{<math>\delta,Lys})$, 28.39 (NH<u>C</u>H₂),</sub></sub></sub> 28.38 (C_{β,Arg}), 25.1 (C_{γ,Arg}), 22.7 (C_{γ,Lys}), 19.5 (<u>C</u>H₂CH₃), 17.8 (C_{β,D-Ala}), 13.7 (CH₂<u>C</u>H₃). The peak for C_{ELVS} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast guadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 12.4 min (>98%, UV₂₃₀). HRMS calcd for C₂₁H₄₄N₉O₅S₂⁺ [M+H]⁺, 566.2901; found 566.2906.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-6-

butanethioamido-2-(methylsulfonamido)hexanamide (S13). Starting from H-Lys(thiobutyryl)-D-Ala-Arg(Pbf)-resin (228 mg, estimated loading: 0.47 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(thiobuturyl)-OH (S33) by SPPS, the title compound was

synthesized by addition of methanesulfonyl chloride (25 µL, 0.32 mmmol) and *I*Pr₂NEt (111 µL, 0.64 mmol) in anh. CH₂Cl₂ (2.0 mL) to the resin under agitation for 30 min. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by global deprotection and cleavage from the resin, and subsequent preparative reversed-phase HPLC purification to afford the desired thioamide **S13** (1 mg, 2% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.89 (t, *J* = 5.4 Hz, 1H, NH_{ε,Lys}), 8.37 (d, *J* = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, *J*

= 8.3 Hz, 1H, NH_{α,Arg}), 7.48 (t, *J* = 5.9 Hz, 1H, NH_{δ,Arg}), 7.36 (d, *J* = 8.9 Hz, 1H, NH_{α,Lys}), 7.27 (d, *J* = 2.3 Hz, 1H, CONH_{2,A}), 7.13 (d, *J* = 2.2 Hz, 1H, CONH_{2,B}), 4.25 (p, *J* = 7.0 Hz, 1H, H_{α,D-Ala}), 4.15 (td, *J* = 8.4, 5.0 Hz, 1H, H_{α,Arg}), 3.84 (td, *J* = 8.8, 4.3 Hz, 1H, H_{α,Lys}), 3.50–3.40 (m, 2H, H_{ε,Lys}, overlap with residual water), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.80 (s, 3H, CH₃SO₂), 2.50–2.46 (m, 2H, CSC<u>H</u>₂, overlap with solvent peak), 1.79–1.71 (m, 1H, H_{β,Arg,A}), 1.70–1.25 (m, 11H, H_{β,Arg,B}, H_{γ,Arg}, H_{β,Lys}, H_{γ,Lys}, H_{δ,Lys}, C<u>H</u>₂CH₃), 1.22 (d, *J* = 7.0 Hz, 3H, H_{β,D-Ala}), 0.85 (t, *J* = 7.4 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 203.4 (C=S), 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lys}), 156.6 (NHC(=NH)NH₂), 55.9 (C_{α,Lys}), 51.8 (C_{α,Arg}), 48.7 (C_{α,D-Ala}), 46.9 (CS<u>C</u>H₂), 44.9 (C_{ε,Lys}), 40.7 (CH₃SO₂), 40.4 (C_{δ,Arg}), 32.4 (C_{β,Lys}), 28.7 (C_{β,Arg}), 26.7 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.8 (C_{γ,Lys}), 22.3 (<u>C</u>H₂CH₃), 17.8 (C_{β,D-Ala}), 13.1 (CH₂<u>C</u>H₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 14.4 min (>98%, UV₂₈₀). HRMS calcd for C₂₀H₄₁N₈O₅S₂⁺ [M+H]⁺, 537.2636; found 537.2634.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-16-

(methylsulfonamido)-10-thioxo-3,6-dioxa-9,11-diazaheptadecan-17-amide (S14). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride

(13 µL, 0.17 mmol) and IPr2NEt (59 µL, 0.34 mmol) in anh. DMF (2.0 mL) to the resin under overnight agitation. Washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) was followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures usina 2-(2ethoxyethoxy)ethanamine instead of dodecylamine. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S4 (2 mg, 6% based on resin loading) as a white sticky material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.37 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.3 Hz, 1H, NH_{α ,Arg}), 7.54 (t, J = 5.8 Hz, 1H, NH_{δ ,Arg}), 7.50 (br s, 1H, NH_{ϵ ,Lys}), 7.37–7.33 (m, 2H, NH_{α ,Lys}, N<u>H</u>(PEG)₂), 7.27 (d, *J* = 2.2 Hz, 1H, $CONH_{2,A}$), 7.12 (d, J = 2.1 Hz, 1H, $CONH_{2,B}$), 4.24 (p, J = 7.0 Hz, 1H, $H_{\alpha,D-Ala}$), 4.15 (td, J = 8.4, 5.0 Hz, 1H, H_{a,Arg}), 3.88–3.80 (m, 1H, H_{a,Lys}), 3.53–3.45 (m, 8H, NH(<u>PEG</u>)₂), 3.43 (q, J = 7.0 Hz, OCH₂CH₃), 3.33 (br s, 2H, H_{ε,Lvs}), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.79 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, $H_{\beta,Arg,A}$, 1.62–1.32 (m, 8H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys}$, $H_{\gamma,Lys,A}$, $H_{\delta,Lys}$), 1.30–1.19 (m, 4H, $H_{\beta,D-Ala}$, $H_{\gamma,Lys,B}$), 1.10 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lvs}), 158.2 (q, J = 32.0 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 69.7 (PEG₂), 69.1, (PEG₂), 69.0 (PEG₂), 65.5 (OC<u>H</u>₂CH₃), 56.0 (C_{α ,Lys}), 51.8 (C_{α ,Arg}), 48.7 (C_{α ,D-Ala}), 43.4 (C_{ϵ ,Lys}), 40.7 (CH_3SO_2) , 40.3 $(C_{\delta,Arg})$, 32.5 $(C_{\beta,Lys})$, 28.7 $(C_{\beta,Arg})$, 28.3 $(C_{\delta,Lys})$, 25.1 $(C_{\gamma,Arg})$, 22.8 $(C_{\gamma,Lys})$, 17.8 $(C_{\beta,D-1})$ _{Ala}), 15.1 (CH₂<u>C</u>H₃). The peak for C_{$\epsilon,Lvs}$ was broad and of low intensity and the peak for C=S was not</sub> visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 11.3 min (>98%, UV₂₃₀). HRMS calcd for C₂₃H₄₈N₉O₇S₂⁺ [M+H]⁺, 626.3113; found 626.3110. PEG = polyethylene glycol.

