Supplementary Data for

Site-specific modification and segmental isotope labelling of HMGN1 reveals long-range conformational perturbations caused by posttranslational modifications

Gerhard Niederacher¹, Debra Urwin², Yasmin Dijkwel,² David J. Tremethick², K. Johan Rosengren³, Christian F. W. Becker¹, and Anne C. Conibear^{3*}

¹ University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Straße 38, 1090 Vienna, Austria.

² The Australian National University, John Curtin School of Medical Research, Department of Genome Sciences, ACT 2601, Australia.

³ The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.

*Corresponding author:

Anne C. Conibear

The University of Queensland, School of Biomedical Sciences, St Lucia 4072, Brisbane, Australia.

E-mail: a.conibear@uq.edu.au

Phone: + 61-7-3365-1738

Table of Contents

- 1. DNA and protein sequences for recombinant protein constructs
- 2. Table of HMGN1 variants generated
- 3. Mass spectra and analytical HPLC data of HMGN1 variants
- 4. Structures, mass spectra and analytical HPLC data of synthetic N-terminal HMGN1 segments for ligation
- 5. Full SDS PAGE gels of protein expression
- 6. Full NMR spectra
- 7. Heteronuclear ¹H-¹⁵N NOE ratios
- 8. Backbone chemical shift assignments of unmodified HMGN1
- 9. Gels of nucleosome and DNA binding assays

1. Gene constructs and sequences

1.1 Full length HMGN1 (His₆-TEV-HMGN1)

DNA sequence:

CAT ATG CAC CAC CAC CAC CAC CAC GAA AAC CTG TAT TTT CAG AGC CCG AAA CGC AAA GTG TCC TCT GCC GAA GGA GCA GCG AAA GAA GAA GAA CCG AAA CGT CGC TCA GCT CGC TTA AGC GCG AAA CCA CCG GCG AAA GTT GAA GCGAAA CCG AAG AAA GCT GCA GCC AAA GAC AAG TCG AGC GAC AAG AAA GTC CAG ACC AAG GGC AAA CGTGGT GCC AAA GGC AAA CAA GCC GAA GTA GCG AAT CAG GAG ACT AAA GAG GAT CTG CCC GCA GAA AACGGG GAA ACG AAA ACC GAA GAG AGT CCT GCA TCG GAT GAA GCT GGT GAG AAG GAA GCG AAA AGC GAT TGA CTC GAG

Amino acid sequence:

MHHHHHHENLYFQSPKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDK SSDKKVQTKGKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD

1.2 His₆-TEV-HMGN1_11-99

DNA sequence:

CAT ATG CAT CAC CAT CAC CAC CAT GAA AAT CTG TAT TTT CAG TGT GCT AAA GAG GAG CCT AAG CGT CGT TCG GCT CGT TTG AGT GCTAAG CCT CCG GCT AAG GTG GAA GCT AAG CCT AAA AAG GCT GCG GCC AAA GAT AAA TCG TCT GAC AAA AAA GTA CAA ACG AAG GGA AAA CGT GGG GCC AAA GGT AAA CAG GCG GAA GTG GCTAAC CAG GAG ACC AAG GAG GAC CTT CCT GCG GAA AAC GGT GAG ACA AAG ACA GAA GAA AGT CCT GCA TCT GAT GAG GCA GGA GAG AAA GAG GCG AAA TCG GAT TGA CTC GAG

Amino acid sequence:

MHHHHHHENLYFQCAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK RGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD

1.3 HMGN1_1-65_Mxe_His7_CBD

DNA sequence (Mxe-HIS₇-CBD not included):

CAT ATG CCG AAA CGC AAA GTC AGC AGT GCA GAA GGT GCA GCG AAA GAG GAA CCG AAA CGC CGT TCT GCT CGC CTG TCA GCC AAA CCT CCA GCG AAA GTT GAG GCG AAA CCG AAG AAA GCA GCC GCC AAG GAC AAA TCG TCC GAT AAG AAG GTG CAG ACC AAA GGGAAA CGT GGC GCT AAA GGC AAA CAA GCG GAA GTA TGC ATC ACG GGA GAT GCA CTA GT PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGKRGA KGKQAEV(CITGDALVALPEGESVRIADIVPGARPNSDNAIDLKVLDRHGNPVLADRLFH SGEHPVYTVRTVEGLRVTGTANHPLLCLVDVAGVPTLLWKLIDEIKPGDYAVIQRSAFS VDCAGFARGKPEFAPTTYTVGVPGLVRFLEAHHRDPDAQAIADELTDGRFYYAKVASV TDAGVQPVYSLRVDTADHAFITNGFVSHATGLTGIHHHHHHHSGLNSGLTTNPGVSAW QVNTAYTAGQLVTYNGKTYKCLQPHTSLAGWEPSNVPALWQLQ)

