Revision in the first steps of the biosynthesis of the red antibiotic prodigiosin: use of a synthetic thioester to validate a new intermediate

Maxime Couturier, ${ }^{\text {a }}$ Hiral D. Bhalara, ${ }^{\text {a }}$ Rita Monson, ${ }^{\text {b }}$ George P. C. Salmond, ${ }^{\text {b }}$ and Finian J. Leeper*a
${ }^{\text {a }}$ Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
${ }^{\text {b }}$ Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.

SUPPORTING INFORMATION

General considerations

Standard solution-phase chemistry was used for the synthesis of the various biosynthetic intermediates and their analogues. All reactions were carried out under N_{2} in pre-dried glassware and all organic solvents used were freshly distilled. Solvents and reagents for anhydrous reactions were dried by conventional methods prior to use. Milli-Q deionised water was used in all chemical reactions and biochemical work. High temperature reactions were carried out using a silicone oil bath. Yields refer to chromatographically and spectroscopically pure compounds. Microanalyses were performed by the University of Cambridge Microanalytical Laboratory in the Department of Chemistry and are quoted to the nearest 0.1% for all elements except for hydrogen, which is quoted to the nearest 0.05%. Reported atomic percentages are within the error limits of $\pm 0.3 \%$.

Nuclear Magnetic Resonance spectroscopy

NMR Spectra were recorded in deuterated solvents (as specified) using a Bruker AM/DPX-400 (${ }^{1} \mathrm{H}$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz). Chemical Shifts (δ) are quoted in parts per million (ppm) and referenced to solvent peaks. Coupling constants (J) are reported in Hz and are rounded to the nearest integer. The multiplicities and general assignments of the spectroscopic data are denoted as: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), unresolved multiplet (m), and broad (br).

LC-MS

LC-MS analyses were performed with an Waters H-Class UPLC on a Waters Acquity UPLC BEH C18, $1.7 \mu \mathrm{~m}$ column eluted with a gradient of 10 mM aqueous ammonium acetate containing 0.1% formic acid to 95% acetonitrile over 3 min , coupled to a Waters Micromass ZQ Quadrupole Mass Analyser using electrospray ionisation (ESI) with accuracy no greater than 0.4 Da.

Mass Spectrometry

Accurate masses were obtained with a Waters LCT Premier high-resolution mass spectrometer and/or a Waters Xevo G2-S.

Infra-Red (IR) Spectroscopy

IR spectra were recorded neat on a diamond/ZeSe plate using a Perkin-Elmer Spectrum One FT-IR Universal Attenuated Transmittance Reflectance (ATR) sampling accessory spectrometer with internal referencing. Characteristic absorption maxima ($\lambda_{\max }$) are reported in wavenumbers (cm^{-1}) and the following abbreviations are used: w, weak; m, medium; s, strong; br, broad.

Silica Gel Chromatography

Flash Column chromatography was performed using 230-400 mesh Kieselgel 60 silica. Analytical thin layer chromatography (TLC) was performed on commercial silica gel plates (Merck glass- or aluminiumbacked plates coated with a 0.20 mm layer of silica gel 60 with fluorescent indicator UV254). These plates were visualised using either ultraviolet light (254 or 365 nm), or by staining the plates with potassium permanganate or vanillin solutions or with Ehrlich's reagent.

Ultraviolet-Visible (UV-Vis) spectrophotometry

UV-Vis spectra were taken on a Varian Cary 100 Bio Spectrophotometer with a Peltier 6-cell holder using 1 cm path length using either 1 ml quartz cuvettes or polystyrene disposable cuvettes.

Bioinformatic Analysis

	Template	\% i.d.	PDB Title
1	6 jzu	26	Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) in complex with aldehyde deformylating oxygenase (ADO)
2	1 gpj	17	Glutamyl-tRNA reductase from Methanopyrus kandleri
3	4 n 7 r	12	Arabidopsis glutamyl-tRNA reductase in complex with its binding protein
4	$2 e g g$	14	Shikimate 5-dehydrogenase (AroE) from Geobacillus kaustophilus
5	3 don	13	Shikimate dehydrogenase from Staphylococcus epidermidis
6	$3 \mathrm{o} q \mathrm{q}$	13	Shikimate 5-dehydrogenase (AroE) from Vibrio cholerae
7	1 nyt	15	Shikimate dehydrogenase AroE complexed with NADP ${ }^{+}$
8	1 p 74	18	shikimate dehydrogenase (AroE) from Haemophilus influenzae
9	3 pwz	15	An AroE-like 1 (Ael1) enzyme from Pseudomonas putida
10	3 pgj	14	Shikimate 5-dehydrogenase (AroE) from Vibrio cholerae
11	4 omu	12	Shikimate dehydrogenase (AroE) from Pseudomonas putida
12	1 nvt	14	Shikimate dehydrogenase (AroE or mj1084) in complex with NADP ${ }^{+}$
13	$2 \mathrm{hk8}$	14	Shikimate dehydrogenase from Aquifex aeolicus