(S)-N-((S)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-19-

(methylsulfonamido)-13-thioxo-3,6,9-trioxa-12,14-diazaicosan-20amide (S15). Starting from H-Lys(Teoc)-Ala-Arg(Pbf)-resin (102 mg, estimated loading: 0.49 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride (12 µL,

0.15 mmol) and *i*Pr₂NEt (52 µL, 0.30 mmol) in anh. CH₂Cl₂ (2.0 mL) to the resin under overnight agitation. Washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) was followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures using 2-(2-(2-ethoxyethoxy) ethoxy)ethanamine instead of dodecylamine to form the benzotriazole coupling reagent. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S15 (4 mg, 10% based on resin loading) as a white sticky material after Iyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.17 (d, J = 7.1 Hz, 1H, NH_{Ala}), 7.90 (d, J = 8.0 Hz, 1H, NH_{α,Arg}), 7.58–7.48 (m, 2H, NH_{δ,Arg}, NH_{ε,Lys}), 7.39–7.30 (m, 3H, NH_{α,Lys}, N<u>H</u>(PEG)₃, CONH_{2,A}), 7.07 (d, J = 2.1 Hz, 1H, CONH_{2,B}), 4.29 (p, J = 7.1 Hz, 1H, H_{α ,Ala}), 4.18 (td, J = 8.0, 5.6 Hz, 1H, H_{α ,Arg}), 3.78 (td, J = 8.7, 5.1 Hz, 1H, $H_{\alpha,Lys}$), 3.43–3.45 (m, 12H, NH(<u>PEG</u>)₃), 3.42 (q, J = 7.0 Hz, OC<u>H</u>₂CH₃, overlap with residual water), 3.33 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.12–3.06 (m, 2H, H_{δ,Arg}), 2.85 (s, 3H, CH₃SO₂), 1.71–1.58 (m, 2H, H_{β,Arg,A}, H_{β,Lys,A}), 1.55–1.26 (m, 8H, H_{β,Arg,B}, H_{γ,Arg}, $H_{\beta,Lys}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$), 1.23 (d, J = 7.1 Hz, 3H, $H_{\beta,Ala}$), 1.09 (t, J = 7.0 Hz, 3H, CH_2CH_3). ¹³C NMR (151 MHz, DMSO-d₆) δ 173.1 (CO_{Arg}), 171.9 (CO_{Ala}), 171.3 (CO_{Lys}), 158.3 (q, J = 33.7 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 116.4 (q, *J* = 295.5 Hz, residual CF_{3,TFA}), 69.8 (PEG₃), 69.7 (PEG₃), 69.6 (PEG₃), 69.2, (PEG₃), 69.0 (PEG₃), 65.5 (O<u>C</u>H₂CH₃), 56.3 (C_{α ,Lys}), 51.9 (C_{α ,Arg}), 48.3 (C_{α ,Ala}), 43.4 ($C_{\epsilon,Lys}$), 40.7 (CH_3SO_2), 40.4 ($C_{\delta,Arg}$), 32.4 ($C_{\beta,Lys}$), 29.2 ($C_{\beta,Arg}$), 28.4 ($C_{\delta,Lys}$), 25.0 ($C_{\gamma,Arg}$), 22.7 $(C_{y,Lys})$, 18.1 $(C_{\beta,Ala})$, 15.1 (CH_2CH_3) . The peak for $C_{\epsilon,Lys}$ was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 13.9 min (>98%, UV₂₃₀). HRMS calcd for C₂₅H₅₀N₉NaO₈S₂⁺ [M+Na]⁺, 692.3193; found 692.3195. PEG = polyethylene glycol.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-19-

(methylsulfonamido)-13-thioxo-3,6,9-trioxa-12,14-diazaicosan-20amide (S16). Starting from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (168 mg, estimated loading: 0.33 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride (13 μL, 0.17 mmol) and IPr2NEt (59 µL, 0.34 mmol) in anh. DMF (2.0 mL) to the resin under overnight agitation. Washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) was followed by Teoc deprotection and on-resin thiourea formation as described in the general procedures using 2-(2-(2-ethoxyethoxy) ethoxy)ethanamine instead of dodecylamine to form the benzotriazole coupling reagent. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S16 (4 mg, 11% based on resin loading), as a white sticky powder after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.37 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.3 Hz, 1H, NH_{α ,Arg}), 7.54–7.44 (m, 2H, NH_{δ ,Arg}, NH_{ϵ ,Lys}), 7.37–7.33 (m, 2H, NH_{α ,Lys}, N<u>H(</u>PEG)₃), 7.27 (d, $J = 10^{-10}$ 2.2 Hz, 1H, CONH_{2,A}), 7.12 (d, J = 2.2 Hz, 1H, CONH_{2,B}), 4.24 (p, J = 7.0 Hz, 1H, H_{α ,D-Ala}), 4.15 (td, J = 8.4, 5.0 Hz, 1H, H_{a,Arg}), 3.83 (td, J = 8.8, 5.5 Hz, 1H, H_{a,Lys}), 3.53–3.46 (m, 12H, NH(<u>PEG</u>)₃), 3.43 (q, J = 7.0 Hz, OCH₂CH₃, overlap with residual water), 3.33 (br s, 2H, H_{$\epsilon,Lys}$, overlap with residual</sub> water), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.80 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, H_{β,Arg,A}), 1.62–1.32 (m, 8H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys}$, $H_{\gamma,Lys,A}$, $H_{\delta,Lys}$), 1.30–1.19 (m, 4H, $H_{\gamma,Lys,B}$, $H_{\beta,D-Ala}$), 1.10 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lvs}), 158.1 (q, J = 31.5 Hz, residual CO_{TFA}), 156.6 (NHC(=NH)NH₂), 69.8 (PEG₃), 69.7 (PEG₃), 69.6 (PEG₃), 69.2, (PEG_3) , 69.0 (PEG_3) , 65.5 (OCH_2CH_3) , 56.0 $(C_{\alpha,Lys})$, 51.8 $(C_{\alpha,Arg})$, 48.7 $(C_{\alpha,D-Ala})$, 43.4 $(C_{\epsilon,Lys})$, 40.7 (CH₃SO₂), 40.3 (C_{δ,Arg}), 32.5 (C_{β,Lys}), 28.7 (C_{β,Arg}), 28.4 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.8 (C_{γ,Lys}), 17.8 (C_{β,D-} _{Ala}), 15.1 (CH₂CH₃). The peak for C_{ϵ Lvs} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0-95% eluent II in eluent I (C18; 35 min total runtime), t_R 11.7 min (>98%, UV₂₃₀). HRMS calcd for $C_{25}H_{51}N_9O_8S_2^+$ [M+H]⁺, 670.3375; found 670.3371. PEG = polyethylene glycol.

