Generation of sn-1-glucosyl-glycerolphosphate hexamers: an influence of the glycerol stereochemistry from synthesis to antibody interaction.

Francesca Bernia, Liming Wanga, Ermioni Kalfopoulou ${ }^{\text {b }}$, D. Linh Nguyen ${ }^{\text {c }}$, Daan van der Es ${ }^{\text {a }}$, Herman S. Overkleeft ${ }^{\text {a }}$, Cornelis H. Hokke ${ }^{\text {c }}$, Johannes Huebner ${ }^{\text {b }}$, Gijsbert A. van der Marela ${ }^{\text {a }}$, Angela van Diepen ${ }^{\text {c }}$ and Jeroen D. C. Codée ${ }^{\mathrm{a} \star}$
aLeiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
${ }^{\text {b }}$ Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
${ }^{\text {c Department }}$ of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

Supporting information

Table of Contents
Experimental 2
Synthesis of acceptors 11-16 4
Glycosylation using TMSI/ $\mathrm{Ph}_{3} \mathrm{PO}$. 6
Synthesis of building block 7 from 21 9
Phospharamidite couplings 12
Final deprotections 27
Generation and serum analysis of microarray 30
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra 31

Experimental
 General

All chemicals (Acros, Fluka, Merck, Sigma-Aldrich, etc.) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 ($0.040-0.063 \mathrm{~mm}$). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol or with a solution of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O} 25 \mathrm{~g} / \mathrm{l}$ and $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} 10 \mathrm{~g} / \mathrm{l}$, in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ or with a solution of $\mathrm{KMnO}_{4}(2 \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \%)$ in water followed by charring at $+/-140{ }^{\circ} \mathrm{C}$. Optical rotation measurements $\left([\alpha]_{D}^{20}\right)$ were performed on a Propol automated polarimeter (Sodium D-line, $\lambda=589$ nm) with a concentration of $10 \mathrm{mg} / \mathrm{ml}(\mathrm{c}=1)$, unless stated otherwise and the reported value was calculated as the mean of 10 measurements. Infrared spectra were recorded on a Shimadzu FT-IR $8300 .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded with a Bruker AV 400 (400, 101 and 162 MHz respectively), a Bruker AV 500 (500, 125 and 202 MHz respectively) or a Bruker DMX 850 (850,214 and 344 MHz respectively). NMR spectra were recorded in CDCl_{3} with chemical shift (δ) relative to tetramethylsilane for both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$. When $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{CD}_{3} \mathrm{CN}$ were used, ${ }^{1} \mathrm{H}$-NMR were recorded with chemical shift (δ) relative to the proton of residual solvent (4.75 ppm and 1.94 ppm respectevely). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with chemical shift (δ) relative to TMS (external standard) in case of $\mathrm{D}_{2} \mathrm{O}$ and 1.32 ppm as residual solvent in $\mathrm{CD}_{3} \mathrm{CN}$.The ${ }^{31} \mathrm{P}$ - NMR spectra were recorded with chemical shift (δ) relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$. (external standard). High resolution mass spectra were recorded by direct injection ($2 \mu \mathrm{l}$ of a $2 \mu \mathrm{M}$ solution in water/acetonitrile; $50 / 50$; v / v and 0.1% formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV , sheath gas flow 10 , capillary temperature $250^{\circ} \mathrm{C}$) with resolution $\mathrm{R}=$ 60000 at $\mathrm{m} / \mathrm{z} 400$ (mass range $m / z=150-2000$) and dioctylphthalate ($\mathrm{m} / \mathrm{z}=391.28428$) as a lock mass. High resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

Synthesis of acceptors 11-16

Scheme S 1: Synthetic strategy for synthesis of acceptors 11-16. a) AllylBr, NaH, DMF 96\%; b) AcOH, $\mathrm{H}_{2} \mathrm{O}, 50^{\circ} \mathrm{C}, 300 \mathrm{mbar}$, quant; c) TBDPSCI, Imidazole, DMF, 82\% (11), 80\% (12); d) cat., PMBCI, KI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ACN}, 60^{\circ} \mathrm{C}$, quant (13), 96% (14); e) cat., BzCI, DIPEA, CAN, 98% (15), quant. (16).

Note: for experimental procedure and data analysis of steps (a) and (b) see J. Shin, D. H. Thompson, JOC, 2003, 68, 17, 6760-6766

(S)-1-O-allyl-3-O-(tert-butyldiphenylsilyl)-sn-glycerol (11)

Diol S1 (0.86 mmol) was diluted in DMF ($8.6 \mathrm{ml}, 0.1 \mathrm{M}$) and Imidazole (1 Oin mmol, 1.15 eq) and $\operatorname{TBDSCI}(0.86 \mathrm{mmol}, 1 \mathrm{eq})$ were added. After two hours TBDPSO OAllyl stirring at room temperature, TLC analysis (DCM:MeOH, 95:5) showed complete conversion of the starting material. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The aqueous phase was reextracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were washed once with brine, dried over $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, filtered and concentrated in vacuo. Compound 11 was isolated by column chromatography (Pentane:EtOAc, 9:1; $\mathrm{R}_{\mathrm{f}}: 0.31$) as transparent oil in 82% yield (0.71 mmol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: 7.70-7.62 (4H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.47-7.35\left(6 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.95-5.82\left(1 \mathrm{H}, \mathrm{H}_{\text {ally }}\right.$, m), 5.29-5.15 (2H, H_{2} allyl, m), 4.03-3.97 (2H, CH2_alyl, m), 3.95-3.86 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), $3.71(2 \mathrm{H}$, CH_{2} _glycerol, $\left.\mathrm{J}_{\mathrm{CH2} 2 \mathrm{CH}}=5.4 \mathrm{~Hz}, \mathrm{~d}\right), 3.58-3.44\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _glycerol, m$), 2.49\left(1 \mathrm{H}, \mathrm{OH}, \mathrm{J}_{\mathrm{OH}-\mathrm{CH}}=5.1 \mathrm{~Hz}, \mathrm{~d}\right), 1.06(9 \mathrm{H}$, $\mathrm{tBu}, \mathrm{s})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: $135.7\left(\mathrm{CH}_{\text {arom }}\right)$, $134.7\left(\mathrm{CH}_{\text {ally }}\right)$, $133.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.9\left(\mathrm{CH}_{\text {arom }}\right), 127.9$ $\left(\mathrm{CH}_{\text {arom }}\right)$, $117.3\left(\mathrm{CH}_{\text {ally }}\right), 72.5\left(\mathrm{CH}_{2 _ \text {_aly }}\right)$, $71.0\left(\mathrm{CH}_{2 \text { _lycerol }}\right)$, $70.9\left(\mathrm{CH}_{\text {glycerol }}\right)$, $64.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 27.0$ $\left(\mathrm{CH}_{3 _ \text {tBu }}\right), 18.9\left(\mathrm{C}_{\mathrm{q} _\mathrm{Bu}}\right)$.
($[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right)$: -4.1
HRMS: $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}^{+}$required 359.1856, found 359.1901.

(R)-1-O-(tert-butyldiphenyIsilyl)-3-O-allyl-sn-glycerol (12)

Starting with diol S2 (1.00 mmol), compound 12 was obtained following the
 procedure described for 11 in 80% yield (0.80 mmol).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.70-7.62\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.47-7.35\left(6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$, m), 5.95-5.82 ($1 \mathrm{H}, \mathrm{H}_{\text {ally }}, \mathrm{m}$), 5.29-5.15 ($2 \mathrm{H}, 2 \times \mathrm{H}_{\text {ally }}, \mathrm{m}$), 4.03-3.97 ($2 \mathrm{H}, \mathrm{CH}_{2 _ \text {allyl }}$, m), 3.95-3.86 (1 H , $\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.71\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _lycerol, $\left.\mathrm{J}_{\mathrm{CH} 2-\mathrm{CH}}=5.4 \mathrm{~Hz}, \mathrm{~d}\right), 3.58-3.44\left(2 \mathrm{H}, \mathrm{CH}_{2 \text { glycerol }}, \mathrm{m}\right), 2.49\left(1 \mathrm{H}, \mathrm{OH}, \mathrm{J}_{\mathrm{OH}}\right.$ $\mathrm{cн}=5.1 \mathrm{~Hz}, \mathrm{~d}), 1.06(9 \mathrm{H}, \mathrm{tBu}, \mathrm{s})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 135.7\left(\mathrm{CH}_{\text {arom }}\right)$, $134.7\left(\mathrm{CH}_{\text {ally }}\right)$, $133.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.9\left(\mathrm{CH}_{\text {arom }}\right)$, 127.9 $\left(\mathrm{CH}_{\text {arom }}\right)$, $117.3\left(\mathrm{CH}_{\text {ally }}\right), 72.5\left(\mathrm{CH}_{2 \text { _ally }}\right)$, $71.0\left(\mathrm{CH}_{2 \text { _alycerol }}\right), 70.9\left(\mathrm{CH}_{\text {glycerol }}\right)$, $64.9\left(\mathrm{CH}_{2 \text { _alycerol }}\right), 27.0$ $\left(\mathrm{CH}_{3 _ \text {ŁBu }}\right), 18.9\left(\mathrm{C}_{\text {q} _ \text {ви }}\right)$
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+3.5$

HRMS: $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}^{+}$required 359.1856 , found 359.1901.

(R)-1-O-allyl-3-O-(4-methoxybenzyl)-sn-glycerol (13)

MBO OAllyl under inert atmosphere in dry ACN ($2.5 \mathrm{~mL}, 0.4 \mathrm{M}$) and the flask was wrapped in aluminium foil. After 10 minutes stirring, $\mathrm{PMBCI}(1.10 \mathrm{mmol}, 1.1 \mathrm{eq})$ was dded followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(1.10 \mathrm{mmol}, 1.1 \mathrm{eq})$ and $\mathrm{KI}(1 \mathrm{mmol}, 1 \mathrm{eq})$. The reaction was heated to 60 and after stirring overnight TLC analysis (DCM:MeOH; 95:5) showed complete consumption of arting material. The reaction mixture was cooled to r.t., diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. The water layer was extract with EtOAc and the combined organic layers were washed with Brine, ried over MgSO 4 and concentrated in vacuo. The resulting crude was purified by column hromatography ($8: 2 \rightarrow 7: 3$ Pentane:EtOAc) yielding 13 as a colorless oil in quantitative yield (1.00 mol). C analysis: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc; 7:3) -NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), ס: 7.28-7.23 ($2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), 6.91-6.86 (2H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.96-5.84(1 \mathrm{H}$, ally, m), 5.31-5.15 (2H, H2_alyl, m), 4.49 (2H, CH CH_{2} PMB, s), 4.04-3.95 ($3 \mathrm{H}, \mathrm{CH}_{2}$ _alyl, $\mathrm{CH}_{\text {glycerol, }} \mathrm{m}$), 3.80 H, CH ${ }_{3}$ OMe,$\left.~ s\right), 3.57-3.43\left(4 \mathrm{H}, \mathrm{CH}_{2}\right.$ glycerol, m$), 2.46\left(1 \mathrm{H}, \mathrm{OH}, \mathrm{J}_{\mathrm{OH}-\mathrm{CH}}=4.2 \mathrm{~Hz}\right.$, d). C-NMR($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta: 134.5\left(\mathrm{CH}_{\text {ally }}\right)$, $130.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.4\left(\mathrm{CH}_{\text {arom }}\right), 117.3\left(\mathrm{CH}_{\text {ally }}\right), 113.9$ $\left.\mathrm{CH}_{\text {arom }}\right)$, $73.1\left(\mathrm{CH}_{2}\right.$ _PMB $), 72.3\left(\mathrm{CH}_{2}\right.$ _ally $), 71.3\left(\mathrm{CH}_{2}\right.$ _llycerol $), 71.04\left(\mathrm{CH}_{2}\right.$ _glycerol $), 69.6\left(\mathrm{CH}_{\text {2_alycerol }}\right), 55.3$ CH_{3} _оме). $]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):-7.1$