Table S1: Closest structures to PigE in the Protein Database (PDB), from Phyre2 [L. A. Kelley et al., Nature Protocols, 2015, 10, 845-858].

BLAST comparison between N-terminal domain of PigE and AAR from Synechococcus elongatus

```
NCBI Program Blast 2 sequences
Query ID Q5W267.1 (amino acid)
Query Descr RecName: Full=Aminotransferase PigE [Serratia sp. ATCC 39006] ...
Query Length 360
Subject ID Q54765.1 (amino acid)
Subject Descr RecName: Full=Long-chain acyl-[acyl-carrier-protein] reductase;
Short=AAR; Short=Acyl-ACP reductase [Synechococcus elongatus PCC 7942 = FACHB-805]
Subject Length 341
\begin{tabular}{llllll} 
Score & Expect & Method & Identities & Positives & Gaps \\
78.2 bits (191) & \(1 e-20\) & Compositional & \(94 / 355(26 \%)\) & \(155 / 355(43 \%)\) & \(34 / 355(9 \%)\)
\end{tabular}
Query 3 FGFIAHPTSVGLKRYVKMIDLLQRNSTELHSGYKRDLWRRENLVPFMNFAKITSATGATC 62
            FG I H TS+ R D+ +R + ++ + W ++ +TSATG
Sbjct 2 FGLIGHLTSLEQAR-----DVSRRMGYDEYADQGLEFWSSAP-PQIVDEITVTSATGKVI 55
Query 63 EGVIKYM-PLVADEMLADAR--GIANRVVSGIEELVEDGAELVGLGGFTSIVGRRGEATA 119
Sbjct 56 HG--RYIESCFLPEMLAARRFKTATRKVLNAMSHAQKHGIDISALGGFTSIIFENFDLAS 113
Query 120 EKSPVPVT-------SGNSLTTYAGYKALMQIQSWLDIQPEQEPVAIVGYPGSICLALSR 172
Sbjct 114 LRQVRDTTLEFERFTTGNTHTAYVICRQVEAAAKTLGIDITQATVAVVGATGDIGSAVCR 173
```


Alignment of Homology Model for PigE N-terminal domain with AAR (PDB 6jzy)

Alignment was performed in PyMol using the "pair-fit" function. The α-carbons of seven pairs of conserved residues in the centre of well conserved regions (shown in red in the above alignment) were chosen for the fitting (including the active site Cys 294 in AAR with Cys 296 in PigE). The R.M.S.D. was 1.105 A.

Fig. S1. Alignment of Acyl ACP reductase (AAR) from Synechococcus elongatus PCC 7942 (PDB 6jzy, magenta) with the homology model generated by Phyre2 for the N -terminal domain of PigE (orange). The protein backbones are shown in cartoon representation and NADP ${ }^{+}$and the dodecanoyl group (both with green carbon atoms) and the active site cysteine residues are shown in stick form. (A) complete structure; (B) detail of the active site showing the proximity of $\mathrm{C}-4$ of the nicotinamide ring of NADP^{+}to the thioester carbon atom ($3.6 \AA$) in AAR. Figures were drawn using Pymol [https://pymol.org/].

PCR

Sequence 5'-3'	Restriction enzyme	Usage
GAGAAGAGCTCATGAAGTTTGGATTTATCGCTC	Sacl	pigE amplification upstream
GGCTGCAGTTACTCTAAAAATGTTGATAGC	Pstl	pigE amplification downstream

Table S1: Oligonucleotides for PCR (restriction site in bold)

Compound	Volume $(\mu \mathrm{l})$
gDNA template	1
Oligonucleotide $1(10 \mu \mathrm{M})$	2.5
Oligonucleotide $2(10 \mu \mathrm{M})$	2.5
dNTP $(10 \mathrm{mM})$	0.5
$5 x$ HF Buffer	5
Phusion $®$ Hi-Fidelity DNA polymerase	0.2
SD- $\mathrm{H}_{2} \mathrm{O}$	Up to $50 \mu \mathrm{l}$