N-((S)-6-(((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)amino)-

5-(methylsulfonamido)-6-oxohexyl)tetradecanamide (S17). In the process of synthesizing compound **26-D**, a byproduct was observed upon acid cleavage from the resin, which was isolated by preparative reversed-phase HPLC purification to afford the amide **S17** (4 mg, 6% based on resin

loading of **26-D**) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.37 (d, *J* = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, *J* = 8.3 Hz, 1H, NH_{α,Arg}), 7.72 (t, *J* = 5.6 Hz, 1H, NH_{ε,Lys}), 7.63 (t, *J* = 5.7 Hz, 1H, NH_{δ,Arg}), 7.33 (d, *J* = 9.0 Hz, 1H, NH_{α,Lys}), 7.27 (br s, 1H, CONH_{2,A}), 7.12 (br s, 1H, CONH_{2,B}), 4.24 (p, *J* = 7.1 Hz, 1H, H_{α,D-Ala}), 4.14 (td, *J* = 8.4, 4.9 Hz, 1H, H_{α,Arg}), 3.82 (td, *J* = 8.7, 5.6 Hz, 1H, H_{α,Lys}), 3.12–3.04 (m, 2H, H_{δ,Arg}), 3.03–2.95 (m, 2H, H_{ε,Lys}), 2.79 (s, 3H, CH₃SO₂), 2.02 (t, *J* = 7.5 Hz, 2H, COC<u>H</u>₂), 1.79–1.71 (m, 1H, H_{β,Arg,A}), 1.67–1.15 (m, 36H, H_{β,Arg,B}, H_{γ,Arg}, H_{β,Lys}, H_{γ,Lys}, H_{δ,Lys}, H_{β,D-Ala}, (C<u>H</u>₂)₁₂CH₃), 0.85 (t, *J* = 6.9 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.3 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.9 (<u>C</u>OCH₂), 171.7 (CO_{Lys}), 156.7 (NHC(=NH)NH₂), 55.9 (C_{α,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.7 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₀CH₃), 25.3 (C_{δ,Lys}), 25.1 (C_{γ,Arg}), 22.7 (C_{γ,Lys}), 22.1

(CH₂CH₃), 17.8 (C_{β,D-Ala}), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 24.1 min (>95%, UV₂₁₀). HRMS calcd for C₃₀H₆₀N₈O₆S⁺ [M+H]⁺, 661.4429; found 661.4428.

dodecylureido)-2-(methylsulfonamido)hexanamide (S18).

from H-Lys(Teoc)-D-Ala-Arg(Pbf)-resin (322 mg, estimated loading:

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-6-(3-

0.23 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride (17 µL, 0.22 mmol) and *I*Pr₂NEt (76 µL, 0.44 mmol) in anh. DMF (2.0 mL) to the resin, which was agitated for 30 min. Washing with DMF (3×4 mL) and CH₂Cl₂ (3x4 mL) was followed by Teoc deprotection as described in the general procedures. Alongside, a solution of dodecylamine (46 mg, 0.25 mmol) and *I*Pr₂NEt (130 µL, 0.75 mmol) in anh. CH₂Cl₂ (4 mL) were added dropwise to a solution of 4-nitrophenyl chloroformate (42 mg, 0.21 mmol) in 1.0 mL anh. CH₂Cl₂ and stirred at 0 °C for 10 min. The reaction mixture was added to the resin and agitated for 1 h followed by washing with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL). Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired urea **S18** (13 mg, 27% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.36 (d, J = 6.5 Hz, 1H, NH_{D-Ala}), 8.10 (d, J = 8.2 Hz, 1H, NH_{$\alpha,Arg}$), 7.54 (t, J</sub> = 5.7 Hz, NH_{δ ,Arg}), 7.34 (d, J = 8.9 Hz, 1H, NH_{α ,Lys}), 7.27 (d, J = 2.3 Hz, 1H, CONH_{2,A}), 7.13 (d, J = 2.1 Hz, 1H, CONH_{2.B}), 6.86 (br s, 1H, NH_{ε.Lvs}), 5.79–5.68 (m, 2H, NHC(=O)NH), 4.24 (p, J = 7.0 Hz, 1H, $H_{\alpha,D-Ala}$, 4.15 (td, J = 8.5, 5.0 Hz, 1H, $H_{\alpha,Arg}$), 3.82 (td, J = 8.8, 5.5 Hz, 1H, $H_{\alpha,Lvs}$), 3.11–3.04 (m, 2H, H_{δ,Arg}), 2.97–2.90 (m, 4H, H_{ε,Lys}, NHCH₂), 2.79 (s, 3H, CH₃SO₂), 1.79–1.70 (m, 1H, H_{β,Arg,A}), 1.61– 1.10 (m, 32H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, $H_{\beta,D-Ala}$, (C<u>H</u>₂)₁₀CH₃), 0.85 (t, *J* = 6.9 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.7 (CO_{Lvs}), 158.1 (NHC(=O)NH), 156.7 (NHC(=NH)NH₂), 56.0 ($C_{\alpha,Lys}$), 51.8 ($C_{\alpha,Arg}$), 48.7 ($C_{\alpha,D-Ala}$), 40.6 (CH₃SO₂), 40.3 ($C_{\delta,Arg}$), 39.1 $(C_{\epsilon,Lys}, NHCH_2, overlap with residual solvent)$, 43.4 $(C_{\epsilon,Lys})$, 32.5 $(C_{\beta,Lys})$, 31.3 $(CH_2CH_2CH_3)$, 30.0 $((\underline{C}H_2)_{10}CH_3)$, 29.6 $(CH_2(\underline{C}H_2)_{10}CH_3)$, 29.0–28.7 (9C, $C_{\beta,Arg}$, $(\underline{C}H_2)_{10}CH_3)$, 26.4 $(C_{\delta,Lys})$, 25.1 $(C_{\gamma,Arg})$, 22.7 (C_{y,Lvs}), 22.1 (CH₂CH₃), 17.8 (C_{β,D-Ala}), 13.9 (CH₂CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 23.4 min (>95%, UV₂₁₀). HRMS calcd for C₂₉H₆₀N₉O₆S⁺ [M+H]⁺, 662.4382; found 662.4385.

(S)-N-((R)-1-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-1-oxopropan-2-yl)-2-

(methylsulfonamido)-6-(2,2,2-trifluoroacetamido)hexanamide (S19). Starting from Lys(tfa)-D-Ala-Arg(Pbf)-resin (228 mg, estimated loading: 0.47 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(tfa)-OH by SPPS, the title compound was synthesized by

addition of methanesulfonyl chloride (25 µL, 0.32 mmmol) and *i*Pr₂NEt (111 µL, 0.64 mmol) in anh.