(S)-1-O-(4-methoxybenzyl)-3-O-allyl-sn-glycerol (14)

Starting from diol S2 (1.00), compound 14 was obtained as colorless oil in 96% yield (0.96 mmol) following the procedure described for compound 13.
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc; 7:3)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.28-7.23\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 6.91-6.86 $\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.96-5.84(1 \mathrm{H}$, $\left.\mathrm{H}_{\text {ally }}, \mathrm{m}\right)$, $5.31-5.15\left(2 \mathrm{H}, 2 \times \mathrm{H}_{\text {ally }}, \mathrm{m}\right), 4.49\left(2 \mathrm{H}, \mathrm{CH}_{2 _ \text {PMB }}, \mathrm{s}\right), 4.04-3.95\left(3 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl, $\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right)$, $3.80\left(2 \mathrm{H}, \mathrm{CH}_{3}\right.$ оме, s$), 3.57-3.43\left(4 \mathrm{H}, \mathrm{CH}_{2}\right.$ _glycerol, m$)$, $2.46(1 \mathrm{H}, \mathrm{OH}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{~d})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: $134.5\left(\mathrm{CH}_{\text {ally }}\right), 130.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4\left(\mathrm{CH}_{\text {arom }}\right), 117.3\left(\mathrm{CH}_{\text {alyy }}\right), 113.9$
 (CH_{3} оме).
$[\mathrm{a}]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+7.5$
HRMS: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{Na}^{+}$required 275.1254 , found 275.1259

(R)-1-O-allyl-3-O-benzoyl-sn-glycerol (15)

$\underbrace{\text { BzO }} \quad$| Diol S1 (10 mmol) was coevaporated with toluene three times and dissolved |
| :--- |
| under inert atmosphere in dry ACN $(25 \mathrm{~mL}, 0.4 \mathrm{M})$. The flask was wrapped in |
| aluminium foil and after ten minutes stirring, BzCl $(11 \mathrm{mmol}, 1.1$ eq), DiPEA (12 | $\mathrm{mmol}, 1.2 \mathrm{eq}$) and 2-Aminoethyl diphenylborinate ($0.1 \mathrm{mmol}, 0.01 \mathrm{eq}$) were subsequently added. The reaction was left to stir at room temperature and after 2h TLC analysis (DCM:MeOH; 95:5) showed complete consumption of starting material. The reaction mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. The water layer was reextracted with EtOAc and the combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The resulting crude was purified by column chromatography ($85: 15 \rightarrow 7: 3$, pentane:EtOAc) yielding 15 in 98% yield (9.8 mmol).

TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc; 75:25)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, δ : 8.09-8.03 (2H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.61-7.55\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.49-7.41(2 \mathrm{H}$, $\left.H_{\text {arom }}, \mathrm{m}\right), 5.97-5.85\left(1 \mathrm{H}, \mathrm{H}_{\text {ally }}, \mathrm{m}\right), 5.33-5.18\left(2 \mathrm{H}, \mathrm{H}_{2}\right.$ ally, m$), 4.48-4.36\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _alycerol, m), 4.22-4.11 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 4.08-4.03 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _ally, m), $3.65-3.53\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _alycerol, m$)$, 2.64-2.56 ($1 \mathrm{H}, \mathrm{OH}, \mathrm{bs}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ठ: $166.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.2\left(\mathrm{CH}_{\text {ally }}\right)$, $133.2\left(\mathrm{CH}_{\text {arom }}\right)$, $129.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.7\left(\mathrm{CH}_{\text {arom }}\right)$, $128.4\left(\mathrm{CH}_{\text {arom }}\right)$, $117.6\left(\mathrm{CH}_{\text {ally }}\right)$, $72.5\left(\mathrm{CH}_{2}\right.$ _ally $), 710.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 69.0\left(\mathrm{CH}_{\text {glycerol }}\right), 66.0\left(\mathrm{CH}_{2}\right.$ _glycerol $)$. $[\mathrm{a}]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):-5.6$

HRMS: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}+\mathrm{Na}^{+}$required 259.0941, found 259.1002

(S)-1-O-benzoyl-3-O-allyl-sn-glycerol (16)

Starting from diol S2 (1 mmol), compound 16 was obtained as colourless oil in quantitative yield (1.00 mmol), following the procedure described for compound 15.

TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc; 75:25)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: 8.09-8.03 (2H, Harom, m), 7.61-7.55 (1H, Harom, m), 7.49-7.41 (2H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.97-5.85\left(1 \mathrm{H}, \mathrm{H}_{\text {allyl }}, \mathrm{m}\right), 5.33-5.18\left(2 \mathrm{H}, 2 \times \mathrm{H}_{\text {ally }}, \mathrm{m}\right), 4.48-4.36\left(2 \mathrm{H}, \mathrm{CH}_{2 \text { glycerol }}, \mathrm{m}\right), 4.22-$
$4.11\left(1 \mathrm{H}, \mathrm{CH}_{\text {glycerol, }}, \mathrm{m}\right), 4.08-4.03\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl, m$), 3.65-3.53\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _glycerol, m$), 2.64-2.56(1 \mathrm{H}, \mathrm{OH}$, bs).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 166.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.2\left(\mathrm{CH}_{\text {ally }}\right)$, $133.2\left(\mathrm{CH}_{\text {arom }}\right)$, $129.9\left(\mathrm{C}_{\text {q_arom }}\right)$, 129.7
$\left(\mathrm{CH}_{\text {arom }}\right), 128.4\left(\mathrm{CH}_{\text {arom }}\right), 117.6\left(\mathrm{CH}_{\text {ally }}\right), 72.5\left(\mathrm{CH}_{2}\right.$ _ally 1$), 710.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 69.0\left(\mathrm{CH}_{\text {glycerol }}\right), 66.0$
(CH_{2} glycerol).
$[\mathrm{a}]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+4.7$
HRMS: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}+\mathrm{Na}^{+}$required 259.0941, found 259.0993

Glycosylation using TMSI/Ph3 ${ }^{2}$.

General procedure

Donor (1 eq) and acceptor (0.75 eq) were co-evaporated three times with toluene. Under argon atmosphere, they were dissolved in dry DCM (0.1 M) and after 10 minutes stirring $\mathrm{Ph}_{3} \mathrm{PO}(6 \mathrm{eq})$ was added, followed by slow addition of TMSI (1 eq). The reaction mixture was allowed to stir at r.t. overnight. The reaction mixture was diluted with DCM, washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was subjected to size exclusion gel chromatography (DCM:MeOH=1:1, for purification of the final product obtained as mixture of anomers (unless otherwise stated). The ratio α / β was calculated by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

(S)-1-O-allyl-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O-(tert-butyldiphenylsilyl-sn-

 glycerol (17)

On a scale of 0.10 mmol of donor 10, following the general procedure, compound 17 was obtained in 72% yield (0.072 mmol) as colourless syrup in a α / β mixture (1.5:1).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.48$ (Pentane:EtOAc; 9:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{a}): 7.68-7.64$ (4H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 7.47-7.07 ($26 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), 5.94-5.81 ($1 \mathrm{H}, \mathrm{H}_{\text {allyl }}, \mathrm{m}$), 5.33-5.07 (3H, $2 \times \mathrm{H}_{\text {ally }}, \mathrm{H}_{1} \mathrm{~m}$), 5.02-4.90 (1H, CHH $\left.\mathrm{Bn}^{2}, \mathrm{~m}\right), 4.84-4.62\left(2 \mathrm{H}, 3 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.68-4.43(4 \mathrm{H}, 4$ $\left.x \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.12-4.05\left(1 \mathrm{H}, \mathrm{H}_{5}, \mathrm{~m}\right), 4.01-3.86\left(4 \mathrm{H}, \mathrm{H}_{3}, \mathrm{CH}_{\text {glycerol, }}, \mathrm{CH}_{2}\right.$ _ally, m), 3.82-3.50 ($8 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ glycerol, $2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}$), 1.08 ($9 \mathrm{H}, \mathrm{tBu}, \mathrm{s}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{\alpha}): 139.1,138.6,138.2\left(\mathrm{C}_{q}\right), 135.7,135.7\left(\mathrm{CH}_{\text {arom }}\right), 134.9\left(\mathrm{CH}_{\text {ally }}\right)$), $133.1\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.9, 128.5, 128.1, 127.9, 127.8, 127.7 ($\left.\mathrm{CH}_{\text {arom }}\right)$, $116.7\left(\mathrm{CH}_{2}\right.$ ally $)$, $96.2\left(\mathrm{C}_{1}\right), 82.1\left(\mathrm{C}_{3}\right)$, $79.9\left(\mathrm{C}_{2}\right), 77.8\left(\mathrm{C}_{4}\right), 77.3\left(\mathrm{CH}_{\text {glycerol }}\right.$), $75.8,75.1,73.6,73.0\left(\mathrm{CH}_{2}\right.$ _вn $), 72.2\left(\mathrm{CH}_{2}\right.$ Ally $), 70.4\left(\mathrm{C}_{6}\right), 70.2$ $\left(\mathrm{C}_{5}\right)$, 68.8, $63.2\left(\mathrm{CH}_{2}\right.$ _glycerol), $27.0\left(\mathrm{CH}_{3-1 \mathrm{Bu}}\right)$, $19.4\left(\mathrm{C}_{\mathrm{q}}\right)$.
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+26.3$
HRMS: $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}+\mathrm{Na}^{+}$required 915.4263 , found 915.4265
(R)-1-O-(tert-butyldiphenyIsilyl)-2-O-(2,3,4,6-O-benzyl- $\alpha-D-g l u c o p y r a n o s y l)-3-O-a l l y l-s n-~$ glycerol (18)

On a scale of 0.1 mmol of donor 10, following the general procedure described above, compound 18 was isolated as colourless oil in a mixture of α / β anomers ($>10: 1$) in 68% yield (0.068 mmol).
Analytical data in accordance with the one reported in: W. F. J. Hogendorf, L. J. van den Bos, H. S. Overkleeft, J. D. C. Codee, G. A. van der Marel, Bioorg, Med. Chem., 2010, 18, 3668-3678.
 (19)