Table S2: Composition of PCR mixture

PCR cycle

PCR cycling parameters included initial denaturation ($5 \mathrm{~min}, 95^{\circ} \mathrm{C}$), then 30 cycles of denaturation (30 $\mathrm{s}, 95^{\circ} \mathrm{C}$), annealing ($30 \mathrm{~s}, 55^{\circ} \mathrm{C}$) and extension ($2 \mathrm{~min}, 72^{\circ} \mathrm{C}$), and a final extension ($10 \mathrm{~min}, 72^{\circ} \mathrm{C}$). The amplified PCR products were analysed by agarose gel electrophoresis. 0.8% (w / v) agarose gel containing ethidium bromide was run at 85 V in $1 \times$ TAE buffer.

Plasmid construction (pPigE)

PCR amplification was conducted in the conditions described above. Serratia sp. 39006 gDNA was amplified using the pair of oligonucleotides in Table S1. After purification of the PCR product of the correct size by agarose gel electrophoresis, it was digested with Sacl/Pst/ restriction enzymes for 1 h at $37{ }^{\circ} \mathrm{C}$ and ligated together with a compatibly digested pQE80-L.:oriT. The generated plasmids were transformed into E. coli $\mathrm{DH} 5 \alpha$ and sequenced to confirm the absence of mutation.

Strain	Genotype/phenotype	Source or ref.
Serratia	Wild type (Car+, Pig+ $)$	Bycroft et al.1
ATCC 39006	In	Williamson et al. ${ }^{2}$
NW6 (noted \triangle pigE)	In-frame pigE $\Delta(10321-12865,848$ aa $\Delta)$	Williamson et al.
NW13 (noted \triangle pigD)	In-frame pigD $\Delta(7895-9446,517$ aa $\Delta)$	

Table S3: List of bacterial strains and plasmids
1 B. W. Bycroft, C. Maslen, S. J. Box, A. G. Brown, J. W. Tyler, J. Chem. Soc. Chem. Commun. 1987, O, 1623.

2 N. R. Williamson, H. T. Simonsen, R. A. A. Ahmed, G. Goldet, H. Slater, L. Woodley, F. J. Leeper, G. P. C. Salmond, Mol. Microbiol. 2005, 56, 971.

5 R. Monson, D. S. Smith, M. A. Matilla, K. Roberts, E. Richardson, A. Drew, N. Williamson, J. Ramsay, M. Welch, G. P. C. Salmond, Front. Microbiol. 2015, 6, 1442.

Protein purification

Lysis buffer (pH 8.0)	$50 \mathrm{mM} \mathrm{NaH} 2 \mathrm{PO}_{4}$
	300 mM NaCl
	20 mM imidazole
Wash buffer (pH 8.0)	$50 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}$
	300 mM NaCl
	20 mM imidazole
	20\% glycerol (v/v)
Elution buffer (pH 8.0)	$50 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}$
	300 mM NaCl
	250 mM imidazole
Storage buffer (pH 8.0)	20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.0)$
	250 mM NaCl
	1 mM EDTA
	1 mM DTT

Table S4: Protein purification buffers
Preparation of cell lysates: Cells transformed with suitable vector-constructs were grown at $37{ }^{\circ} \mathrm{C}$ on a shaker at 250 rpm to obtain an OD_{600} of 0.6 . Cultures were then induced with 1 mM isopropyl β-Dthiogalactopyranoside (IPTG) at $16{ }^{\circ} \mathrm{C}$ for $14-16 \mathrm{~h}$. Aliquots were collected before and after the induction by IPTG to monitor the expression of protein and analysed by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Cells were harvested by centrifuging at 5000 rpm for 20 min at $4^{\circ} \mathrm{C}$. The cell pellet was resuspended in the lysis buffer including complete-mini-EDTA-free protease inhibitor cocktail (1 tablet per 10 ml lysis buffer) from Roche.

For protein purification from soluble fraction: The above lysis buffer was supplemented with 1% Triton-X100. The ice-water jacketed suspension was sonicated and then centrifuged at 10,000 rpm at 4 ${ }^{\circ} \mathrm{C}$ for 30 min . The clarified lysate was loaded onto a Ni- NTA (Ni^{2+}-nitrilotriacetate) column (Qiagen) for affinity purification. The column was washed twice with wash buffer and the bound protein was eluted (1 ml fractions) with elution buffer and the fractions analysed by SDS-PAGE. The fractions containing purified protein were pooled and dialyzed in storage buffer.