Starting

CH₂Cl₂ (2.0 mL) to the resin under agitation for 30 min. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by global deprotection and cleavage from the resin, and subsequent preparative reversed-phase HPLC purification to afford the desired fluorinated amide S19 (5 mg, 9% based on resin loading) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO d_6) δ 9.41 (t, J = 5.7 Hz, 1H, NH_{$\epsilon,Lvs}$), 8.38 (d, J = 6.6 Hz, 1H, NH_{D-Ala}), 8.11 (d, J = 8.3 Hz, 1H, NH_{$\alpha,Arg}),</sub></sub>$ 7.62 (t, J = 5.7 Hz, 1H, NH_{δ ,Arg}), 7.36 (d, J = 9.0 Hz, 1H, NH_{α ,Lys}), 7.27 (d, J = 2.2 Hz, 1H, CONH_{2,A}), 7.12 (d, J = 2.2. Hz, 1H, CONH_{2,B}), 4.24 (p, J = 7.0 Hz, 1H, H_{a,D-Ala}), 4.14 (td, J = 8.5, 5.0 Hz, 1H, $H_{\alpha,Arg}$), 3.84 (td, J = 8.8, 5.5 Hz, 1H, $H_{\alpha,Lys}$), 3.19–3.12 (m, 2H, $H_{\epsilon,Lys}$), 3.11–3.04 (m, 2H, $H_{\delta,Arg}$), 2.79 (s, 3H, CH₃SO₂), 2.07 (residual MeCN), 1.78–1.71 (m, 1H, H_{β,Arg,A}), 1.64–1.24 (m, 9H, H_{β,Arg,B}, H_{γ,Arg}, $H_{\beta,Lys}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$), 1.21 (d, J = 7.1 Hz, 3H, $H_{\beta,D-Ala}$). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.3 (CO_{Arg}), 172.3 (CO_{D-Ala}), 171.6 (CO_{Lys}), 158.4 (q, J = 32.3 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 156.1 (q, J = 35.7 Hz, <u>C</u>OCF₃), 116.9 (q, J = 298.0 Hz, residual CF_{3,TFA}), 116.0 (q, J = 288.7 Hz, CO<u>C</u>F₃), 55.8 (C_{α,Lvs}), 51.9 (C_{α,Arg}), 48.7 (C_{α,D-Ala}), 40.7 (CH₃SO₂), 40.4 (C_{δ,Arg}), 39.1 (C_{ε,Lvs}, overlap with solvent peak), 32.3 ($C_{\beta,Lys}$), 28.7 ($C_{\beta,Arg}$), 27.8 ($C_{\delta,Lys}$), 25.1 ($C_{\gamma,Arg}$), 22.5 ($C_{\gamma,Lys}$), 17.8 ($C_{\beta,D-Ala}$). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -74.3 (s, CF_{3,TFA}), -74.7 (s, COCF₃). Analytical HPLC gradient 0-50% eluent II in eluent I (C8; 35 min total runtime), t_R 15.0 min (>98%, UV₂₁₀). HRMS calcd for C₁₈H₃₄F₃N₈O₆S⁺ [M+H]⁺, 547.2269; found 547.2267.

Nº-(dodecylcarbamothioyl)-N2-(methylsulfonyl)-L-lysyl-D-alanyl-L-arginine (S20). H-Lys(Alloc)-

D-Ala-Arg(Pbf)-resin (0.86 mmol) was synthesized on 2-chlorotrityl chloride (2-CTC) resin using Fmoc-Arg(Pbf)-OH, Fmoc-D-Ala-OH and Fmoc-Lys(Alloc)-OH standard chlorotrityl SPPS procedures described previously.¹⁰ A solution of *I*Pr₂NEt (0.90 mL, 5.2 mmol) in anh. CH₂Cl₂

(5.0 mL) was added to the resin followed by dropwise addition of methanesulfonyl chloride (0.2 mL, 2.6 mmol in 2.0 mL anh. CH₂Cl₂) under magnetic stirring for 10 min. The resin was washed with CH₂Cl₂ (3×4.0 mL), DMF (3×4.0 mL) and CH₂Cl₂ (3×4.0 mL) followed by Alloc deprotection as previously described.¹¹ On-resin thiourea formation was performed as described in the general procedures followed by protective cleaveage from the resin with (CF₃)₂CHOH/CH₂Cl₂ (2×5.0 mL, 1:4, v/v, 2×30 min). Solvent was removed under a stream of nitrogen followed by preparative reversed-phase HPLC purification to afford the intermediate **S27** (30 mg, 4% based on resin loading) as a colorless fluffy material after lyophilization. ESI-MS *m*/*z* calcd for C₄₂H₇₅N₈O₉S₃⁺ [M+H]⁺, 931.48; found 931.50. To compound **S27** (3 mg, 0.004 mmol) was added TFA:TIPS (2.0 mL, 99:1, v/v) and the reaction mixture was stirred for 1 h at ambient temperature. Solvent was removed under a stream of nitrogen, followed by preparative reversed-phase HPLC purification to afford the desired thiourea **S20** (2 mg, 90%) as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.69 (br s, 1H, COOH_{Arg}), 8.29 (d, *J* = 7.6 Hz, 1H, NH_{0-Ala}), 8.12 (d, *J* = 8.1 Hz, 1H, NH_{α,Arg}), 7.54 (t, *J* = 5.7 Hz, 1H, NH_{6,Arg}), 7.37 (d, *J* = 8.8 Hz, 1H, NH_{α,Lys}), 7.31 (br s, 2H, N<u>H</u>CH₂, N_H_{E,Lys}), 4.34 (p,

J = 7.1 Hz, 1H, H_{a,D-Ala}), 4.24–4.17 (m, 1H, H_{a,Arg}), 3.83 (td, J = 8.7, 5.6 Hz, 1H, H_{a,Lys}), 3.31 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.13–3.05 (m, 2H, H_{δ,Arg}), 2.82 (s, 3H, CH₃SO₂), 1.80–1.71 (m, 1H, $H_{\beta,Arg,A}$), 1.62–1.53 (m, 2H, $H_{\beta,Arg,B}$, $H_{\beta,Lys,A}$), 1.52–1.40 (m, 7H, $H_{\beta,Lys,B}$, $H_{\gamma,Arg}$, (CH₂)₁₁CH₃), 1.39– 1.31 (m, 1H, H_{V,Lys,A}), 1.30–1.18 (m, 24H, H_{V,Lys,B}, H_{δ ,Lys}, (C<u>H</u>₂)₁₁CH₃, H_{β ,D-Ala}), 0.85 (t, *J* = 7.0 Hz, 3H, CH₂CH₃).¹³C NMR (151 MHz, DMSO-d₆) δ 173.1 (CO_{Arg}), 172.1 (CO_{D-Ala}), 171.2 (CO_{Lys}), 158.0 (q, J = 31.2 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 117.1 (q, J = 299.0 Hz, residual CF_{3,TFA}), 56.0 $(C_{\alpha,Lys})$, 51.3 $(C_{\alpha,Arg})$, 48.1 $(C_{\alpha,D-Ala})$, 43.4 $(C_{\epsilon,Lys})$, 40.5 (CH_3SO_2) , 40.2 $(C_{\delta,Arg})$, 32.4 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_{2}CH_{2}CH_{3}), 29.0-28.7 (9C, (\underline{C}H_{2})_{11}CH_{3}), 28.2 (C_{\beta,Arg}), 26.4 (C_{\delta,Lys}), 25.0 (C_{\gamma,Arg}), 22.7 (C_{\gamma,Lys}), 22.1 (C_{\gamma,Lys}),$ (<u>C</u>H₂CH₃), 18.5 (C_{β ,D-Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{ϵ ,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0–95% eluent II in eluent I (C18; 35 min total runtime), t_R 22.7 min (>99%, UV₂₃₀). HRMS calcd for C₂₉H₅₉N₉O₅S₂⁺ [M+H]⁺, 679.3993; found 679.3992.