On a scale of 0.1 mmol of donor $\mathbf{1 0}$, following the general procedure, compound 19 was obtained in 65% yield (0.065 mmol) as colourless syrup in a α / β mixture ($>10: 1$).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.34$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{a}): 7.42-7.22\left(20 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.203-7.12(2 \mathrm{H}$,
$\left.H_{\text {arom }}, m\right)$, 6.90-6.84 (2H, $\left.\mathrm{H}_{\text {arom, }} \mathrm{m}\right), 5.94-5.81\left(1 \mathrm{H}, \mathrm{H}_{\text {allyl }}, \mathrm{m}\right), 5.30-5.12(3 \mathrm{H}, 2$ $\left.x^{\prime} \mathrm{H}_{\text {ally, }}, \mathrm{H}_{1}, \mathrm{~m}\right), 5.01\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{J}=10.9 \mathrm{~Hz}, \mathrm{~d}\right), 4.88-4.78\left(2 \mathrm{H}, 2 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right)$, 4.71-4.61 $(3 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Bn}}, \mathrm{m}\right)$ 4.54-4.45 ($\left.4 \mathrm{H}, 4 \times \mathrm{CH}_{\mathrm{Bn}}, \mathrm{m}\right)$, 4.17-4.08 $\left(1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right)$, 4.07-3.93 $\left(4 \mathrm{H}, \mathrm{H}_{5}, \mathrm{H}_{3}\right.$,
 3.72-3.51 ($7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{CH}_{2}$ glycerol, $2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\alpha): 139.0,138.5,138.2,138.0\left(\mathrm{C}_{\mathrm{q}}\right), 134.7\left(\mathrm{CH}_{\text {ally }}\right), 130.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.2$, $128.3,128.0 \times 2,127.9 \times 2,127.7,127.6 \times 2,127.5\left(\mathrm{CH}_{\text {arom }}\right), 117.0\left(\mathrm{CH}_{2}\right.$ _ally $)$, $96.2\left(\mathrm{C}_{1}\right), 81.9\left(\mathrm{C}_{3}\right)$, $79.5\left(\mathrm{C}_{2}\right)$, $77.7\left(\mathrm{C}_{4}\right), 75.7,75.0\left(\mathrm{CH}_{2}\right.$ _вn $), 74.7\left(\mathrm{CH}_{\text {glycerol }}\right), 73.5,73.0,72.3\left(\mathrm{CH}_{2 _ \text {_n }}\right), 72.2 \times 2\left(\mathrm{CH}_{2}\right.$ _Allyl CH_{2} _вn $), 70.4\left(\mathrm{CH}_{2}\right.$ _glycerol), $70.2\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 55.3\left(\mathrm{CH}_{3}\right.$ _оме $)$
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+31.2$
HRMS: $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{9}+\mathrm{Na}^{+}$required 9797.3660, found 797.3667

(S)-1-O-(4-methoxybenzyl)-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O-allyl-sn-glycerol (20)

On a scale of 0.1 mmol of donor $\mathbf{1 0}$, following the general procedure, compound 20 was obtained in 66% (0.066 mmol) yield as colourless syrup in a α / β mixture (9:1).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.34$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\alpha): 7.39-7.16\left(20 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.15-7.08(2 \mathrm{H}$,
$\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 6.80-6.73 (2H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.93-5.81\left(1 \mathrm{H}, \mathrm{H}_{\text {allyl }}, \mathrm{m}\right), 5.29-5.11(3 \mathrm{H}, 2$
$\left.x^{\text {x }}{ }_{\text {alyly }}, \mathrm{H}_{1}, \mathrm{~m}\right), 4.98\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~d}\right), 4.84-4.77\left(2 \mathrm{H}, 2 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.74\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}\right.$, $\mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~d}), 4.69\left(1 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~d}\right), 4.57\left(1 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{~d}\right), 4.48-4.34(4 \mathrm{H}, 4 \mathrm{x}$ $\left.\mathrm{CH}_{\text {Bn }}, \mathrm{m}\right)$, 4.12-3.94 (5H, $\mathrm{CH}_{\text {glycerol }}, \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{CH}_{2}$ ally, m), 3.79-3.71 (4H, $\mathrm{CH}_{\text {glycerol }}, \mathrm{CH}_{3}$ _оме, s$)$, 3.67$3.51\left(6 \mathrm{H}, 2 \times \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}\right), 3,45\left(1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{J}_{\text {Снн-снн }}=10.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH}}\right.$.-СH $=2,1 \mathrm{~Hz}$, dd),
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\alpha): 139.1,138.7,138.5,138.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.8\left(\mathrm{CH}_{\text {ally }}\right)$, $130.4\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.6, $128.5 \times 3,128.2,128.1,128.0,127.8 \times 2,127.7,127.6\left(\mathrm{CH}_{\text {arom }}\right), 117.1\left(\mathrm{CH}_{2}\right.$ ally $)$, $113.8\left(\mathrm{CH}_{\text {arom }}\right)$, $96.3\left(\mathrm{C}_{1}\right), 82.1\left(\mathrm{C}_{3}\right), 79.8\left(\mathrm{C}_{2}\right), 77.8\left(\mathrm{C}_{4}\right), 75.8,75.1\left(\mathrm{CH}_{2}\right.$ _вn $), 74.8\left(\mathrm{CH}_{\text {glycerol }}\right), 73.6,73.1,72.6$ $\left(\mathrm{CH}_{2 _ \text {_nn }}\right), 72.5\left(\mathrm{CH}_{2}\right.$ _Ally $), 70.8,70.3\left(\mathrm{CH}_{2}\right.$ glycerol) , $70.2\left(\mathrm{C}_{5}\right), 69.6\left(\mathrm{C}_{6}\right), 55.4\left(\mathrm{CH}_{3}\right.$ _оме $)$
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+19.4$
HRMS: $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{9}+\mathrm{Na}^{+}$required 797.3660 , found 797.3664
(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-3-O-benzoyl-sn-glycerol (21)

On a scale of 15 mmol of donor 10, following the general procedure and leaving the reaction stirring for 3 days, compound 21 was obtained in 86% yield (12.9 mmol) as colourless syrup (no presence of β anomer was detected).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.31$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\alpha): 8.05-8.00\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.57-7.52(1 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.43-7.23\left(15 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.18\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{s}\right), 7.15-7.10\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.90-5.79(1 \mathrm{H}$, $\left.H_{\text {allyl }}, \mathrm{m}\right), 5.28-5.12\left(3 \mathrm{H}, 2 \times \mathrm{Hally}\right.$, $\left.\mathrm{H}_{1}, \mathrm{~m}\right), 4.95\left(1 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~d}\right), 4.86-4.76\left(2 \mathrm{H}, 2 \times \mathrm{CH}_{\mathrm{Bn}}\right.$, m), 4.65-4.58 ($3 \mathrm{H}, 3 \times \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{m}$), 4.54 ($1 \mathrm{H}, \mathrm{CHH}_{\text {glyceral }}$, Ј.нн-снн $=10.8 \mathrm{~Hz}$, $\mathrm{J}_{\text {Снн-сн }}=4.03 \mathrm{~Hz}$, dd), 4.50-4.40 (3H, $\left.2 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{CHH}_{\text {glycerol }}, \mathrm{m}\right)$, 4.28-4.19 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 4.04-3.94 (4H, $\mathrm{H}_{5}, \mathrm{H}_{3}$, CH_{2} _ally, m), 3.78-3.55 ($6 \mathrm{H}, \mathrm{CH}_{2}$ _alycerol, $2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\alpha): 166.5\left(\mathrm{C}_{\mathrm{q}}\right), 139.0,138.5,138.1,138.0\left(\mathrm{C}_{q}\right), 134.5\left(\mathrm{CH}_{\text {ally }}\right), 133.2$ $\left(\mathrm{CH}_{\text {arom }}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.8,128.7,128.6,128.5,128.4,128.0 \times 2,127.9,127.8 \times 2,127.7,127.1$ $\left(\mathrm{CH}_{\text {arom }}\right.$, $117.4\left(\mathrm{CH}_{2}\right.$ _aly 1), $96.4\left(\mathrm{C}_{1}\right), 82.0\left(\mathrm{C}_{3}\right)$, $79.8\left(\mathrm{C}_{2}\right), 77.7\left(\mathrm{C}_{4}\right), 75.7,75.2\left(\mathrm{CH}_{2}\right.$ _Bn $), 73.9$ $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.7,72.9\left(\mathrm{CH}_{2}\right.$ _Bn $), 72.4\left(\mathrm{CH}_{2}\right.$ _Aly $)$, $70.6\left(\mathrm{C}_{5}\right), 70.0\left(\mathrm{C}_{6}\right), 68.6,64.7\left(\mathrm{CH}_{2}\right.$ _glycerol) . $[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+22.4$
HRMS: $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{O}_{9}+\mathrm{Na}^{+}$required 781.3347 , found 781.3354
(S)-1-O-benzoyl-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O-allyl-sn-glycerol (22)

On a scale of 0.1 mmol of donor $\mathbf{1 0}$, following the general procedure, compound 22 was obtained in 70% yield (0.070 mmol) as colourless syrup in a α / β mixture ($6: 1$).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.31$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\alpha): 8.02-7.97\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.53-7.47(1 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.39-7.17\left(20 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 7.11-7.03 (2H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.94-5.81(1 \mathrm{H}$, $\left.H_{\text {ally }}, \mathrm{m}\right), 5.31-5.15\left(3 \mathrm{H}, 2 \times \mathrm{H}_{\text {allyl }}, \mathrm{H}_{1}, \mathrm{~m}\right), 4.97\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{J}=10.8 \mathrm{~Hz}, \mathrm{~d}\right), 4.84-4.76\left(2 \mathrm{H}, 2 \times \mathrm{CHH}_{\mathrm{Bn}}\right.$, $\mathrm{m}), 4.73\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{J}=2.9 \mathrm{~Hz}\right.$, d) 4.58-4.49 (2H, CHH $\left.{ }_{\mathrm{Bn}}, \mathrm{CHH}_{\text {glycerol }}, \mathrm{m}\right), 4.44-4.34\left(2 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}\right.$, $\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 4.28\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{~d}\right), 4.26-4.20\left(1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 4.05-3.94\left(4 \mathrm{H}, \mathrm{H}_{5}, \mathrm{H}_{3}\right.$, $\left.\mathrm{CH}_{2 _a l y}, \mathrm{~m}\right), 3.71-3.53\left(4 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}\right) .3 .49\left(1 \mathrm{H}, \mathrm{CHH}_{\text {glycerol }}\right.$, $\mathrm{J}_{\text {снн-снн }}=10.6 \mathrm{~Hz}$, $\mathrm{J}_{\text {снн-сн }}=3.1$ $\mathrm{Hz}, \mathrm{dd}), 3.34\left(1 \mathrm{H}, \mathrm{CHH}_{\text {glycerol, }}\right.$, Јснн-сн=2.1 Hz, dd).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta(\mathrm{a}): 166.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.0,138.5,138.4,137.9\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{CH}_{\text {ally }}\right)$, 133.1 () $\left.\mathrm{CH}_{\text {arom }}\right), 130.0\left(\mathrm{C}_{q}\right), 129.8,128.6 \times 2,128.5 \times 2,128.4,128.2,128.1,128.0 \times 2,127.8,127.7 \times 2$, $\left(\mathrm{CH}_{\text {arom }}\right), 117.4\left(\mathrm{CH}_{2 \text { _ally }}\right), 96.3\left(\mathrm{C}_{1}\right), 82.0\left(\mathrm{C}_{3}\right), 79.7\left(\mathrm{C}_{2}\right), 77.6\left(\mathrm{C}_{4}\right), 75.8,75.1\left(\mathrm{CH}_{2} \mathrm{Brn}^{2}\right), 73.8$ $\left(\mathrm{CH}_{\text {glycerol) }}\right)$, $73.6,72.8\left(\mathrm{CH}_{2}\right.$ _Bn $), 72.5\left(\mathrm{CH}_{2 \text { _Aly }}\right)$, $70.5\left(\mathrm{C}_{5}\right)$, $69.8\left(\mathrm{C}_{6}\right), 68.2,65.2\left(\mathrm{CH}_{2}\right.$ _glycerol) . $[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+35.6$
HRMS: $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{O}_{9}+\mathrm{Na}^{+}$requires 781.3347 , found 781.3357