Characterisation of PigE

Figure S2: Analysis of PigE by SDS-PAGE electrophoresis

Analysis of extract from S39006 Δ pigD cultured with thioester 13 and of extracts from S39006 WT

HPLC conditions. HPLC analysis were performed on an Agilent 1100 Series system fitted with an autosampler and a UV/Vis detector. Eluents were supplemented with 0.1% formic acid. Extracts were run with a Phenomenex Jupiter 5μ C18 300A with an acetonitrile gradient (5 to 100% in 30.5 min , then back to 5% in 30 s and constant 5% for 9 minutes). The absorbances at 500 and 535 nm were monitored.

LC-MS analysis of the HPLC peaks. The analysis was performed on extracts from S39006 WT

Figure S4: Analysis of the prodigiosin extract a) HPLC trace of the two peaks after separation by HPLC (top, peak at 17.3 min , bottom, peak at 21.3 min , detection at 535 nm); b) MS analysis, top left: crude extract, top right, peak at 17.3 min , bottom, peak at 21.3 min .

Determination of the amino-donor in the aminotransferase activity of PigE

$20 \mu \mathrm{~g}$ of PigE in Tris-HCl buffer ($510 \mathrm{mM}, \mathrm{pH}=8.0$) was incubated with 5 mM of amino acid (total volume $=1 \mathrm{ml}$) at $30^{\circ} \mathrm{C}$. A UV/Vis spectra was recorded after $0 \mathrm{~h}, 1 \mathrm{~h}, 24 \mathrm{~h}$, and, in some instances, 48 h . To compensate for the absorbance of the starting materials, the absorbance at 0 h was subtracted from the subsequent measurements.

Evolution of A_{330}

Figure S5: Evolution of the A_{330} of purified PigE in presence of a variety of amino acids.

Sample preparation for mass spectrometry

Eppendorf tubes were charged with 1 mM of thioester 13, 1.25 mM of ornithine and PLP, and 1.25 mM of NADH or NADPH. For the negative control, no NAD(P)H was added. Cell lysate containing PigE or the corresponding control was added. The resulting 0.5 ml were gently shaken overnight at $30^{\circ} \mathrm{C}$. The insoluble fraction was eliminated by centrifugation and the soluble fraction analysed directly by LCMS.

Synthesis

3-Bromooctan-2-one 17

To a mixture of 2-octanone $16(5 \mathrm{~g}, 39 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}(40 \mathrm{ml})$ was added $\mathrm{NH}_{4} \mathrm{OAc}(300 \mathrm{mg})$, followed by N -bromosuccinimide ($7 \mathrm{~g}, 39 \mathrm{mmol}$). The mixture was heated at $80^{\circ} \mathrm{C}$ and stirred for 24 h . Hexane (40 ml) was then added and the mixture was filtered. The filtrate was washed with sat. aq. NaHCO_{3} and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. Purification by flash column chromatography (EtOAc/hexane 1:9) gave a 9:1 mixture of 17 and 1-bromooctanone $\mathbf{1 7 b}$ ($1.285 \mathrm{~g}, 6.2 \mathrm{mmol}, 16 \%)$. Pure 17 was obtained by a kinetic separation as follows. The mixture of 17 and $\mathbf{1 7 b}(1 \mathrm{~g}, 4.8 \mathrm{mmol})$ was dissolved in acetone (5 ml) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ and dimethyl malonate ($300 \mathrm{\mu l}$, $2 \mathrm{mmol}, 0.4$ eq.) were added. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) was added and the mixture was washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by flash column chromatography, giving pure 17 ($846 \mathrm{mg}, 4 \mathrm{mmol}, 90 \%$ recovery) as 17 b reacts preferentially with the enolate of dimethyl malonate.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{8}\right), 1.27-1.40\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{7}, \mathrm{H}_{6}, \mathrm{H}_{5 \mathrm{a}}\right), 1.5(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{5 \mathrm{~b}}\right)$, 1.85-2.08 (2H, m, $\left.\mathrm{H}_{4}\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 4.24\left(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, HMQC and HMBC used for assignments): $13.9\left(\mathrm{C}_{8}\right)$, $22.4\left(\mathrm{C}_{7}\right)$, $26.0\left(\mathrm{C}_{1}\right), 26.9\left(\mathrm{C}_{5}\right), 31.1\left(\mathrm{C}_{6}\right), 33.5\left(\mathrm{C}_{4}\right), 54.4\left(\mathrm{C}_{3}\right), 202.19\left(\mathrm{C}_{2}\right)$.
IR (neat): $v_{\max } 2929 \mathrm{~m}, 2860 \mathrm{~m}, 1716 \mathrm{~s}(\mathrm{C}=\mathrm{O})$.
LC-MS: m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{BrO}+\mathrm{H}^{+}$: 209.04; found: 209.08.
Dimethyl 2-(2-oxooctan-3-yl) malonate 18