2. Table of HMGN1 variants generated in this study

Name	MW	Sequence
	(Da)	
HMGN1_S0	10615.0	SPKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKG
		KRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_S0_1	10755.8	SPKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKG
5N		KRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_S0_1	11200.0	SPKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKG
5N13C		KRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_unm	10527.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
odN		RGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_unm	10652.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
odN_15N		RGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_acK2	10569.8	P K(ac) RKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQT
		KGKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_acK2	10694.9	PK(ac)RKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQT
_15N		KGKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_pS6	10607.8	PKRKV (pS) SAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTK
		GKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_pS6_	10732.8	PKRKV(pS)SAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTK
15N		GKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_acK2	10649.8	P K(ac) RKV (pS) SAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKV
_pS6		QTKGKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_acK2	10774.9	PK(ac)RKV(pS)SAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKV
_pS6_15N		QTKGKRGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_unm	10527.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
od_C		RGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_unm	10623.7	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
od_C_15N		RGAKGKQAEVANQETKEDLPAENGETKTEESPASDEAGEKEAKSD

HMGN1_pS85	10607.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
-		RGAKGKQAEVANQETKEDLPAENGETKTEE (pS) PASDEAGEKEAKSD
HMGN1_pS88	10607.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
		RGAKGKQAEVANQETKEDLPAENGETKTEESPA (pS) DEAGEKEAKSD
HMGN1_pS88	10703.6	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
_15N		RGAKGKQAEVANQETKEDLPAENGETKTEESPA (pS) DEAGEKEAKSD
HMGN1_pS85	10767.8	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
,88,98		RGAKGKQAEVANQETKEDLPAENGETKTEE(pS) PA(pS) DEAGEKEAK(pS) D
HMGN1_pS85	10863.6	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
,88,98_15N		RGAKGKQAEVANQETKEDLPAENGETKTEE(pS) PA(pS) DEAGEKEAK(pS) D
HMGN1_1-65	6810.0	PKRKVSSAEGAAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGK
		RGAKGKQAEV
HMGN1_11-	9487.6	AAKEEPKRRSARLSAKPPAKVEAKPKKAAAKDKSSDKKVQTKGKRGAKGKQAE
99		VANQETKEDLPAENGETKTEESPASDEAGEKEAKSD
HMGN1_65-	3767.8	CNQETKEDLPAENGETKTEESPASDEAGEKEAKSD
99		
HMGN1_65-	3847.8	CNQETKEDLPAENGETKTEESPA(pS)DEAGEKEAKSD
99_pS88		
HMGN1_65-	3847.8	CNQETKEDLPAENGETKTEE(pS)PASDEAGEKEAKSD
99_pS85		
HMGN1_65-	4007.8	CNQETKEDLPAENGETKTEE(pS)PA(pS)DEAGEKEAK(pS)D
99_pS85,88,98		
HMGN1_1-26	2838.3	PKRKVSSAEGAAKEEPKRRSARLSAK
HMGN1_1-	2960.3	PK(ac)RKV(pS)SAEGAAKEEPKRRSARLSAK
26_acK2,pS6		
Random	472.5	Ac-GGSPGG-NH ₂
coil_SP		
Random	551.5	Ac-GG(pS)PGG-NH ₂
coil_pSP		

 $\mathbf{K}(\mathbf{ac}) = N$ -acetyllysine, (**pS**) = phosphoserine, Ac = N-terminal acetylation

Residues in blue are 15 N-labelled, residues in green are 15 N/ 13 C-labelled.