Synthesis of building block 7 from 21

21

S3

S4

Scheme S2: Synthetic strategy towards compound 7. a) Na(s), MeOH, quant.; b) DMTrCI, TEA, DCM, 88\%; c) (i) Ir(COD)(PPh $\left.{ }_{2} \mathrm{Me}_{2}\right)_{2} \mathrm{PF}_{6}, \mathrm{H}_{2}$, THF; (ii) $\mathrm{NaHCO}_{3(\text { (aq) }} \mathrm{I}_{2}$, THF, 92%; d) 2-cianoethyl-N,N-diisopropylchlorophosphoramidite, TEA, DCM, 70%.
(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-sn-glycerol (S3)

Compound 21 (12 mmol) was dissolved in dry $\mathrm{MeOH}(60 \mathrm{~mL}, 0,2 \mathrm{M}$) and a piece of $\mathrm{Na}_{(\mathrm{s})}$ was added. The reaction was stirred for 1 hour, until TLC analysis (Pentane:EtOAc, 8:2) showed complete consumption of the starting material. The reaction mixture was neutralized by addition of Amberlite IR-120 (H^{+}form), filtered and concentrated in vacuo. The product was obtained quantitatively (12 mmol) and used directly in the subsequent step without further purification.
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.32$ (Pentane:EtOAc; 7:3)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, ס: 7.41-7.20 (18H, Harom, m), 7.19-7.07 (2H, Harom, m), 5.90-5.75 (1H, $\left.H_{\text {ally }}, \mathrm{m}\right), 5.22\left(1 \mathrm{H}, \mathrm{CH} H_{\text {allyl }}, \mathrm{J}=17.3,1.7 \mathrm{~Hz}\right.$, dd), $5.14\left(1 \mathrm{H}, \mathrm{CH} H_{\text {allyl }}, \mathrm{J}=10.4,1.8 \mathrm{~Hz}\right.$, dd), 4.98-4.89 $\left(2 \mathrm{H}, \mathrm{H}_{1}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.89-4.75\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.67\left(1 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{~d}\right), 4.60(1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{Bn}}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{~d}\right), 4.52-4.41\left(2 \mathrm{H}, 2 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right)$, $4.05-3.87\left(4 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{5}, \mathrm{CH}_{2 \text {-Ally }}, \mathrm{m}\right)$, 3.87-3.78 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 3.77-3.38 ($8 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, 2 \times \mathrm{CH}_{2}$ _glycerol m), 3.17-3.04 ($1 \mathrm{H}, \mathrm{OH}$, bs). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta: 138.8,138.3,138.0,137.7\left(\mathrm{C}_{\mathrm{q}}\right), 134.6\left(\mathrm{CH}_{\text {ally }}\right), 128.7,128.5 \times 3$, $128.4 \times 2,128.3,128.2,128.1 \times 2,128.0 \times 2,127.9,127.8 \times 2,127.7\left(\mathrm{CH}_{\text {arom }}\right), 117.3\left(\mathrm{CH}_{2}\right.$ _ally $), 98.8$ $\left(\mathrm{C}_{1}\right), 82.4\left(\mathrm{C}_{3}\right), 79.9\left(\mathrm{C}_{2}, \mathrm{CH}_{\text {glycerol }}\right), 77.9\left(\mathrm{C}_{4}\right), 75.7,75.2,74.2,73.6\left(\mathrm{CH}_{2}\right.$ _Bn $), 72.4\left(\mathrm{CH}_{2}\right.$ _Aly) $), 70.8$ $\left(\mathrm{C}_{5}\right), 70.3\left(\mathrm{C}_{6}\right), 68.5,63.0\left(\mathrm{CH}_{2}\right.$ _lycerol) .
$[a]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+26.7$
HRMS: $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{O}_{8}+\mathrm{H}^{+}$required 655.3265 , found 655.3271
(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S4)
 layer were dried with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, filtered and concentrated in vacuo. Compound S 4 was isolated in 88% yield (10.6 mmol) after column chromatography (Pentane:EtOAc:Et ${ }_{3} N, 97: 2: 1 \rightarrow 80: 19: 1$).
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.31$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.47-7.38\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 7.37-7.04\left(27 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 6.84-6.73(4 \mathrm{H}$, $\left.H_{\text {arom }}, \mathrm{m}\right), 5.90-5.73\left(1 \mathrm{H}, \mathrm{H}_{\text {allyl }}, \mathrm{m}\right), 5.36-5.06\left(3 \mathrm{H}, 2 \times \mathrm{H}_{\text {allyl }}, \mathrm{H}_{1}, \mathrm{~m}\right), 4.95\left(1 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{J}=10.7 \mathrm{~Hz}, \mathrm{~d}\right)$, 4.86-4.73 (2H, $\left.2 \times \mathrm{CH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.64(1 \mathrm{H}, \mathrm{CH}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{~d}) 4.58-4.53\left(2 \mathrm{H}, \mathrm{CH} H_{\mathrm{Bn}}, \mathrm{m}\right), 4.51-4.41$ $\left(2 \mathrm{H}, 2 \times \mathrm{CH}_{\mathrm{Bn}}, \mathrm{m}\right), 4.19-4.01\left(2 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{H}_{5}, \mathrm{~m}\right), 4.01-3.86\left(3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{CH}_{2 _ \text {allyl }}, \mathrm{m}\right), 3.81-3.43(12 \mathrm{H}$, $2 \times \mathrm{CH}_{3}$ ОМме $, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}$ _glycerol, m$) .3 .25\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _glycerol, $\mathrm{J}_{\mathrm{CHH}-\mathrm{CH}}=5.7 \mathrm{~Hz}$, dd).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 159.6,146.2,140.1,139.8,139.6,139.5,137.0 \times 2\left(\mathrm{C}_{\mathrm{q}}\right), 136.1$ $\left(\mathrm{CH}_{\text {allyl }}\right), 131.0,130.0,129.3 \times 2,129.2 \times 3,129.0,128.9 \times 2,128.8 \times 4,128.4 \times 2,127.8\left(\mathrm{CH}_{\text {arom }}\right)$, $118.3\left(\mathrm{CH}_{2 \text { _ally }}\right)$, $114.0\left(\mathrm{CH}_{\text {arom }}\right)$, $97.0\left(\mathrm{C}_{1}\right)$, $82.5\left(\mathrm{C}_{3}\right), 81.0\left(\mathrm{C}_{2}\right), 78.9\left(\mathrm{C}_{4}\right), 76.8\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.09, $75.5,73.9,72.9\left(\mathrm{CH}_{2}\right.$ _Bn $), 72.6\left(\mathrm{CH}_{2}\right.$ Ally $)$, $71.4\left(\mathrm{C}_{5}\right), 71.2\left(\mathrm{C}_{6}\right), 70.1,64.5\left(\mathrm{CH}_{2}\right.$ _glycerol $), 55.9(2 \mathrm{x}$ CH_{3} оме).
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+21.8$
HRMS: $\mathrm{C}_{61} \mathrm{H}_{60} \mathrm{O}_{10}+\mathrm{Na}^{+}$required 979.4392 , found 979.4401
(R)-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S5)
 Compound S4 (10.2 mmol) was dissolved in freshly distilled dry THF (68 mL , $0.15 \mathrm{M})$. After bubbling $\mathrm{Ar}_{(\mathrm{g})}$ for 20 minutes, $\operatorname{Ir}(\mathrm{COD})\left(\mathrm{PPh}_{2} \mathrm{Me}\right) \mathrm{PF}_{6}(0,1 \mathrm{mmol}$, $0.01 \mathrm{eq})$ was added to the reaction mixture. $\mathrm{Ar}_{(g)}$ was bubbled for 10 minutes, followed by $\mathrm{H}_{2(g)}$ purge for not more than 10 seconds, after which a change in the catalyst colour was observed from red to yellow. After 1 hour TLC analysis (Pentane:Toluene:EtOAc, 85:5:10) showed complete conversion of the starting material to the isomerized intermediate. The reaction mixture was diluted with THF (20 mL) and a sat. aq. solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added together with I_{2} (15.9 mmol, 1.6 eq). TLC analysis showed complete consumption of the isomerized intermediate after 18 hours of stirring and the reaction mixture was diluted with EtOAc and washed with $\mathrm{NaS}_{2} \mathrm{O}_{3(\text { sat) (aq) }}$, $\mathrm{NaHCO}_{3(\text { sat.)(aq), }} \mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, filtered and concentrated in vacuo. The desired product $\mathbf{S 5}$ was isolated after purification with column chromatography (Pentane:EtOAc:Et ${ }_{3} \mathrm{~N}, 70: 25: 5$) in 92% yield (9.4 mmol) as colourless syrup.
TLC analysis: $\mathrm{R}_{\mathrm{f}}=0.31$ (Pentane:EtOAc; 8:2)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.50-7.44 (2H, $\mathrm{H}_{\text {arom, }} \mathrm{m}$), 7.38-7.13 (27H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 6.84-6.74 (4H, $\left.H_{\text {arom }}, m\right), 5.17\left(1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6 \mathrm{~Hz}, \mathrm{~d}\right), 4.92\left(1 \mathrm{H}, \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~d}\right), 4.83-4.74\left(2 \mathrm{H}, 2 \times \mathrm{CHH}_{\mathrm{Bn}}, \mathrm{m}\right)$, 4.64-4.47 (5H, CHH $\mathrm{Bn}, \mathrm{m})$, 4.05-3.98 ($1 \mathrm{H}, \mathrm{H}_{5}, \mathrm{~m}$), 3.94-3.82 ($2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{CH}_{\text {glycerol, }}$ m), 3.75-3.63 (9H, 2 x CH_{3} _оме $, 2 \times \mathrm{H}_{6}, \mathrm{CHH}_{\text {licerol, }}$, m). 3.62-3.53 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol, }}$, m), 3.53-3.44 ($2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{~m}$), 3.25-3.13 $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _lycerol, m$), 3.04-2.97(1 \mathrm{H}, \mathrm{OH}, \mathrm{m})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, δ : $158.6,145.3,139.2,138.7,138.5 \times 2,136.1,136.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.1 \times 2$, $128.4,128.3 \times 2,128.1,128.0,127.9 \times 2,127.8,127.7,127.6 \times 2,127.5,126.8\left(\mathrm{CH}_{\text {arom }}\right), 96.3\left(\mathrm{C}_{1}\right)$, $81.6\left(\mathrm{C}_{3}\right), 80.1\left(\mathrm{C}_{2}\right), 78.9\left(\mathrm{CH}_{\text {glycerol }}\right), 78.1\left(\mathrm{C}_{4}\right), 75.1,74.7,72.9,72.0\left(\mathrm{CH}_{2}\right.$ _8n $), 70.6\left(\mathrm{C}_{5}\right), 69.1\left(\mathrm{C}_{6}\right)$, 63.6, $62.5\left(\mathrm{CH}_{2}\right.$ _lycerol) $)$, $54.9\left(2 \times \mathrm{CH}_{3}\right)$.
$[\alpha]_{\mathrm{D}}^{20}\left(\mathrm{CHCl}_{3}\right):+27.3$
HRMS: $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{O}_{10}+\mathrm{Na}^{+}$required 939.4079 , found 939.4090

(S)-1-O-([N,N-diisopropyl]-2-cyanoethyl-phosphoramidite)-2-O-(2,3,4,6-O-benzyl- α-D-

 glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (7) organic layer was dried over $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ filtered and concentrated in vacuo. The desired product was purified by column chromatography (Pentane:EtOAc: $\mathrm{Et}_{3} \mathrm{~N}, 90: 19: 1 \rightarrow 75: 25: 0$), affording compound 7 in 70% (5.95 mmol) as a colourless oil.
Analytical data in accordance with the one reported in W. F. J. Hogendorf, L. J. van den Bos, H. S. Overkleeft, J. D. C. Codee, G. A. van der Marel, Bioorg, Med. Chem., 2010, 18, 3668-3678.