(S)-6-(3-dodecylthioureido)-N-((R)-1-(((S)-5-guanidino-1-morpholino-1-oxopentan-2yl)amino)-1-oxopropan-2-yl)-2-(methylsulfonamido)hexanamide (S21). Compound S30 (3 mg,

0.004 mmol) was dissolved in anh. DMF (2.0 mL) and cooled to -40 °C. added and excess solvent was removed by lyophilization. TFA:TIPS

(2.0 mL, 99:1, v/v) was added to the residue and stirred for 1 h at ambient temperature. Solvent was removed under a stream of nitrogen followed by preparative reversed-phase HPLC purification to afford the desired thiourea S21 (2 mg, 94% in two steps) as a colorless fluffy material after Iyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 8.26 (d, J = 7.2 Hz, 1H, NH_{D-Ala}), 8.24 (d, J = 8.6 Hz, 1H, NH_{α ,Arg}), 7.59 (t, J = 5.7 Hz, 1H, NH_{δ ,Arg}), 7.34 (d, J = 9.0 Hz, 1H, NH_{α ,Lys}), 7.32 (br s, 2H, N<u>H</u>CH₂, $NH_{\epsilon,Lys}$), 4.68 (td, J = 8.6, 5.2 Hz, 1H, $H_{\alpha,Arg}$), 4.31–4.23 (m, 1H, $H_{\alpha,D-Ala}$), 3.83 (td, J = 8.8, 5.5 Hz, 1H, H_{α,Lys}), 3.58–3.50 (m, 4H, N(CH₂CH₂)₂O), 3.49–3.39 (m, 4H, N(CH₂CH₂)₂O), 3.31 (br s, 2H, H_{ε,Lys}, overlap with residual water), 3.13–3.03 (m, 2H, H_{δ,Arg}), 2.81 (s, 3H, CH₃SO₂), 1.67–1.53 (m, 2H, H_{β,Arg,A}, H_{β,Lys,A}), 1.52–1.31 (m, 10H, H_{β,Arg,B}, H_{β,Lys,B}, H_{γ,Arg}, (CH₂)₁₁CH₃, H_{γ,Lys}), 1.30–1.19 (m, 23H, H_{δ,Lys}, (C<u>H</u>₂)₁₁CH₃, H_{β,D-Ala}), 0.85 (t, J = 7.0 Hz, 3H, CH₂C<u>H</u>₃). ¹³C NMR (151 MHz, DMSO- d_6) δ 171.8 (CO_{Arg}), 171.3 (CO_{D-Ala}), 169.2 (CO_{Lys}), 158.1 (q, *J* = 30.9 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 117.1 (q, J = 299.0 Hz, residual CF_{3,TFA}), 66.2 (N(CH₂<u>C</u>H₂)₂O), 66.1 (N(CH₂<u>C</u>H₂)₂O), 56.0 (C_{α ,Lys}), 48.3 ($C_{\alpha,Arg}$), 47.5 ($C_{\alpha,D-Ala}$), 45.4 (N(<u>C</u>H₂CH₂)₂O), 43.3 ($C_{\epsilon,Lys}$), 42.0 (N(<u>C</u>H₂CH₂)₂O), 40.5 (CH₃SO₂), 40.4 (C_{δ,Arg}), 32.5 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.7 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.4 (C_{δ,Lys}), 24.6 (C_{γ,Arg}), 22.7 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 18.3 (C_{β,D-Ala}), 13.9 (CH₂<u>C</u>H₃). The peak for C_{ε,Lys} was broad and of low intensity and the peak for C=S was not visible in ¹³C NMR due to fast quadrupolar relaxation via the nearby ¹⁴N-nuclei. Analytical HPLC gradient 0-95% eluent II in eluent I (C8; 35 min total

runtime), t_R 24.3 min (>95%, UV₂₃₀). HRMS calcd for C₃₃H₆₆N₉O₆S₂⁺ [M+H]⁺, 748.4572; found 748.4565.

(S)-N-(3-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-3-oxoprop-1-en-2-yl)-6-(3-

dodecylthioureido)-2-(methylsulfonamido)hexanamide (S22). Starting from H-Lys(Teoc)-Cys(S*t*Bu)-Arg(Pbf)-resin (204 mg, estimated loading: 0.49 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Cys(S*t*Bu)-OH