3. Mass spectra and analytical HPLC analyses of HMGN1 variants

ESI mass spectra were obtained in positive ion mode and intensities are normalised to the highest intensity peak. Analytical RP-HPLC was carried out using a C4 analytical HPLC column and a 2%/min gradient of acetonitrile (0.045% TFA) in water (0.05% TFA). UV absorbance was detected at 214 nm (black traces) and 280 nm (red traces).

HMGN1_S0 (Yield after expression, purification, TEV cleavage and HPLC purification: ~ 1.1 mg/L of culture, 1.6 mg)

HMGN1_S0_15N (Yield after expression, purification, TEV cleavage and HPLC purification: ~ 1 mg/L of rich medium, 250 mL minimal medium, 1.2 mg)

HMGN1_S0_15N13C (Yield after expression, purification, TEV cleavage and HPLC purification: ~ 0.8 mg/L of rich medium, 250 mL minimal medium, 1.7 mg)

HMGN1_unmodN (Yield after ligation, desulfurisation and purification: ~ 59%, 3.2 mg for unlabelled; ~11%, 0.6 mg for 15 N-labelled)

HMGN1_acK2 (Yield after ligation, desulfurisation and purification: ~ 86%, 4.7 mg for unlabelled; ~9%, 0.5 mg for 15 N-labelled)

HMGN1_pS6 (Yield after ligation, desulfurisation and purification: ~ 60%, 3.3 mg for unlabelled; ~9%, 0.5 mg for 15 N-labelled)

HMGN1_unmod_C (Yield after ligation, desulfurisation and purification: ~ 21%, 1.0 mg for unlabelled; ~42%, 0.3 mg for ¹⁵N-labelled)

9

HMGN1_pS85 (Yield after ligation, desulfurisation and purification: ~ 12%, 0.6 mg for unlabelled)

HMGN1_pS88 (Yield after ligation, desulfurisation and purification: ~ 21%, 1.0 mg for unlabelled; ~13%, 0.4 mg for ¹⁵N-labelled)

HMGN1_1-64 (Yield from expression, purification, intein cleavage and HPLC purification: 5.7 mg/L culture for unlabelled; 0.6 mg/L of rich medium, 250 mL minimal medium for ¹⁵N-labelled $\sim 16\%$, 0.5 mg after hydrolysis and repurification, unlabelled)

11

HMGN1_11-99 (Yield from expression, purification, TEV cleavage and HPLC purification: 6.7 mg/L culture for unlabelled; 3.8 mg/L of rich medium, 250 mL minimal medium for ¹⁵N-labelled ~ 65%, 5.4 mg for desulfurisation and repurification, unlabelled)

HMGN1_65-99 (Yield: 22% after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

HMGN1_65-99_pS88 (Yield: 28% after HPLC purification, relative to calculated yield from synthesis scale of 0.1 mmol)

HMGN1_65-99_pS85 (Yield: 32% after HPLC purification, relative to calculated yield from synthesis scale of 0.1 mmol)

HMGN1_65-99_pS85,88,98 (Yield: 16% after HPLC purification, relative to calculated yield from synthesis scale of 0.1 mmol)

HMGN1_1-26 (Yield: 58% after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

HMGN1_1-26_acK2,pS6 (Yield: 55% after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

4. Chemical structures, mass spectra and analytical HPLC data for synthetic Nterminal HMGN1 hydrazide segments for ligation.

HMGN1_1-10-hydrazide (Yield: 54 % after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

HMGN1_1-10_acK2-hydrazide (Yield: 37% after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

HMGN1_1-10_pS6-hydrazide (Yield: 30% after HPLC purification, relative to calculated yield from synthesis scale of 0.05 mmol)

HMGN1_1-10_acK2,pS6-hydrazide (Yield: 17% after HPLC purification, relative to

calculated yield from synthesis scale of 0.05 mmol)

5. SDS PAGE gels

5.1 SDS PAGE gel (15%): Ligation and desulfurisation of HMGN1 bearing N-terminal PTMs

Lanes: 1 – marker; 2 – HMGN1_11-99_A11C before ligation; 3 – HMGN1_unmod_N ligation 4 h; 4 – HMGN1_acK2 ligation 4 h; 5 – HMGN1_pS6 ligation 4 h; 6 – HMGN1_acK2,pS6 ligation 4 h; 7 – HMGN1_unmod_N desulfurised; 8 – HMGN1_acK2 desulfurised; 9 – HMGN1_pS6 desulfurised; 10 - HMGN1_acK2,pS6 desulfurised.