Phosphoramidite couplings

General procedure

The starting material alcohol is co-evaporated three times with dry ACN. Once dissolved in dry ACN $(0.1 \mathrm{M})$, a solution of DCI in $\mathrm{ACN}(0.25 \mathrm{M}, 1.5-2.5 \mathrm{eq})$ is added together with $3 \AA \mathrm{MS}$ and the reaction mixture is stirred for 15 min at room temperature. A solution of phosphoramidite 7 or $8(0.176 \mathrm{M}$ in ACN) is added (1.2-2.0 eq) under inert atmosphere. After TLC analysis shows complete consumption of starting material, a solution of CSO (0.5 M in ACN) is added (2.0-3.0 eq) and the reaction is allowed to stir at r.t. for 15 min , after which the reaction is diluted with EtOAc and washed once with a mixture of NaHCO_{3} and brine (1:1). The organic layer is dried over $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, filtered and concentrated in vacuo. The crude is then dissolved in DCM $(0.1 \mathrm{M})$ and a solution of TCA $(0.18 \mathrm{M}$ in DCM) is added (5 eq). Once TLC analysis show complete conversion to a lower running spot, the reaction mixture is diluted in DCM and washed with a solution of NaHCO_{3} and brine (1:1), dried over $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, filtered and concentrated in vacuo. The desired product is isolated by column chromatography.

List of intermediates from phoshoramidite couling

S11

24

S12
 $\mathrm{n}=1, \mathbf{S} 13$
$\mathrm{n}=2,25$

S14

S17

$n=1, S 15$
$n=2, \mathbf{S} 16$ $\mathrm{n}=2, \mathbf{S 1 6}$
$\mathrm{n}=3,26$

S21

$n=1, \mathbf{s 2 2}$
$n=2, \mathbf{S 2 3}$
$n=3, \mathbf{S 2 4}$
$n=4, \mathbf{S 2 5}$
$n=5,28$

(Protected) (GroP)-Spacer or Monomer S6

Alchol spacer $9(1.1 \mathrm{mmol})$ was coupled with phospharamidite 8 ($1.67 \mathrm{mmol}, 1.5 \mathrm{eq}$) following the general procedure. Compound S6 was obtained after column chromatography (DCM:Acetone, 7.5:2.5) in 90\% yield (0.99 mmol).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.48$ (DCM:Acetone, 7:3)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.42-7.23 (10H, $\mathrm{H}_{\text {arom }}$ m), 5.68-5.54 (1H, NH, b), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}\right.$, s), $4.63\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{s}\right)$, 4.25-3.97 ($6 \mathrm{H}, \mathrm{CH}_{2 _ \text {oce, }} \mathrm{CH}_{2 _ \text {glycerol, }} \mathrm{CH}_{2 _ \text {ospacer, }}$, m), 3.71-3.54 (3H, $\mathrm{CH}_{\text {glycerol }}$,
 1.68-1.57 (2H, CH ${ }_{2 _ \text {spacer }}, m$), 1.51-1.23 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer }, ~ m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.4,139.6,138.4\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.4, 129.2, 128.8, 128.7, 128.6, 128.5 $\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right)$, $72.4\left(\mathrm{CH}_{2}\right.$ Bn $), 69.0\left(\mathrm{CH}_{2}\right.$ Ospacer) , $67.6-67.5\left(\mathrm{CH}_{2}\right.$ _glycerol) $)$, 66.7 $\left(\mathrm{CH}_{2 _ \text {_bz }}\right)$, 63.2-63.1 ($\left.\mathrm{CH}_{2 _ \text {_oce }}\right), 61.1\left(\mathrm{CH}_{2 _ \text {_lycerol }}\right), 41.4\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 30.7,30.4,26.8,25.7\left(\mathrm{CH}_{2 \text { _spacer }}\right)$, 20.2-20.1 (CH_{2} OCE).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), $\delta:-1.32,-1.29$
HRMS: $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}+\mathrm{H}^{+}$required 549.2360, found 549.2361

(Protected) (GroP) $)_{2}$-Spacer or Dimer S7

Alchol S6 (0.75 mmol) was coupled with phospharamidite 8 ($1.1 \mathrm{mmol}, 1.5 \mathrm{eq}$) following the general procedure. Compound S7 was obtained after column chromatography (DCM:Acetone, 6.5:3.5) in quantitave yield (0.75 mmol).
TLC analysis, Rf: 0.43 (DCM:Acetone, 6:4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.47-7.23 (15H, Harom, m), 5.95-5.86 ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), $5.06\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right)$, 4.71-4.58 (4H, CH C_{2} вn, m), 4.34-3.98(12H, 2 x CH_{2} oce, $3 \times \mathrm{CH}_{2}$ _alycerol, CH_{2} Ospacer, m), 3.93-3.81 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 3.72-3.56 ($3 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}$, $\left.\mathrm{CH}_{2 _ \text {_lycerol, }} \mathrm{m}\right), 3.50-3.35(1 \mathrm{H}, \mathrm{OH}, \mathrm{b}), 3.09\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _Nspacer, $\left.\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{q}\right)$, 2.77-2.67 (2H, $2 \times \mathrm{CH}_{2}$ oce, m), 1.71-1.55 ($2 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}$), 1.52-1.22 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer, }} \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.6,139.1\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.4, 129.3, 128.9, 128.8, 128.7, 128.5 $\left(\mathrm{CH}_{\text {arom }}\right)$, 118.6 $\left(\mathrm{C}_{q}\right)$, 79.1-79.0 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.8-76.7 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 72.7, $72.4\left(\mathrm{CH}_{2 _ \text {Bn }}\right)$, 69.1-69.0
 30.7, 30.4, 26.8, 25.7 (CH_{2} _spacer), 20.2-20.1 (CH_{2} _oce).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), $\delta:-0.34,-0.33,-0.31,-0.13,-0.10$.
HRMS $\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{13} \mathrm{P}_{2}+\mathrm{H}^{+}$required 846.3126 , found 846.3119
(Protected) (GroP) ${ }_{3}$-Spacer or Trimer S8

Alchol S7 (0.83 mmol) was coupled with phospharamidite 8 ($1.4 \mathrm{mmol}, 1.7 \mathrm{eq}$) following the general procedure. Compound S8 was obtained after column chromatography (DCM:Acetone, 6:4) in 97\% yield (0.80 mmol).
TLC analysis, R_{f} : 0.39 (DCM:Acetone, 6.5:3.5)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: ~ 7.47-7.23\left(20 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.95-5.86(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.06\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}\right.$, s), 4.71-4.58 ($6 \mathrm{H}, \mathrm{CH}_{2 _ \text {_nn }}, \mathrm{m}$), 4.34-3.98 ($18 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ OcE, $5 \times \mathrm{CH}_{2 _ \text {_lycerol, }} \mathrm{CH}_{2}$ _Ospacer, m), 3.93-3.81 $\left(2 \mathrm{H}, 2 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.72-3.56\left(3 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{CH}_{2 \text { _glycerol }}, \mathrm{m}\right), 3.09\left(2 \mathrm{H}, \mathrm{CH}_{2 _ \text {Nspacer }}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{q}\right), 3.10-$ $2.94(1 \mathrm{H}, \mathrm{OH}, \mathrm{b}), 2.77-2.67\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ _Oce, m), 1.71-1.55 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m), 1.52-1.22 ($6 \mathrm{H}, 3 \mathrm{x}$ $\left.\mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.6,139.1\left(\mathrm{C}_{\mathrm{q}}\right)$, 129.4, 129.3, 128.9, 128.8, 128.7, 128.5 $\left(\mathrm{CH}_{\text {arom }}\right)$, 118.6 $\left(\mathrm{C}_{\mathrm{q}}\right)$, 79.1-79.0 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.8-76.7 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 72.7, $72.4\left(\mathrm{CH}_{2 _B n}\right)$, 69.1-69.0
 30.7, 30.4, 26.8, 25.7 (CH_{2} _spacer), 20.2-20.1 (CH_{2} _oce).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), $\delta:-1.48,-1.47,-1.43,-1.42,-1.41,-1.23,-1.21,-1.19$.
HRMS: $\mathrm{C}_{53} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{P}_{3}+\mathrm{H}^{+}$required 1143.3893, found 1143.3900

(Protected) (GroP) ${ }_{4}$-Spacer or Tetramer S9

Alchol S8 (0.12 mmol) was coupled with phospharamidite 8 ($0.24 \mathrm{mmol}, 2 \mathrm{eq}$) following the general procedure. Compound $\mathbf{S 9}$ was obtained after column chromatography (DCM:Acetone, 1:1) in 83% yield (0.1 mmol).
TLC analysis, $\mathrm{Rf}_{\mathrm{f}}: 0.32$ (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.47-7.23 (25H, Harom, m), 5.82-5.69 ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.67-4.54\left(8 \mathrm{H}, \mathrm{CH}_{2 _ \text {вn }}, \mathrm{m}\right), 4.34-3.98(24 \mathrm{H}, 4 \mathrm{x}$ CH_{2} Oce, $7 \times \mathrm{CH}_{2 _ \text {glycerol }}, \mathrm{CH}_{2}$ _Ospacer, m$), 3.93-3.81\left(3 \mathrm{H}, 3 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.72-3.56\left(3 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}\right.$, CH_{2} _glycerol, m$)$, 3.23-3.13 ($1 \mathrm{H}, \mathrm{OH}, \mathrm{b}$), $3.07\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _Nspacer, $\left.\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{q}\right)$, 2.77-2.67 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{2}$ oce, m), 1.71-1.55 (2H, CH ${ }_{2}$ spacer, m), 1.52-1.22 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.6,139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3,128.9 \times 2,128.8 \times 2,128.7$, $128.5\left(\mathrm{CH}_{\text {arom }}\right)$, 118.6 $\left(\mathrm{C}_{\mathrm{q}}\right)$, 79.1-79.0 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.8-76.7 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 72.7, $72.4\left(\mathrm{CH}_{2 _ \text {Bn }}\right)$, 69.1-69.0
 30.7, 30.4, 26.8, 25.7 (CH_{2} _spacer), 20.2-20.1 (CH_{2} _oce).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, δ : $-1.66,-1.64,-1.62,-1.60,-1.58,-1.40,-1.37$.
HRMS: $\mathrm{C}_{66} \mathrm{H}_{85} \mathrm{~N}_{5} \mathrm{O}_{23} \mathrm{P}_{4}+\mathrm{H}^{+}$required 1440.4659, found 1440.4656
(Protected) (GroP) $)_{5}$-Spacer or Pentamer S10

Alchol S9 (35 \quad umol) was coupled with phospharamidite 8 ($86 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$) following the general procedure. Compound S10 was obtained after column chromatography (DCM:Acetone, 1:1) in 65% yield ($23 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.27$ (DCM:Acetone, 6:4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.47-7.23 (30H, Harom, m), 5.82-5.69 ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right)$, 4.67-4.54 ($10 \mathrm{H}, \mathrm{CH}_{2 _} \mathrm{Bn}, \mathrm{m}$), 4.34-3.98(30H, 5 x CH_{2} _OcE, $9 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _Ospacer, m$), 3.93-3.81\left(4 \mathrm{H}, 4 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.72-3.56\left(3 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}\right.$, CH_{2} _alycerol, m), 3.20-3.02 ($3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2 _ \text {_spacer, }} \mathrm{m}$), 2.77-2.67 ($10 \mathrm{H}, 5 \times \mathrm{CH}_{2}$ oce, m), 1.71-1.55 (2H, CH_{2} spacer, m), 1.52-1.22 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer },} \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, δ : $157.3,139.6,139.1\left(\mathrm{C}_{q}\right), 129.4 \times 2,129.3,128.9 \times 2,128.8 \times 2,128.7$, $128.5\left(\mathrm{CH}_{\text {arom }}\right)$, 118.6 $\left(\mathrm{C}_{\mathrm{q}}\right)$, 79.1-79.0 $\left(\mathrm{CH}_{\text {glycerol }}\right.$), 76.8-76.7 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $72.7,72.4\left(\mathrm{CH}_{2 _ \text {Bn }}\right)$, 69.1-69.0
 30.7, 30.4, 26.8, 25.7 ($\mathrm{CH}_{2 \text { _spacer) }}$, 20.2-20.1 (CH_{2} _ock).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.67,-1.64,-1.63,-1.61,-1.58,-1.44,-1.40,-1.37$.