and Fmoc-Lys(Teoc)-OH by SPPS, the title compound was synthesized by addition of methanesulfonyl chloride (23 µL, 0.30 mmol) and *i*Pr₂NEt (104 µL, 0.60 mmol) in anh. CH_2CI_2 (2.0 mL) to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by dehydroalanine (Dha) formation as described for compound 22. Subsequent Teoc deprotection and on-resin thiourea formation was performed as described in the general procedures. Global deprotection and cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thiourea S22 (5 mg, 5% based on resin loading), as a colorless fluffy material after lyophilization. ¹H NMR (600 MHz, DMSO- d_6) δ 9.43 (s, , 1H, NH_{Dha}), 8.34 (d, J = 7.9 Hz, 1H, NH_{α ,Arg}), 7.67 (d, J = 7.5 Hz, 1H, NH_{α ,Lys}), 7.57 (t, J = 5.7 Hz, $NH_{\delta,Arg}$), 7.41–7.28 (m, 3H, $NHCH_2$, $NH_{\epsilon,Lys}$, $CONH_{2,A}$), 7.10 (br s, 1H, $CONH_{2,B}$), 6.10 (s, 1H, $H_{\beta,Dha,A}$), 5.61 (s, 1H, H_{β ,Dha,B}), 4.23 (td, J = 8.7, 5.2 Hz, 1H, H_{α ,Arg}), 3.78 (td, J = 8.2, 4.9 Hz, 1H, H_{α ,Lys}), 3.31 (br s, 2H, H_{ε,Lvs}, overlap with residual water), 3.13–3.06 (m, 2H, H_{δ,Arg}), 2.92 (s, 3H, CH₃SO₂), 1.83– 1.75 (m, 1H, $H_{\beta,Arg,A}$), 1.72–1.19 (m, 31H, $H_{\beta,Arg,B}$, $H_{\gamma,Arg}$, $H_{\beta,Lys}$, $H_{\gamma,Lys}$, $H_{\delta,Lys}$, (C<u>H</u>₂)₁₁CH₃)), 0.85 (t, J = 1.15 (m, 1H, H_{\beta,Arg,A}) 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 173.2 (CO_{Arg}), 171.1 (CO_{Lys}), 163.7 (CO_{Dha}), 158.7 (q, J = 31.0 Hz, residual CO_{TFA}), 156.7 (NHC(=NH)NH₂), 134.9 (C_{α ,Dha}), 104.0 (C_{β ,Dha}), 57.0 $(C_{\alpha,Lys})$, 52.9 $(C_{\alpha,Arg})$, 43.3 $(C_{\epsilon,Lys})$, 40.42 (CH_3SO_2) , 40.37 $(C_{\delta,Arg})$, 32.0 $(C_{\beta,Lys})$, 31.3 $(\underline{C}H_2CH_2CH_3)$, 29.0–28.4 (10C, $C_{\beta,Arg}$, (<u>C</u>H₂)₁₁CH₃), 26.4 ($C_{\delta,Lys}$), 25.4 ($C_{\gamma,Arg}$), 22.7 ($C_{\gamma,Lys}$), 22.1 (<u>C</u>H₂CH₃), 13.9 (CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 24.5 min $(>98\%, UV_{230})$. HRMS calcd for $C_{29}H_{58}N_9O_5S_2^+$ [M+H]⁺, 676.3997; found 676.3984.

(S)-N-(3-(((S)-1-amino-5-guanidino-1-oxopentan-2-yl)amino)-3-oxoprop-1-en-2-yl)-2-

(methylsulfonamido)-6-tetradecanethioamidohexanamide (S23). Starting from H-Lys(thiomyristoyl)-Cys(S*t*Bu)-Arg(Pbf)-resin (228 mg, estimated loading: 0.49 mmol/g) synthesized from Fmoc-Arg(Pbf)-OH, Fmoc-Cys(S*t*Bu)-OH and Fmoc-Lys(thiomyristoyl)-OH (S34) by SPPS, the

title compound was synthesized by addition of methanesulfonyl chloride (23 µL, 0.30 mmol) and iPr_2NEt (104 µL, 0.60 mmol) in 2.0 mL anh. CH₂Cl₂ to the resin under overnight agitation. The resin was washed with DMF (3×4 mL) and CH₂Cl₂ (3×4 mL) followed by dehydroalanine (Dha) formation as described for compound **22.** Global deprotection, cleavage from the resin, followed by preparative reversed-phase HPLC purification afforded the desired thioamide **S23** (6 mg, 7% based on resin loading) as a colorless fluffy material after lyophilization ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.89 (t, *J* =

5.4 Hz, 1H, NH_{ε,Lys}), 9.44 (s, 1H, NH_{Dha}), 8.34 (d, J = 7.9 Hz, 1H, NH_{α,Arg}), 7.68 (d, J = 7.5 Hz, 1H, NH_{α,Lys}), 7.62 (t, J = 5.8 Hz, 1H, NH_{δ,Arg}), 7.38 (d, J = 2.0 Hz, 1H, CONH_{2,A}), 7.10 (d, J = 2.1 Hz, 1H, CONH_{2,B}), 6.10 (s, 1H, H_{β,Dha,A}), 5.62 (s, 1H, H_{β,Dha,A}), 4.15 (td, J = 8.6, 5.2 Hz, 1H, H_{α,Arg}), 3.94 (td, J = 8.2, 4.9 Hz, 1H, H_{α,Lys}), 3.50–3.40 (m, 2H, H_{ε,Lys}, overlap with residual water), 3.13–3.07 (m, 2H, H_{δ,Arg}), 2.92 (s, 3H, CH₃SO₂), 2.50–2.46 (m, 2H, CSCH₂, overlap with solvent peak), 1.84–1.75 (m, 1H, H_{β,Arg,A}), 1.74–1.18 (m, 31H, H_{β,Arg,B}, H_{γ,Arg}, H_{β,Lys}, H_{γ,Lys}, H_{δ,Lys}, (CH₂)₁₁CH₃), 0.85 (t, J = 6.9 Hz, 3H, CH₃). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 203.6 (C=S), 173.2 (CO_{Arg}), 171.1 (CO_{Lys}), 163.7 (CO_{Dha}), 156.7 (NHC(=NH)NH₂), 134.9 (C_{α,Dha}), 104.0 (C_{β,Dha}), 56.9 (C_{α,Lys}), 52.9 (C_{α,Arg}), 45.0 (CS<u>C</u>H₂), 44.9 (C_{ε,Lys}), 40.44 (CH₃SO₂), 40.37 (C_{δ,Arg}), 31.9 (C_{β,Lys}), 31.3 (<u>C</u>H₂CH₂CH₃), 29.0–28.2 (10C, C_{β,Arg}, (<u>C</u>H₂)₁₁CH₃), 26.8 (C_{δ,Lys}), 25.4 (C_{γ,Arg}), 22.8 (C_{γ,Lys}), 22.1 (<u>C</u>H₂CH₃), 13.9 (CH₃). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t*_R 26.0 min (>98%, UV₂₃₀). HRMS calcd for C₃₀H₅₉N₈O₅S₂⁺ [M+H]⁺, 675.4044; found 675.4043.