Dimethyl malonate ($487 \mu \mathrm{l}, 4.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(750 \mathrm{mg}, 13.4 \mathrm{mmol})$ were added to $17(1.5 \mathrm{~g}, 7.2 \mathrm{mmol})$ in acetone $(7.5 \mathrm{ml})$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried
$\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure. Purification by flash column chromatography (hexane/EtOAc) gave 18 ($755 \mathrm{mg}, 2.9 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.2-1.34\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}, \mathrm{H}_{8}\right), 1.52(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{5}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 3.34\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 11 \& 6 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{13}\right.$ or $\left.\mathrm{H}_{17}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{13}\right.$ or $\left.\mathrm{H}_{17}\right), 3.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11 \mathrm{~Hz}, \mathrm{H}_{10}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{HMQC}$ and HMBC used for assignments): $\delta 13.9\left(\mathrm{C}_{9}\right)$, $22.8\left(\mathrm{C}_{8}\right)$, $25.6\left(\mathrm{C}_{6}\right), 29.0\left(\mathrm{C}_{5}\right), 30.5\left(\mathrm{C}_{1}\right), 31.8\left(\mathrm{C}_{7}\right), 50.6\left(\mathrm{C}_{4}\right), 52.7\left(\mathrm{C}_{13}\right.$ and $\left.\mathrm{C}_{17}\right), 53.1\left(\mathrm{C}_{10}\right), 169\left(\mathrm{C}_{11}\right.$ and C_{15}), $209.9\left(\mathrm{C}_{2}\right)$.
IR (neat): $v_{\max } 2955 \mathrm{w}, 2862 \mathrm{w}$, 1735s (C=O), 1713 (C=O), 1265m, 1226m, 1151s (C-O).
LC-MS: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5}+\mathrm{Na}^{+}$: 281.1359; found: 281.1370.
Methyl 3-acetyloctanoate 19

Dimethyl ester 18 ($191 \mathrm{mg}, 0.74 \mathrm{mmol}$), $\mathrm{NaCl}(120 \mathrm{mg}, 2 \mathrm{mmol}, 2.7 \mathrm{eq}$.$) , and$ $\mathrm{H}_{2} \mathrm{O}\left(54 \mu \mathrm{l}, 3 \mathrm{mmol}, 4 \mathrm{eq}\right.$.) in DMSO (12 ml) were stirred at $160^{\circ} \mathrm{C}$ under a condenser for 16 h . The mixture was diluted with EtOAc (20 ml) and washed with water and brine. The aqueous phase was reextracted with EtOAc. The organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure, giving 19 ($110 \mathrm{mg}, 0.55 \mathrm{mmol}, 74 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 12 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.26\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{8}\right), 1.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{a}}\right), 1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~b}}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 2.35(1 \mathrm{H}, \mathrm{dd}, J 17$ \& $\left.4 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{a}}\right), 2.73\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17 \& 10 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{~b}}\right), 2.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{12}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{C}_{9}\right), 22.4\left(\mathrm{C}_{8}\right), 26.6\left(\mathrm{C}_{6}\right), 29.5\left(\mathrm{C}_{1}\right), 31.3\left(\mathrm{C}_{5}\right), 31.7\left(\mathrm{C}_{7}\right)$, $34.9\left(\mathrm{C}_{10}\right), 47.9\left(\mathrm{C}_{4}\right), 51.7\left(\mathrm{C}_{12}\right), 173.0\left(\mathrm{C}_{11}\right), 211.1\left(\mathrm{C}_{2}\right)$.