HRMS: $\mathrm{C}_{79} \mathrm{H}_{101} \mathrm{~N}_{6} \mathrm{O}_{28} \mathrm{P}_{5}+\mathrm{H}^{+}$required 1737.5425 , found 1737.5428
(Protected) (GlcGroP)(GroP) $)_{5}$-Spacer or Hexamer 23

Alchol S10 ($22 \mu \mathrm{~mol}$) was coupled with phospharamidite 7 ($32 \mu \mathrm{~mol}, 1.5$ eq) following the general procedure. Compound 23 was obtained after column chromatography (DCM:Acetone, 1:1) in 65\% yield (14 $\mu \mathrm{mol})$.
TLC analysis, $\quad \mathrm{R}_{\mathrm{f}}$: 0.31 (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.45-7.16 (50H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.79-5.69(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.21-5.14\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, m), $5.06\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}\right)$, 4.91-4.45 ($18 \mathrm{H}, \mathrm{CH}_{2 _} \mathrm{Bn}, \mathrm{m}$), 4.31-3.99 ($36 \mathrm{H}, 6 \times \mathrm{CH}_{2}$ _OcE, $11 \times \mathrm{CH}_{2}$ glycerol, CH_{2} _ospacer, m), 3.99-3.78 ($8 \mathrm{H}, 6 \times \mathrm{CH}_{\text {_glycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.78-3.48 ($6 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}$ _glycerol) , 3.28-3.27 (1H, OH, b), $3.09\left(2 \mathrm{H}, \mathrm{CH}_{2 _ \text {Nspacer, }} \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{q}\right)$, 2.78-2.58 ($12 \mathrm{H}, 6 \times \mathrm{CH}_{2}$ _осе, m), 1.71-1.55 ($2 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }, ~}$ m), $1.52-1.22$ ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 _ \text {spacer }, ~}$ m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 157.3, 140.1, 139.8, 139.6, $139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \mathrm{X} 2,129.1 \times$ 2, 129.0, 128.9, $128.8 \times 2,128.7,128.6,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 98.4\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right), 81.0\left(\mathrm{C}_{2}\right)$, $78.7\left(\mathrm{C}_{4}\right), 77.9\left(\mathrm{CH}_{\text {glycerol }}\right)$, $77.9\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.5,72.7\left(\mathrm{CH}_{2 _ \text {вn }}\right), 71.6\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ Ospacer) $)$, 66.8-66.6 (CH_{2} _glycerol, $\left.\mathrm{CH}_{2 _\mathrm{Cbz}}\right)$, $63.6-63.5\left(\mathrm{CH}_{2}\right.$ OcE $), 61.1\left(\mathrm{CH}_{2}\right.$ _glycerol), 41.4 ($\mathrm{CH}_{2 _ \text {Nspacer) }}$, $30.9-30.8,30.4,26.8,25.7\left(\mathrm{CH}_{2 \text { _spacer) }}\right)$, 20.2-20.1 ($\left.\mathrm{CH}_{2 _ \text {OcE }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.66,-1.63,-1.62,-1.60,-1.58,-1.44,-1.38$.
HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128, found 2466.8129
(Protected) (GlcGroP)(GroP) $)_{4}$-Spacer or Pentamer S11

Alchol S9 ($35 \mu \mathrm{~mol}$) was coupled with phospharamidite 7 ($53 \mu \mathrm{~mol}, 1.5$ eq) following the general procedure. Compound S11 was obtained after column chromatography (DCM:Acetone, 1:1) in 67% yield (24 $\mu \mathrm{mol})$.
TLC analysis, $\quad \mathrm{R}_{\mathrm{f}}: \quad 0.33$ (DCM:Acetone, 6:4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.45-7.11 ($45 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), 5.71-5.58 ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), 5.16 ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6$ $\mathrm{Hz}, \mathrm{d})$, $5.01\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right)$, 4.89-4.81 ($1 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Bn}}, \mathrm{m}$), 4.80-4.66 (3H, CH2_bn, m), 4.66-4.43 (12H,
 $\left.\mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.74-3.42\left(7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ glycerol), 3.13-2.94 ($3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}$ Nspacer, m), 2.74-2.54 (10H, $5 \times$ CH $_{2}$ _OCE, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }, ~}$ m), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.2,140.0,139.6,139.4,139.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \mathrm{X} 2,129.2 \mathrm{x}$ $2,129.1,129.0 \times 2,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0$ $\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.0\left(\mathrm{C}_{4}\right), 78.6\left(\mathrm{CH}_{\text {glycerol }}\right), 76.7\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.5,73.0,72.7$, $72.4\left(\mathrm{CH}_{2 _}\right.$_n $), 71.6\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ _ospacer) $)$, 67.8-66.0 $\left(\mathrm{CH}_{2}\right.$ glycerol, $\left.\mathrm{CH}_{2} \mathrm{Cbz}\right)$, 63.5-63.3
 ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.41,-0.36,-0.34,-0.32,-0.30,-0.29,-0.14,-0.11$
HRMS: $\mathrm{C}_{106} \mathrm{H}_{129} \mathrm{~N}_{6} \mathrm{O}_{33} \mathrm{P}_{5}+\mathrm{H}^{+}$required 2169.7361, found 2169.7368

column chromatography (DCM:Acetone, 1:1) in 77% yield ($15 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.31$ (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.47-7.16 (50H, Harom, m), 5.71-5.58 (1H, NH, b), 5.16 ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6$ $\mathrm{Hz}, \mathrm{d}), 5.01\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.89-4.66\left(4 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Bn}}, \mathrm{m}\right), 4.66-4.43\left(14 \mathrm{H}, \mathrm{CH}_{2} \mathrm{bn}, \mathrm{m}\right), 4.30-3.94(36 \mathrm{H}$, $6 \times \mathrm{CH}_{2}$ Oce, $11 \times \mathrm{CH}_{2}$ _glyerol, CH_{2} _Ospacer, m), 3.94-3.74 ($7 \mathrm{H}, 5 \times \mathrm{CH}_{\text {_glyerol, }}, \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 (7H,
 m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2 \text { _spacer }}$ m), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.2,140.1,139.6 \times 2,139.5,139.0\left(\mathrm{C}_{q}\right), 129.4 \times 2,129.3 \mathrm{X} 2,129.2$ x 2, 129.1, $129.0 \times 4,128.9 \times 2,128.8 \times 3$, $128.7 \times 2,128.6,128.5 \times 2,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $97.0\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.1-79.0\left(\mathrm{CH}_{\text {glycerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.7\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.0$, 72.7, $72.4\left(\mathrm{CH}_{2 _ \text {_n }}\right)$, $71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ Ospacer $), 67.8-66.6\left(\mathrm{CH}_{2 _ \text {_lycerol }}, \mathrm{CH}_{2 _ \text {_bz }}\right), 63.6-63.3$ ($\mathrm{CH}_{2 _ \text {_OcE }}$), $61.1\left(\mathrm{CH}_{2 _ \text {_lycerol }}\right)$, $41.4\left(\mathrm{CH}_{2 _ \text {_Nspacer }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) , 20.2-20.1 (CH_{2} _ocE $)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.44,-0.43,-0.40,-0.38,-0.34,-0.32,-0.18,-0.15$.
HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128 , found 2466.8133
(Protected) (GlcGroP)(GroP) $)_{3}$-Spacer or Tetramer S12

Alchol S11 (20 $\mu \mathrm{mol})$ was coupled with phospharamidite 8 ($50 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$) following the general procedure. Compound 24 was obtained after

column chromatography (DCM:Acetone, 1:1) in 76% yield ($30 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.38$ (DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.47-7.16 ($45 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), 5.74-5.61 ($\left.1 \mathrm{H}, \mathrm{NH}, \mathrm{b}\right), 5.16$ ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6$
 CH_{2} Oospacer, m), 3.94-3.74 (5H, $\left.3 \times \mathrm{CH}_{\text {_lycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.74-3.42\left(7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}\right.$, $\mathrm{CH}_{2 \text { _glycerol }}$), 3.22-3.10 ($1 \mathrm{H}, \mathrm{OH}, \mathrm{m}$), 3.08-2.94 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _Nspacer, m), 2.74-2.53 ($10 \mathrm{H}, 5 \times \mathrm{CH}_{2}$ OCE, m), 1.65-1.49 (2H, CH ${ }_{2}$ spacer, m), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer, }}$ m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 157.2, 140.0, 139.6, 139.4, $139.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \mathrm{X} 2,129.2 \times$ $2,129.1,129.0 \times 2,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0$ $\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.0\left(\mathrm{C}_{4}\right), 78.6\left(\mathrm{CH}_{\text {glycerol }}\right), 76.7\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.5,73.0,72.7$, $72.4\left(\mathrm{CH}_{2}\right.$ _nn $), 71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ Ospacer) $)$, 67.8-66.0 $\left(\mathrm{CH}_{2}\right.$ glycerol, $\left.\mathrm{CH}_{2 _\mathrm{Cbz}}\right)$, 63.5-63.3 ($\mathrm{CH}_{2 _ \text {_OcE }}$), $61.1\left(\mathrm{CH}_{2 _ \text {_lycerol }}\right)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer) }}\right)$, 30.7-30.4, 26.8, $25,7\left(\mathrm{CH}_{2 \text { _spacer }}\right)$, 20.2-20.1 ($\left.\mathrm{CH}_{2 _ \text {_ocE }}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.41,-0.36,-0.34,-0.32,-0.30,-0.29,-0.14,-0.11$
HRMS: $\mathrm{C}_{106} \mathrm{H}_{129} \mathrm{~N}_{6} \mathrm{O}_{33} \mathrm{P}_{5}+\mathrm{H}^{+}$required 2169.7361, found 2169.7355
(Protected) (GroP) $\mathbf{2}^{(\text {GlcGroP) }}$ (GroP) $)_{3}$-Spacer or Hexamer 25