Fmoc-hArg(Boc)₂-**OH (S28).** The compound was synthesized as previously described, ¹² apart from elevating the temperature to 40 °C. Isolated yield 311 mg, 57% in two steps from Fmoc-Lys(Boc)-OH. ¹H NMR (600 MHz, CDCl₃) δ 11.46 (br s, 1H, COOH), 8.52 (s, 1H, NH_{ε,hArg}), 7.75 (d, *J* = 7.5 Hz, 2H, H_{Ar,Fmoc}), 7.63–7.53 (m, 2H, H_{Ar,Fmoc}), 7.38 (tt, *J* = 7.5, 0.9 Hz, 2H, H_{Ar,Fmoc}), 7.30 (td, *J* = 7.5, 1.2 Hz, 2H, H_{Ar,Fmoc}), 5.57 (d, *J* = 7.9 Hz, 1H, NH_{α,hArg}), 4.59–4.32 (m, 3H, CH_{2,Fmoc}), 4.22 (t, *J* = 7.0 Hz, 1H, CH_{Fmoc}), 3.58–3.21 (m, 2H, H_{ε,hArg}), 2.00–1.89 (m, 1H, H_{β,hArg,A}), 1.89–1.78 (m, 1H, H_{β,hArg,B}), 1.69–1.21 (m, 22H, H_{γ,hArg}, H_{δ,hArg}, C(CH₃)_{3,A}, C(CH₃)_{3,B}). ¹³C NMR (151 MHz, CDCl₃) δ 174.6 (COOH), 156.17 (HN(<u>C</u>N)NHBoc₂ or CO_{Fmoc}), 156.15 (HN(<u>C</u>N)NHBoc₂ or CO_{Fmoc}), 153.3 (CO_{Boc}), 144.0 (C_{Ar,Fmoc}), 83.8 (<u>C</u>(CH₃)_{3,A}, <u>C</u>(CH₃)_{3,B}), 67.2 (CH_{2,Fmoc}), 53.4 (C_{α,hArg}), 47.3 (CH_{Fmoc}), 41.0 (C_{δ,hArg}), 32.0 (C_{β,hArg}), 29.2 (C_{δ,hArg}), 28.3 (C(<u>C</u>H₃)_{3,A}), 28.2 (C(<u>C</u>H₃)_{3,A}), 22.8 (C_γ). ESI-MS *m*/*z* calcd for C₃₃H₄₄N₆O₁₃⁺ [M+H]⁺, 611.3; found 611.4. CAS RN: 158478-81-0. The data is in agreement with literature with minor deviations in reported chemical shifts.¹²

4-(tert-butyl)-N-((4-(5-(dimethylamino)pentanamido)phenyl)carbamothioyl)benzamide

(tenovin-6). To a stirring solution of S35 (100 mg, 0.31 mmol) in 2.0 mL anh. CH₂Cl₂ at 0 °C was added 5-bromovaleryl chloride (43 μ L, 0.32 mmol), followed by *i*Pr₂NEt (106 μ L, 0.61 mmol). The

reaction mixture was stirred at 0 °C for 10 min and then overnight at ambient temperature. Next, dimethylamine (100 μ L, 0.56 mmol, 33% in abs. ethanol (~5.6 M) was added and the reaction was stirred for an additional 6 h at ambient temperature. The mixture was diluted with CH₂Cl₂ (25 mL) and the resulting organic layer washed with aq. NaOH (1 M, 25 mL) and brine (25 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude product. Preparative reversed-phase HPLC purification afforded **tenovin-6** (28 mg, 20% over 2 steps) as an off-white

fluffy material after lyophilisation. ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.60 (s, 1H, CON<u>H</u>Ar), 11.41 (s, 1H, ArN<u>H</u>(C=S)), 10.07 (s, 1H, (C=S)NHCO), 9.47 (s, 1H, N<u>H</u>⁺(CH3)₂), 8.00–7.88 (m, 2H, H_{Ar}), 7.73–7.52 (m, 6H, H_{Ar}), 3.07 (q, *J* = 5.4, 3.1 Hz, 2H, C<u>H</u>₂N(CH₃)₂), 2.77 (s, 6H, N(CH₃)₂), 2.39 (t, *J* = 6.8 Hz, 2H, CH₂CO), 1.71–1.59 (m, 4H, (CH₂)₂CH₂CO), 1.32 (s, 9H, (CH₃)₃).¹³C NMR (151 MHz, DMSO-*d*₆) δ 179.0 (C=S), 170.7 (CH₂<u>C</u>O), 168.1 (NH<u>C</u>OAr), 157.9 (q, *J* = 31.0 Hz, residual CO_{TFA}), 156.3 (<u>C</u>C(CH₃)₃), 137.3 (C_{Ar}), 132.9 (C_{Ar}), 129.3 (C_{Ar}), 128.6 (C_{Ar}), 125.3 (C_{Ar}), 124.8 (C_{Ar}), 119.0 (C_{Ar}), 117.2 (q, *J* = 298.9 Hz, residual CF_{3,TFA}), 56.4 (<u>C</u>H₂N(CH₃)₂), 42.2 N(CH₃)₂), 35.5 (<u>C</u>H₂CO), 34.9 (<u>C</u>(CH₃)₃), 30.8 (C(<u>C</u>H₃)₃), 23.4 (NCH₂<u>C</u>H₂), 21.8 (<u>C</u>H₂CH₂CO). Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), *t_R* 21.9 min (>98%, UV₂₃₀). ESI-MS *m/z* calcd for C₂₅H₃₅N₄O₂S⁺ [M+H]⁺, 455.2; found 455.3. CAS RN: 1011557-82-6. The data is in agreement with literature.⁴

S2iL5. The macrocyclic peptide, S2iL5, was synthesized with standard Fmoc-based SPPS using

Rink amide linker on TentaGel[®] resin (167 mg, estimated loading: 0.24 mmol/g), inspired by prior synthesis.¹³ The resulting *N*-terminal α -amino group was incubated with a 0.2 M solution of chloroacetyl chloride in DMF (4 mL) and agitated for 40 min at ambient temperature and subsequently washed with DMF (3×5 mL) and CH₂Cl₂ (3×5 mL). Global deprotection and cleavage from the resin was performed with a solution of TFA/DODT/TIPS/H₂O (5.0 mL, 92.5:2.5:2.5; v/v) under agitation at ambient temperature for 3 h. The solution was collected, and the resin was washed

with an additional TFA (2.0 mL). Solvent was removed under a stream of nitrogen the peptide was triturated in ice-cold ether. The resulting pellet was dissolved in 20 mL H₂O:MeCN (1:1) and NEt₃ (2–3 drops) was added and the reaction stirred for 30 min at 42 °C resulting in the formation of an off-white precicipitate. The solution was acidified with a few drops of TFA and concentrated under reduced pressure followed by preparative reversed-phase HPLC purification to afford the macrocycle **S2iL5** (11 mg, 14% based on resin loading) as colorless fluffy material after lyophilization. Analytical HPLC gradient 0–95% eluent II in eluent I (C8; 35 min total runtime), t_R 14.3 min (>98%, UV₂₃₀). HRMS *m*/*z* calcd for C₉₀H₁₂₄F₃N₂₇O₂₃S²⁺ [M+2H]²⁺, 1019.9513; found 1019.9509. CAS RN: 1707311-44-1.

Drug treatment for analysis of cytotoxicity in cells

Cell culture. All cell culture media contained 10% (v/v) FBS (Thermo Fisher Scientific; cat. #26140079) and 1% penicillin-streptomycin (Sigma-Aldrich; cat. #P4333) unless stated otherwise and cultured at 37 °C with 5% CO₂ in a humidified incubator. MCF-7 (Sigma-Aldrich; cat. #86012803) and HeLa (Sigma-Aldrich; cat. #93021013) cells were maintained in Minimum Essential Medium Eagle (MEM, Sigma-Aldrich; cat. #M2279) supplemented with L-glutamine (2.0 mM, Sigma-Aldrich; cat. #G7513) and MEM non-essential amino acid solution (1%, Sigma-Aldrich; cat. #P7145). Jurkat (Sigma-Aldrich; cat. #88042803) cells were maintained in Roswell Park Memorial Institute medium (RPMI-1640, Sigma-Aldrich; cat. #R0883). HEK293T (ATCC; cat. #CRL-1573) cells were maintained in Dulbecco's modified Eagle's medium (DMEM, Thermo Scientific; cat. #11965118). Cell lines were sub-cultured every 2-4 days.