5.2 SDS PAGE gel (15%): Intein cleavage of HMGN1_1-65_MxeHis7CBD.

Lanes: 1 – marker; 2 – HMGN1_1-64_MxeHis7_CBD; 3 – intein cleavage with 250 mM MesNa 0 h; 4 – intein cleavage with 250 mM MesNa 16 h. HMGN1_1-64_MxeHis7_CBD = 35.9 kDa; Cleaved Mxe intein = 29.1 kDa; HMGN1_1-64 thioester = 6.9 kDa.

5.3 SDS PAGE gel (15%): Ligation of HMGN1 bearing C-terminal PTMs.

Lanes: 1 – marker; 2 – HMGN1_unmod_C ligation 0 h; 3 – HMGN1_pS88 ligation 0 h; 4 – HMGN1_pS85,88,98 ligation 0 h; 5 – HMGN1_unmod_C ligation 16 h; 6 – HMGN1_pS88 ligation 16 h; 7 – HMGN1_pS85,88,98 ligation 16 h.

6. Full NMR spectra

6.1 ¹H-¹⁵N HSQC NMR spectrum of uniformly labelled, unmodified HMGN1 with residue assignments labelled using single-letter amino acid codes. Four low intensity peaks (marked with *) could not be assigned and are proposed to arise from minor conformations of residues around 75-79. The proposed residue types are $a^* = Gly$, $b^* = Gln/Glu$, $c^* = Asp$, $d^* = Ala$ and they are found in the 65-99 segment as they are not observed in the variants were only residues 1-64 are labelled.

6.2¹⁵N-HSQC spectra of HMGN1_1-99_15N13C (black), HMGN1_unmodN_15N (pink), HMGN1_acK2_15N (blue), HMGN1_pS6_15N (purple), and HMGN1_acK2,pS6_15N (green). Section shown in Figure 3b marked with a dashed box. Below is the section shown in Figure 3b with all residue labels.

6.3 ¹⁵N-HSQC spectra of HMGN1_1-99_15N13C (black), HMGN1_unmodN_15N (pink), HMGN1_acK2_15N (blue), HMGN1_pS6_15N (purple), and HMGN1_acK2,pS6_15N (green) acquired in 25 mM NaCl/25 mM KCl, corresponding to the salt concentrations in the electrophoretic gel mobility assay. Residues are labelled as in Figure 3b.

6.4 ¹⁵N-HSQC spectra of HMGN1_1-26 (black) and HMGN1_1-26_acK2,pS6 (blue). Section shown in Figure 3c marked with a dashed box.

6.5 ¹⁵N-HSQC spectra of HMGN1_1-99_15N13C (black), HMGN1_unmodC_15N (green), HMGN1_pS88_15N (purple), and HMGN1_pS85,88,98_15N (coral). Section shown in Figure 4b marked with a dashed box. Below is the section shown in Figure 4b with all residue labels.

6.6 ¹⁵N-HSQC spectra of HMGN1_65-99_A65C (black) and HMGN1_65-99_pS85,88,98_A65C (blue). Section shown in Figure 4c marked with a dashed box. Numbering is shown as (n+1) relative to the sequence numbering in Figure 4c.

6.7 ¹⁵N-HSQC spectra of HMGN1_65-99_A65C (black), HMGN1_65-99_pS88_A65C (turquoise), HMGN1_65-99_pS85_A65C (red) and HMGN1_65-99_pS85,88,98_A65C (blue). Numbering is shown as (n+1) relative to the sequence numbering in Figure 4c.

6.8 Structures of short model peptides containing Ser-Pro and pSer-Pro residues in their *cis*- and *trans*-conformations. ¹⁵N-HSQC spectra of Ser-Pro containing peptide (black) and pSer-Pro containing peptide (blue) showing shifts upon phosphorylation. Minor conformations corresponding to the *cis*-Pro population are visible as low intensity peaks.

7 Heteronuclear ¹H-¹⁵N NOE ratios

Figure S7.1. ¹H-¹⁵N heteronuclear NOE ratios for unmodified HMGN1 (HMGN1_S0_15N) and HMGN1_acK2,pS6_15N at 700 MHz and 900 MHz.