Alchol S13 (10 $\mu \mathrm{mol})$ was coupled with phospharamidite 8 ($25 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$) following the general procedure. Compound 25 was obtained after
column chromatography (DCM:Acetone, 1:1) in 72% yield ($7.2 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{Rf}_{\mathrm{f}}: 0.31$ (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.50-7.16 (50H, Harom, m), 5.76-5.65 (1H, NH, b), 5.20-5.12 (1H, H1, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.89-4.39\left(18 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Bn}}, \mathrm{m}\right), 4.30-3.94\left(36 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$ оcE, $11 \times \mathrm{CH}_{2}$ _lycerol, CH_{2} _ospacer, m$)$, 3.94-3.74 ($\left.7 \mathrm{H}, 5 \times \mathrm{CH}_{\text {_lycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.74-3.42\left(7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}\right.$, CH_{2} glycerol) , 3.17-2.98 (3H, $\mathrm{OH}, \mathrm{CH}_{2}$ _Nspacer, m), 2.77-2.48 (12H, $6 \times \mathrm{CH}_{2}$ oce, m), 1.65-1.49 (2H, $\left.\mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}\right)$, 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.2,140.0,139.6,139.5,139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 3,129.3,129.2 \times 2$, 129.1, 129.0, 128.9, $128.8 \times 2,128.7,128.6,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 98.1\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right)$, $79.1\left(\mathrm{CH}_{\text {glycerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.8\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.7,73.8,73.1,72.7,72.4\left(\mathrm{CH}_{2} \mathrm{Bn}\right), 71.7\left(\mathrm{C}_{5}\right), 69.7$ $\left(\mathrm{C}_{6}\right)$, $69.1\left(\mathrm{CH}_{2 _ \text {Ospacer }}\right)$, 67.8-66.9 $\left(\mathrm{CH}_{2 _ \text {_lycerol }}, \mathrm{CH}_{2}\right.$ Cbzz $), 63.5-63.2\left(\mathrm{CH}_{2}\right.$ _OCE $)$, $61.1\left(\mathrm{CH}_{2}\right.$ _glycerol $)$, 41.4 ($\mathrm{CH}_{2 _ \text {_spacer) }}$), 30.7-30.4, 26.8, $25,7\left(\mathrm{CH}_{2 \text { _spacer) }}\right.$, 20.2-20.1 (CH_{2} _oce).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: -1.77, -1.71, -1.68, -1.63, -1.59, -1.56, -1.43, -1.13, -1.11, -1.03, -1.01.

HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128 , found 2466.8137
(Protected) (GlcGroP)(GroP) $)_{2}$-Spacer or Trimer S14

Alchol S7 (98 $\mu \mathrm{mol}$) was coupled with phospharamidite 7 ($147 \mu \mathrm{~mol}$, $1.5 \mathrm{eq})$ following the general procedure. Compound S14 was obtained after column chromatography (DCM:Acetone, 5.5:4.5) in 86% yield ($84 \mu \mathrm{~mol}$).

TLC analysis, $\quad \mathrm{R}_{\mathrm{f}}$: 0.35 (DCM:Acetone, 6:4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.44-7.11 ($35 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), $5.77-5.62(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.17-5.11$ ($1 \mathrm{H}, \mathrm{H}_{1}$, m), 5.03 ($2 \mathrm{H}, \mathrm{CH}_{2}$ Cbz, s), 4.90-4.41 ($12 \mathrm{H}, 6 \times \mathrm{CH}_{2 _ \text {_n }}, \mathrm{m}$), 4.29-3.96 ($18 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _Oce, $5 \times \mathrm{CH}_{2}$ _lycerol, CH_{2} _ospacer, m$)$, 3.96-3.75 ($5 \mathrm{H}, 3 \times \mathrm{CH}_{\text {_glycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 ($6 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}$ _glycerol) , 3.26-3.14 ($1 \mathrm{H}, \mathrm{OH}, \mathrm{b}$), $3.05\left(2 \mathrm{H}, \mathrm{CH}_{2 _ \text {sspacer, }} \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{q}\right)$, 2.77-2.53 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _oce, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2 \text { _spacer }, ~}$ m), $1.45-1.14$ ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 _ \text {spacer }, ~}$ m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 157.4, 140.1, 139.6, 139.5, 139.4, 139.1, 139.0, 138.6 (Cq), 129.4 x $3,129.3 \times 2,129.2,129.1,129.0,128.9,128.8 \times 2,128.7,128.6,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 97.4\left(\mathrm{C}_{1}\right)$, $82.5\left(\mathrm{C}_{3}\right)$, $81.0\left(\mathrm{C}_{2}\right), 78.7\left(\mathrm{C}_{4}\right), 78.0,76.0\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6 \times 2,73.8,73.6,72.7,72.4\left(\mathrm{CH}_{2 _}\right.$_ $)$, $71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.1\left(\mathrm{CH}_{2}\right.$ _Ospacer) , $68.3,67.8-66.9\left(\mathrm{CH}_{2}\right.$ _glycerol, $\left.\mathrm{CH}_{2 _ \text {Cbz }}\right)$, $63.5-63.2\left(\mathrm{CH}_{2}\right.$ _OcE $), 61.1$ (CH_{2} _glycerol) $)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) $), 20.2-20.1\left(\mathrm{CH}_{2}\right.$ _ocE $)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), δ : -1.67, -1.65, -1.64, -1.62, -1.61, -1.58, -1.45, -1.42, -1.39, -1.38
HRMS: $\mathrm{C}_{80} \mathrm{H}_{97} \mathrm{~N}_{4} \mathrm{O}_{23} \mathrm{P}_{3}+\mathrm{H}^{+}$required 1575.5829, found 1575.5833
(Protected) (GroP)(GlcGroP)(GroP) ${ }_{2}$-Spacer or Tetramer S15

Alchol S14 (11 $\mu \mathrm{mol}$) was coupled with phospharamidite 8 ($28 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$) following the general procedure. Compound S15 was obtained after
column chromatography (DCM:Acetone, 1:1) in 83% yield ($9.1 \mu \mathrm{~mol}$).
TLC analysis, Rf: 0.31 (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.48-7.11 (40H, $\mathrm{H}_{\text {arom }}$ m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H_{1}, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.89-4.42\left(14 \mathrm{H}, 7 \times \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{m}\right), 4.30-3.96\left(24 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right.$ _оcE, $7 \times \mathrm{CH}_{2}$ glycerol, CH_{2} _ospacer, m$)$, $3.96-3.75\left(5 \mathrm{H}, 3 \times \mathrm{CH}_{\text {_lycerol }}, \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.74-3.42\left(7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}\right.$, CH_{2} _glycerol), $3.15-3.00\left(3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ Nspacer, m$)$, 2.77-2.53 $\left(8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right.$ oce, m$)$, 1.65-1.49 $(2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}\right)$, 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.7,139.6,139.5,139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 3,129.3 \times 2,129.2$, $129.1 \times 2,129.0 \times 4,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6 \times 2,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 97.1\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {gltcerol }}\right), 78.6\left(\mathrm{C}_{4}\right), 76.9-76.8\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6 \times 2,73.9,73.1$, $72.4\left(\mathrm{CH}_{2}\right.$ _nn $), 71.8\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 69.1\left(\mathrm{CH}_{2}\right.$ Ospacer) $)$, $67.9,67.8,67.0,66.7,66.6,66.5\left(\mathrm{CH}_{2}\right.$ glycerol ,
 20.2-20.1 (CH_{2} _OcE).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right), \delta:-1.71,-1.69,-1.65,-1.63,-1.61,-1.59,-1.55,-1.53,-1.43,-1.42,-1.39$, -1.36
HRMS: $\mathrm{C}_{93} \mathrm{H}_{113} \mathrm{~N}_{5} \mathrm{O}_{28} \mathrm{P}_{4}+\mathrm{H}^{+}$required 1872.6595, found 1872.6594

(Protected) (GroP) $)_{2}(\text { GlcGroP)(GroP) })_{2}$-Spacer or Pentamer S16

column chromatography (DCM:Acetone, 1:1) in 82% yield ($19 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.38$ (DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.12 (45H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.77-5.64(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.20-5.13\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.87-4.40\left(16 \mathrm{H}, 7 \times \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{m}\right), 4.30-3.94\left(30 \mathrm{H}, 5 \times \mathrm{CH}_{2}\right.$ _oce, $9 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _ospacer, m), 3.94-3.74 ($5 \mathrm{H}, 3 \times \mathrm{CH}_{\text {_lycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 ($7 \mathrm{H}, \mathrm{CH}_{\text {glycerol, }} 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}$, CH_{2} _glycerol), 3.19-2.99 (3H, $\left.\mathrm{OH}, \mathrm{CH}_{2 _ \text {nspacer, }} \mathrm{m}\right)$, 2.77-2.53 ($10 \mathrm{H}, 5 \times \mathrm{CH}_{2}$ oce, m), 1.65-1.49 (2H, $\left.\mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}\right)$, 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.1,139.6 \times 2,139.5,139.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 2,129.2$ x 2, 129.1, $129.0 \times 4,128.9 \times 2,128.8 \times 3,128.7 \times 3,128.6,128.5 \times 2,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0$ $\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.1-79.0\left(\mathrm{CH}_{\text {gltcerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.7\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.1,72.7$, $72.4\left(\mathrm{CH}_{2 _ \text {_n }}\right), 71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ _ospacer $)$, 67.8-66.6 $\left(\mathrm{CH}_{2}\right.$ _lycerol, $\left.\mathrm{CH}_{2 _ \text {Cbz }}\right)$, 63.6-63.3 ($\mathrm{CH}_{2 _ \text {_OCE }}$), $61.1\left(\mathrm{CH}_{2 _ \text {_lycerol }}\right)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 20.2-20.1\left(\mathrm{CH}_{2 _ \text {_OCE }}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.68,-1.65,-1.62,-1.60,-1.42,-1.39$.
HRMS: $\mathrm{C}_{106} \mathrm{H}_{129} \mathrm{~N}_{6} \mathrm{O}_{33} \mathrm{P}_{5}+\mathrm{H}^{+}$required 2169.7361, found 2169.7365
(Protected) (GroP) $\mathbf{3}^{(\text {GlcGroP)(GroP) }}{ }_{2}$-Spacer or Hexamer 26

column chromatography (DCM:Acetone, 1:1) in 65% yield ($23 \mu \mathrm{~mol}$).
TLC analysis, Rf: 0.41 (DCM:Acetone, 7:3)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.43-7.12 (50H, $\mathrm{H}_{\text {arom }}$ m), 5.75-5.64 (1H, NH, b), 5.20-5.13 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.88-4.41\left(18 \mathrm{H}, 7 \times \mathrm{CH}_{2}\right.$ _Bn , m$), 4.30-3.94\left(36 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$ _OcE, $11 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _ospacer, m), 3.94-3.74 ($6 \mathrm{H}, 4 \times \mathrm{CH}_{\text {-glycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 ($8 \mathrm{H}, 2 \times \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}$,
 $\left.\mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}\right), 1.45-1.14\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ _spacer, $\left.m\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.1,139.6 \times 2,139.5,139.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 3,129.2$, $129.1,129.0 \times 2,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.1-79.0\left(\mathrm{CH}_{\text {gltcerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.7\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.1,72.7,72.4$
 $61.1\left(\mathrm{CH}_{2 _ \text {_lycerol }}\right)$, $41.4\left(\mathrm{CH}_{2 _ \text {Nspacer }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) , 20.2-20.1 ($\left.\mathrm{CH}_{2 _ \text {_oce }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.69,-1.67,-1.64,-1.63,-1.61,-1.58,-1.44,-1.40,1.37$.
HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128 , found 2466.8125
(Protected) (GlcGroP)(GroP)-Spacer or Dimer S17