Cell viability assays. Cell viability was assessed using MTT¹⁴ cell growth kits (Merck Millipore; cat. #CT02) as previously described.¹⁵ In short, cells were seeded into flat 96-well plates (Corning, cat. #3596) at 5,000 cells/well (HEK293T and HeLa) or 10,000 cells/well (Jurkat and MCF-7). After 24 h, test compounds were added to final concentrations ranging from 100–0.02 µM and incubated for 72 h. Cell viability was measured following the manufacturer's protocol. The relative cell viability in presence of test compounds was measured at 570 nm normalized to the DMSO-treated controls after background subtraction at 630 nm on a plate reader. All viability assays were performed as duplicates of triplicates. GraphPad Prism (vers. 8.1.2) was used to determine EC₅₀ values.

Supporting references

- 1 N. Rajabi, M. Auth, K. R. Troelsen, M. Pannek, D. P. Bhatt, M. Fontenas, M. D. Hirschey, C. Steegborn, A. S. Madsen and C. A. Olsen, *Angew. Chem. Int. Ed.*, 2017, **56**, 14836–14841.
- 2 N. Rajabi, A. L. Nielsen and C. A. Olsen, ACS Med. Chem. Lett., 2020, **11**, 1886–1892.
- 3 M. Bæk, P. Martín-Gago, J. S. Laursen, J. L. H. Madsen, S. Chakladar and C. A. Olsen, *Chem. A Eur. J.*, 2020, **26**, 3862–3869.
- A. R. McCarthy, L. Pirrie, J. J. Hollick, S. Ronseaux, J. Campbell, M. Higgins, O. D. Staples,
 F. Tran, A. M. Z. Slawin, S. Lain and N. J. Westwood, *Bioorganic Med. Chem.*, 2012, 20, 1779–1793.
- 5 Y. L. Chiang and H. Lin, *Org. Biomol. Chem.*, 2016, **14**, 2186–2190.
- 6 Schrödinger release 2019-4: QikProp, Schrödinger, LLC, New York, NY, 2019.
- 7 M. Gude, J. Ryf and P. D. White, *Int. J. Pept. Res. Ther.*, 2002, **9**, 203–206.
- 8 E. Kaiser, R. L. Colescott, C. D. Bossinger and P. I. Cook, *Anal. Biochem.*, 1970, **34**, 595–598.
- 9 H. Jing, J. Hu, B. He, Y. L. Negrón Abril, J. Stupinski, K. Weiser, M. Carbonaro, Y. L. Chiang, T. Southard, P. Giannakakou, R. S. Weiss and H. Lin, *Cancer Cell*, 2016, **29**, 297–310.
- 10 I. Galleano, J. Nielsen, A. S. Madsen and C. A. Olsen, *Synlett*, 2017, **28**, 2169–2173.
- 11 H. Zhang, A. L. Nielsen, M. W. Boesgaard, K. Harpsøe, N. L. Daly, X.-F. Xiong, C. R. Underwood, L. M. Haugaard-Kedström, H. Bräuner-Osborne, D. E. Gloriam and K. Strømgaard, *Eur. J. Med. Chem.*, 2018, **156**, 847–860.
- 12 S. Frølund, A. Bella, A. S. Kristensen, H. L. Ziegler, M. Witt, C. A. Olsen, K. Strømgaard, H. Franzyk and J. W. Jaroszewski, *J. Med. Chem.*, 2010, **53**, 7441–7451.
- 13 K. Yamagata, Y. Goto, H. Nishimasu, J. Morimoto, R. Ishitani, N. Dohmae, N. Takeda, R. Nagai, I. Komuro, H. Suga and O. Nureki, *Structure*, 2014, **22**, 345–352.
- 14 T. Mosmann, J. Immunol. Methods, 1983, 65, 55–63.
- 15 B. Kitir, A. R. Maolanon, R. G. Ohm, A. R. Colaço, P. Fristrup, A. S. Madsen and C. A. Olsen, *Biochemistry*, 2017, **56**, 5134–5146.

DMSO control CETSA experiment 1

DMSO control CETSA experiment 2

DMSO control CETSA experiment 3

CETSA experiment 1: Compound 26

CETSA experiment 2: Compound 26

CETSA experiment 3: Compound 26

CETSA experiment 1: Compound 26-D

CETSA experiment 2: Compound 26-D

CETSA experiment 3: Compound 26-D

CETSA experiment 1: Compound TM

CETSA experiment 2: Compound TM

CETSA experiment 3: Compound TM

Analytical HPLC spectra of final compounds

S83

S86

¹H and ¹³C spectra of compound 8

¹H and ¹³C spectra of compound **12**

¹H and ¹³C spectra of compound **19**

¹H and ¹³C spectra of compound **20**

¹H and ¹³C spectra of compound **21**

¹H and ¹³C spectra of compound **23**.

¹H and ¹³C spectra of compound **24**

¹H and ¹³C spectra of compound **24-D**

¹H and ¹³C spectra of compound **25**

¹H-¹H COSY and ¹H-¹³C HSQC spectra of compound **25**

¹H-¹³C HMBC spectrum of compound **25**

¹H and ¹³C spectra of compound **25-D**

¹H-¹H COSY and ¹H-¹³C HSQC spectra of compound **25-D**

¹H-¹³C HMBC spectrum of compound **25-D**

¹H-¹³C HMBC spectrum of compound **26**

¹H and ¹³C spectra of compound **26-D**

¹H-¹H COSY and ¹H-¹³C HSQC spectra of compound **26-D**

¹H-¹³C HMBC spectrum of compound **26-D**

¹H and ¹³C spectra of compound **S1**

¹H and ¹³C spectra of compound **S5**

¹H and ¹³C spectra of compound **S7**

¹H and ¹³C spectra of compound **S8**

¹H and ¹³C spectra of compound **S12**

¹H and ¹³C spectra of compound **S17**

¹H and ¹³C spectra of compound **S18**

¹H and ¹³C spectra of compound **S19**

¹⁹F spectrum of compound **S19**

¹H and ¹³C spectra of compound **S22**

¹H and ¹³C spectra of compound **S23**

 ^1H and ^{13}C spectra of compound S25

 ^1H and ^{13}C spectra of compound S26

¹H and ¹³C spectra of compound **S28**