Figure S7.2. ¹H-¹⁵N heteronuclear NOE ratios for unmodified HMGN1 (HMGN1_S0_15N), HMGN1_unmodN_15N, HMGN1_pS6_15N and HMGN1_acK2,pS6_15N at 700 MHz.

Figure S7.3. ¹H-¹⁵N heteronuclear NOE ratios for unmodified HMGN1 (HMGN1_S0_15N), HMGN1_unmodC_15N, HMGN1_pS88_15N and HMGN1_acK2,pS6_15N at 700 MHz.

Residue	AA	NH	HN	CA	СВ	CO
0	S					
1	Р					
2	К	122.5	8.49	56.4	33.1	176.6
3	R	123.2	8.38	56.0	31.2	176.0
4	К	124.3	8.49	56.4	33.1	176.5
5	V	122.4	8.30	62.1	33.0	176.2
6	S	120.0	8.50	58.2	64.1	174.7
7	S	118.3	8.46	58.5	63.9	174.5
8	А	125.8	8.40	52.9	19.1	178.0
9	Е	120.0	8.31	57.0	30.2	177.3
10	G	109.8	8.38	45.4		174.0
11	А	123.8	8.07	52.5	19.3	177.7
12	А	123.2	8.25	52.5	19.1	177.8
13	К	120.7	8.24	56.3	33.2	176.5
14	Е	122.1	8.33	56.1	30.6	176.2
15	Е	124.5	8.51	54.7	29.7	174.7
16	Ρ					
17	К	120.9	8.43	56.6	32.8	177.0
18	R	122.0	8.29	56.3	30.8	176.5
19	R	122.7	8.44	56.5	30.8	176.5
20	S	117.0	8.37	58.5	63.8	174.5
21	А	126.4	8.37	52.8	19.3	177.8
22	R	120.1	8.26	56.4	30.7	176.5
23	L	123.4	8.26	55.2	42.3	177.4
24	S	116.6	8.24	58.2	63.9	174.0
25	А	126.1	8.25	52.3	19.4	177.3
26	К	122.3	8.28	54.1	32.5	174.1
27	Ρ					
28	Ρ					
29	А	124.4	8.36	52.3	19.3	177.7
30	К	121.4	8.32	56.2	33.2	176.4
31	V	123.0	8.26	62.2	33.0	176.0
32	Е	126.1	8.54	56.1	30.6	175.8
33	А	126.5	8.42	52.3	19.3	177.4
34	К	122.1	8.34	54.1	32.5	174.5
35	Ρ					
36	К	122.4	8.48	56.4	33.3	176.7
37	К	123.2	8.35	56.2	33.2	176.1
38	А	126.4	8.40	52.3	19.3	177.3

8.1 Backbone chemical shifts (ppm) of unmodified HMGN1

39	Α	124.1	8.34	52.2	19.4	177.5
40	А	123.9	8.32	52.5	19.3	177.9
41	К	120.6	8.33	56.4	33.1	176.4
42	D	121.4	8.32	54.3	41.4	176.4
43	К	122.2	8.38	56.5	32.9	177.1
44	S	117.1	8.45	59.1	63.8	175.0
45	S	117.4	8.33	58.7	63.8	174.4
46	D	122.5	8.25	54.6	41.1	176.3
47	К	121.5	8.18	56.4	32.9	176.7
48	К	122.4	8.29	56.4	32.9	176.7
49	V	121.5	8.14	62.4	32.8	176.2
50	Q	124.7	8.53	55.8	29.7	176.1
51	Т	116.4	8.28	62.0	69.9	174.5
52	К	124.0	8.43	56.6	33.1	177.0
53	G	110.2	8.46	45.2		174.0
54	К	122.5	8.27	56.3	33.1	176.9
55	R	122.7	8.51	56.4	30.8	176.9
56	G	110.5	8.50	45.2		173.9
57	А	123.9	8.19	52.5	19.5	177.9
58	К	120.5	8.41	56.5	33.1	177.2
59	G	109.9	8.40	45.3		174.2
60	К					
61	Q	121.5	8.46	56.1	29.4	175.8
62	А	124.9	8.33	52.7	19.3	177.7
63	Е	120.0	8.36	56.7	30.3	176.6
64	V	120.6	8.09	62.2	32.9	175.9
65	А	127.2	8.37	52.7	19.3	177.5
66	Ν	117.7	8.40	53.5	38.8	175.2
67	Q	120.3	8.35	56.1	29.5	176.0
68	Е	121.8	8.50	56.8	30.3	176.7
69	Т	115.8	8.23	61.8	69.9	174.4
70	К	124.1	8.41	56.3	33.1	176.4
71	Е	122.1	8.45	56.4	30.5	175.9
72	D	121.7	8.40	54.2	41.2	175.7
73	L	123.7	8.14	53.0	41.9	175.1
74	Ρ					
75	А	124.4	8.41	52.5	19.3	178.1
76	Е	120.3	8.47	56.6	30.2	176.4
77	Ν	119.5	8.51	53.4	39.1	175.8
78	G	109.2	8.41	45.5		174.2
79	Е	120.5	8.30	56.6	30.5	176.8
80	Т	116.4	8.29	62.1	69.8	174.4