3-Acetyloctanoic acid 14

Methyl ester 19 ($110 \mathrm{mg}, 0.55 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 4: 1$ (4 ml) and $\mathrm{KOH}(270 \mathrm{mg}, 4.8 \mathrm{mmol})$ was added. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 4 h . Hydrochloric acid 1 M was added slowly until $\mathrm{pH}<2$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Analysis of the organic phase showed presence of DMSO from the previous step and unreacted $19(<10 \%) . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure and the mixture dissolved in NaHCO_{3} sat. and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous phase was then acidified by adding hydrochloric acid (1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was then dried, and the solvent removed under reduced pressure to give 14 ($100 \mathrm{mg}, 0.53 \mathrm{mmol}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.23-1.34\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{8}\right), 1.42$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{a}}\right) 1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~b}}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 2.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17 \& 4 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{a}}\right), 2.76(1 \mathrm{H}, \mathrm{dd}$, $\left.J 17 \& 10 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{~b}}\right), 2.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, HMQC used for assignments): $\delta 14.11\left(\mathrm{C}_{9}\right)$, $22.57\left(\mathrm{C}_{8}\right)$, $26.69\left(\mathrm{C}_{7}\right)$, $29.41\left(\mathrm{C}_{1}\right), 31.27\left(\mathrm{C}_{6}\right), 31.89\left(\mathrm{C}_{5}\right), 35.09\left(\mathrm{C}_{10}\right), 47.94\left(\mathrm{C}_{4}\right), 177.55\left(\mathrm{C}_{11}\right), 210.74\left(\mathrm{C}_{2}\right)$;
IR (neat): $v_{\max } 2958 \mathrm{~m}, 2928 \mathrm{~m}, 2861 \mathrm{~m}, 1707 \mathrm{~s}$ (C=O), 1374 (C-O carboxylic acid);
UV Absorbance: $\lambda_{\text {max }} 276 \mathrm{~nm}$.
LC/MS m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}-\mathrm{H}^{+}$: 185.12; found: 185.1.
S-(2-Acetamidoethyl) 3-acetyloctanethioate 13

Carboxylic acid 14 ($50 \mathrm{mg}, 0.27 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ and cooled on ice. EDC ($57 \mathrm{mg}, 0.36 \mathrm{mmol}$) and DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added and the mixture was stirred on ice for 15 min . N-Acetylcysteamine (36 $\mathrm{mg}, 0.3 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the mixture was allowed to reach r.t. and was stirred overnight. The solvent was removed under reduced pressure and the residue dissolved in CHCl_{3} (ca. 2 ml) and washed with hydrochloric
acid (0.1 M) and brine. The aqueous layers were reextracted with CHCl_{3}. The organic layers were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure. Purification by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$ gave 13 (13 mg, 16\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.27\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{8}\right), 1.43(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{5}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{18}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 2.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10 \mathrm{a}}\right), 3.04\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}, \mathrm{H}_{10 \mathrm{~b}}\right.$ and $\left.\mathrm{H}_{14}\right)$, $3.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{15}\right), 5.82(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, HMQC and HMBC used for assignments): $\delta 14.09\left(\mathrm{C}_{9}\right)$, $22.54\left(\mathrm{C}_{8}\right)$, $23.30\left(\mathrm{C}_{18}\right), 26.64\left(\mathrm{C}_{6}\right), 28.77\left(\mathrm{C}_{14}\right), 29.39\left(\mathrm{C}_{1}\right), 31.22\left(\mathrm{C}_{5}\right), 31.87\left(\mathrm{C}_{7}\right), 39.61\left(\mathrm{C}_{15}\right), 44.69\left(\mathrm{C}_{10}\right)$, $48.56\left(\mathrm{C}_{4}\right), 170.51\left(\mathrm{C}_{17}\right), 198.72\left(\mathrm{C}_{11}\right), 210.12\left(\mathrm{C}_{2}\right)$.
IR (neat): $v_{\max }$ 2948m, 2932m, 2854m, 1709s (C=O ketone), 1687s and 1657s (C=O amide and thioester), 1541 m (NH bend).
LC-MS: m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}^{+}$: 310,1447 ; found: 310,1456 .