81	К	124.9	8.47	56.1	33.2	176.6
82	Т	116.6	8.32	61.9	69.9	174.5
83	Е	123.4	8.52	56.4	30.5	176.2
84	Е	122.4	8.47	56.4	30.5	176.3
85	S	118.7	8.47	56.5	63.3	179.5
86	Р					
87	А	124.7	8.47	52.5	19.3	177.9
88	S	115.2	8.33	58.3	64.0	174.5
89	D	122.5	8.42	54.4	41.1	176.5
90	Е	121.2	8.33	56.9	30.1	176.6
91	А	124.5	8.31	53.0	19.2	178.4
92	G	107.8	8.28	45.4		174.3
93	Е	120.7	8.28	56.7	30.3	176.8
94	К	122.1	8.37	56.5	33.0	176.7
95	Е	121.8	8.37	56.5	30.3	176.1
96	А	125.7	8.33	52.4	19.2	177.5
97	К	121.4	8.33	56.2	33.4	176.5
98	S	118.2	8.46	58.2	64.2	173.4
99	D	127.9	8.06	55.8	42.1	173.8

8.2) Secondary Cβ chemical shift plot for unmodified HMGN1.

Secondary chemical shifts were calculated by subtraction of the respective random coil chemical shift from the observed chemical shift. Random coil chemical shifts were obtained from:

Wishart, D. S.; Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D., 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. *J. Biomol. NMR* **1995**, *5* (1), 67-81.

8.3) Secondary C' chemical shift plot for unmodified HMGN1.

Secondary chemical shifts were calculated by subtraction of the respective random coil chemical shift from the observed chemical shift. The secondary shift for reside D99 (marked with *) is - 2.52 ppm.

9. Nucleosome and DNA binding assay gels

S9.1: Electrophoretic mobility shift assays showing mononucleosome binding of full length HMGN1 and truncated versions used for ligation reactions. Position of nucleosomes bound by one HMGN1 molecule (+1 HMGN), and two HMGN1 molecules (+2 HMGN) are shown in relation to the unbound nucleosome. Binding reactions were separated on 5% TBE-acrylamide gels and then scanned for fluorescence.

S9.2: Electrophoretic mobility shift assays showing binding of full length, truncated and modified HMGN1 variants to 147 bp AlexaFluor488 labelled DNA containing the 601 nucleosome positioning sequence. Binding reactions were separated on 5% TBE-acrylamide gels and then scanned for fluorescence.

S9.3 Electrophoretic mobility shift assay showing titration of full length unmodified HMGN1 at varying ratios to nucleosome cores (50 nM) assembled on 147 bp AlexaFluor488 labelled DNA containing the 601 nucleosome positioning sequence. Binding reactions were separated on 5% TBE-acrylamide gels and then scanned for fluorescence.

S9.4 Representative native PAGE gel showing a dilution series of 147 bp DNA (left) and reconstituted nucleosomes (right) assembled from AF-488 labelled DNA and three different ratios of Cy3-labelled histone octamers. The nucleosomes showing a single sharp band were used for the electrophoretic gel mobility shift assays.