3-Pentylpentane-1,4-diol 15

LiAlH_{4} (1 M in THF, $2.1 \mathrm{ml}, 2.1 \mathrm{mmol}$) was cooled to $0^{\circ} \mathrm{C}$. Acid $14(100 \mathrm{mg}$, 0.53 mmol) in THF (1.25 ml) was added dropwise and the mixture was then allowed to warm to r.t. and stirred overnight. $\mathrm{H}_{2} \mathrm{O}(75 \mu \mathrm{l}), \mathrm{NaOH}\left(15 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}$, $75 \mu \mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}(225 \mu \mathrm{l})$ were then added slowly at $0^{\circ} \mathrm{C}$. The cold bath was removed, and the mixture was stirred for a further 1 h . The mixture was diluted with THF, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give 15 ($80 \mathrm{mg}, 0.46 \mathrm{mmol}, 87 \%$) as a mixture of diastereoisomers.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.15$ and $1.21(3 \mathrm{H}, \mathrm{d}$, $\left.J 6 \mathrm{~Hz}, \mathrm{H}_{1}\right), 1.23-1.35\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{8}\right), 1.46\left(1 / 2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4 \mathrm{a}}\right), 1.5-1.58\left(1-2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10 \mathrm{aa} 1}\right)$, 1.6-1.68 (1 H, m, $\mathrm{H}_{10 \mathrm{aa} 2}$ and $\mathrm{H}_{4 \mathrm{~b}}$), 1.74-1.79 (1H, m, $\mathrm{H}_{10 \mathrm{~b}}$), $3.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{11 \mathrm{a}}\right)$, $3.77(1-2 \mathrm{H}, \mathrm{m}$, $\left.H_{11 b}, H_{2 a}\right), 3.9\left(m, 1-2 H, H_{2 b}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{C}_{9}\right), 18.5$ and $21.3\left(\mathrm{C}_{1}\right), 22.62\left(\mathrm{C}_{8}\right), 26.9$ and $27.4\left(\mathrm{C}_{5}\right)$, 30.8 and $31.0\left(\mathrm{C}_{6}\right), 32.1$ and $32.2\left(\mathrm{C}_{7}\right)$, 32.4 and $32.6\left(\mathrm{C}_{10}\right), 43.2$ and $43.3\left(\mathrm{C}_{4}\right), 60.6$ and 61.7 $\left(C_{11}\right), 70.1\left(C_{2}\right)$.
IR (neat): $v_{\max } 3306 b r(\mathrm{O}-\mathrm{H}), 2925 \mathrm{~s}$, 2857s, 1052s (C-O).

3-Acetyloctanal 4

Oxalyl chloride ($675 \mu \mathrm{l}, 7.8 \mathrm{mmol}$) was added dropwise to a stirred solution of DMSO ($755 \mu \mathrm{l}, 10.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ and then a solution of diol $15(300 \mathrm{mg}, 1.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was added dropwise. The mixture was stirred a further 10 min at $-78^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}$ was then added and the reaction was stirred at r.t. for 30 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Purification by flash column chromatography gave $5(250 \mathrm{mg}, 1.5 \mathrm{mmol}, 88 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{H}_{9}\right), 1.22\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{8}\right), 1.42(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{5 \mathrm{a}}\right), 1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5 \mathrm{~b}}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}\right), 2.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4 \& 18 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{a}}\right), 2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10$ \& $\left.18 \mathrm{~Hz}, \mathrm{H}_{10 \mathrm{~b}}\right), 3.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 9.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{13}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{HSQC}$ and HMBC used for assignments): $\delta 14.0\left(\mathrm{C}_{9}\right), 22.4\left(\mathrm{C}_{8}\right)$, $26.6\left(\mathrm{C}_{6}\right), 29.4\left(\mathrm{C}_{1}\right), 31.2\left(\mathrm{C}_{5}\right), 31.7\left(\mathrm{C}_{7}\right), 44.9\left(\mathrm{C}_{10}\right), 45.9\left(\mathrm{C}_{4}\right), 200.7\left(\mathrm{C}_{11}\right), 210.7\left(\mathrm{C}_{2}\right)$.
IR (neat): $v_{\max } 2957 \mathrm{~m}, 2958 \mathrm{~m}, 2857 \mathrm{~m}, 2750 \mathrm{w}$ (aldehyde C-H), 1713 (C=O).
LC-MS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{H}^{+}$: 171.1380 ; found: 171.1379

3-Bromooctan-2-one 17

Dimethyl 2-(2-oxooctan-3-yl) malonate 18

Methyl 3-acetyloctanoate 19

3-Acetyloctanoic acid 14

S-(2-Acetamidoethyl) 3-acetyloctanethioate 13

3-Pentylpentane-1,4-diol 15 (mixture of diastereoisomers)

3-Acetyloctanal 4