Alchol S6 ($160 \mu \mathrm{~mol}$) was coupled with phospharamidite 7 ($200 \mu \mathrm{~mol}$, $1.3 \mathrm{eq})$ following the general procedure. Compound S17 was obtained after column chromatography (DCM:Acetone, $7: 3$) in 64% yield ($102 \mu \mathrm{~mol}$).
TLC analysis, $\quad \mathrm{R}_{\mathrm{f}}$: 0.38
(DCM:Acetone, 7:3)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.48-7.11 (30H, Harom, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Cbz , s), 4.89-4.42 ($10 \mathrm{H}, 5 \times \mathrm{CH}_{2 _} \mathrm{Bn}, \mathrm{m}$), 4.30-3.96(12H, $2 \times \mathrm{CH}_{2}$ _OCE, $3 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _ospacer, m$), 3.96-3.75\left(4 \mathrm{H}, 2 \times \mathrm{CH}_{\text {_glycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right)$, 3.74-3.42 $\left(6 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ _glycerol) $)$, 3.15-3.00 ($3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2 _ \text {_spacer }}, \mathrm{m}$), 2.77-2.53 ($4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ _OcE, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}$), 1.45$1.14\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ spacer, m$)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.7,139.6,139.5,139.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 2,128.7,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.4\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right)$, $81.0\left(\mathrm{C}_{2}\right), 79.2\left(\mathrm{CH}_{\text {gltcerol }}\right), 78.7\left(\mathrm{C}_{4}\right), 78.0-77.8\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.5,72.7,72.4\left(\mathrm{CH}_{2 _ \text {_nn }}\right)$, $71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.0\left(\mathrm{CH}_{2}\right.$ _ospacer) , 68.3-66.6 $\left(\mathrm{CH}_{2}\right.$ _lycerol, CH_{2} _cbz $)$, 63.4-63.1 (CH_{2} _oce), 61.1 (CH_{2} _glycerol) $)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer) }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) , 20.2-20.1 (CH_{2} _oce) $)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.64,-1.61,-1.60,-1.48,-1.46,-1.44,-1.43,-1.39,-1.32,-1.28$.
HRMS: $\mathrm{C}_{67} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{18} \mathrm{P}_{2}+\mathrm{H}^{+}$required 1278.5063, found 1278.5064

(Protected) (GroP)(GlcGroP)(GroP) -Spacer or Trimer S18

Alchol S17 (86 $\mu \mathrm{mol}$) was coupled with phospharamidite 8 (215 $\mu \mathrm{mol}, 2.5 \mathrm{eq})$ following the general procedure. Compound S18 was obtained after column chromatography
(DCM:Acetone, 6:4) in 68% yield ($58 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.35$ (DCM:Acetone, 6:4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$), ס: 7.48-7.11 (35H, Harom, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right)$, 4.89-4.42 ($12 \mathrm{H}, 6 \times \mathrm{CH}_{2 _\mathrm{Bn}}, \mathrm{m}$), 4.30-3.96 ($18 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _oce, $5 \times \mathrm{CH}_{2}$ glycerol, CH_{2} _ospacer, m$)$, 3.96-3.75 ($\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{\text {_lycerol }}, \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right)$, 3.74-3.42 $\left(7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}\right.$, CH_{2} _glycerol), $3.15-3.00\left(3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ Nspacer, m$)$, 2.77-2.53 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ oce, m), 1.65-1.49 $(2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}\right)$, 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.0,139.6 \times 2,139.5,139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 3,129.2$, 129.1×2, $129.0 \times 3,128.9 \times 3$, $128.8 \times 3,128.7 \times 3$, 128.6×2, $128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 97.1\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.7\left(\mathrm{C}_{2}\right), 79.1-79.0\left(\mathrm{CH}_{\text {gltcerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.8\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6 \times 2,73.9,73.1,72.4$

${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.43,-0.42,-0.40,-0.39,-0.37,-0.36,-0.35,-0.12,-0.09,-0.07$
HRMS: $\mathrm{C}_{80} \mathrm{H}_{97} \mathrm{~N}_{4} \mathrm{O}_{23} \mathrm{P}_{3}+\mathrm{H}^{+}$required 1575.5829, found 1575.5832
(Protected) (GroP) $)_{2}($ GIcGroP)(GroP) -Spacer or Tetramer S19

Alchol S18 (41 $\mu \mathrm{mol}$) was coupled with phospharamidite 8 (102 $\mu \mathrm{mol}, 2.5 \mathrm{eq}$) following the general procedure.
Compound S19 was obtained after column chromatography (DCM:Acetone, 1:1)
in 65% yield ($27 \mu \mathrm{~mol}$).
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.31$ (DCM:Acetone, 1:1)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.42-7.11 ($40 \mathrm{H}, \mathrm{H}_{\text {arom }}, \mathrm{m}$), 5.72-5.61 ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), 5.20-5.13 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Cbz, s), $4.89-4.42\left(14 \mathrm{H}, 7 \times \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{m}\right), 4.30-3.96\left(24 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right.$ _oce, $7 \times \mathrm{CH}_{2}$ _lycerol, CH_{2} _ospacer, m), 3.96-3.75 ($4 \mathrm{H}, 2 \times \mathrm{CH}_{\text {_lycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 ($7 \mathrm{H}, \mathrm{CH}_{\text {glycerol, }} 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}$, CH_{2} _lycerol) , 3.15-3.00 (3H, $\left.\mathrm{OH}, \mathrm{CH}_{2 _ \text {_spacer, }} \mathrm{m}\right)$, 2.77-2.53 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{2 _ \text {oce, }} \mathrm{m}$), 1.65-1.49 $(2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}\right), 1.45-1.14\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ _spacer, m$)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right), \delta: 157.3,139.7,139.6,139.5,139.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 2,128.7,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.4\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right)$, $81.0\left(\mathrm{C}_{2}\right), 79.2\left(\mathrm{CH}_{\text {gltcerol }}\right)$, $78.7\left(\mathrm{C}_{4}\right)$, 78.0-77.8 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.0, 75.6, 73.8, 73.5, 72.7, $72.4\left(\mathrm{CH}_{2 _ \text {_n }}\right)$, $71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.0\left(\mathrm{CH}_{2}\right.$ _ospacer) $)$, 68.3-66.6 $\left(\mathrm{CH}_{2}\right.$ _lycerol, CH_{2} Cbz $)$, 63.4-63.1 (CH_{2} _oce), 61.1 (CH_{2} _olycerol) $)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer) }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) , 20.2-20.1 ($\left.\mathrm{CH}_{2 _ \text {_OcE }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.42,-0.40,-0.36,-0.34,-0.32,-0.14,-0.12$.
HRMS: $\mathrm{C}_{93} \mathrm{H}_{113} \mathrm{~N}_{5} \mathrm{O}_{28} \mathrm{P}_{4}+\mathrm{H}^{+}$required 1872.6595, found 1872.6598
(Protected) (GroP) $)_{3}($ GlcGroP)(GroP) -Spacer or Pentamer S20

Alchol S19 ($20 \mu \mathrm{~mol}$) was coupled with phospharamidite 8 ($50 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$) following the general procedure.
Compound S20 was obtained after column chromatography (DCM:Acetone, 1:1)
in 77% yield ($15 \mu \mathrm{~mol}$).
TLC analysis, Rf: 0.38 (DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.11 (45H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.73-5.62(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.19-5.13$ ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Cbz, s$), 4.89-4.42\left(16 \mathrm{H}, 8 \times \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{m}\right)$, 4.30-3.96 ($30 \mathrm{H}, 5 \times \mathrm{CH}_{2}$ _OCE, $9 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _ospacer, m$), 3.96-3.75\left(4 \mathrm{H}, 3 \times \mathrm{CH}_{\text {glycerol, }}, \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.74-3.42\left(6 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ _glycerol) $)$, 3.15-3.00 (3H, OH, CH2_Nspacer, m), 2.77-2.53 ($4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ _Oce, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m), 1.45$1.14\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right.$ spacer, m$)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.7,139.6,139.5,139.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 2,128.7,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.4\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right)$, $81.0\left(\mathrm{C}_{2}\right), 79.2\left(\mathrm{CH}_{\text {gltcerol }}\right), 78.7\left(\mathrm{C}_{4}\right), 78.0-77.8\left(\mathrm{CH}_{\text {glycerol }}\right)$, $76.0,75.6,73.8,73.5,72.7,72.4\left(\mathrm{CH}_{2 _} \mathrm{Bn}_{n}\right)$, $71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.0\left(\mathrm{CH}_{2}\right.$ _ospacer) , 68.3-66.6 (CH_{2} glycerol, CH_{2} _cbz $)$, 63.4-63.1 (CH_{2} _oce), 61.1 (CH_{2} _glycerol) , $41.4\left(\mathrm{CH}_{2 _ \text {_spacer) }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) , 20.2-20.1 (CH_{2} _ocE $)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.41,-0.36,-0.34,-0.32,-0.30,-0.29,-0.14,-0.11$.
HRMS: $\mathrm{C}_{106} \mathrm{H}_{129} \mathrm{~N}_{6} \mathrm{O}_{33} \mathrm{P}_{5}+\mathrm{H}^{+}$required 2169.7361, found 2169.7363
(Protected) (GroP) $)_{4}$ (GlcGroP)(GroP) -Spacer or Hexamer 27

Alchol S20 ($13 \mu \mathrm{~mol}$) was coupled with phospharamidite 8 (40 $\mu \mathrm{mol}, 2.5 \mathrm{eq}$) following the general procedure. Compound 27 was obtained after column chromatography
(DCM:Acetone, 1:1) in 72% yield ($9.4 \mu \mathrm{~mol})$.
TLC analysis, $\mathrm{R}_{\mathrm{f}}: 0.31$ (DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.11 (50H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.73-5.62(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.19-5.13\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, m), $5.03\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.89-4.42\left(18 \mathrm{H}, 9 \times \mathrm{CH}_{2} \mathrm{Bn}, \mathrm{m}\right), 4.30-3.96\left(36 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$ OcE, $11 \times \mathrm{CH}_{2}$ _glycerol, CH_{2} _ospacer, m), 3.96-3.75 ($6 \mathrm{H}, 4 \times \mathrm{CH}_{\text {_lycerol, }} \mathrm{H}_{5}, \mathrm{H}_{3}, \mathrm{~m}$), 3.74-3.42 ($7 \mathrm{H}, \mathrm{CH}_{\text {glycerol }} 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}$, CH_{2} _glycerol), $3.15-3.00\left(3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ _Nspacer, m$)$, 2.77-2.53 ($4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$ oce, m), 1.65-1.49 (2H, $\left.\mathrm{CH}_{2 \text { _spacer },} \mathrm{m}\right)$, 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,139.7,139.6,139.5,139.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 2,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 2,128.7,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.4\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right)$, $81.0\left(\mathrm{C}_{2}\right), 79.2\left(\mathrm{CH}_{\text {gltcerol }}\right)$, $78.7\left(\mathrm{C}_{4}\right)$, 78.0-77.8 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 76.0, 75.6, 73.8, 73.5, 72.7, $72.4\left(\mathrm{CH}_{2 _ \text {_n }}\right)$, $71.6\left(\mathrm{C}_{5}\right)$, $69.7\left(\mathrm{C}_{6}\right)$, $69.0\left(\mathrm{CH}_{2}\right.$ _ospacer) , 68.3-66.6 (CH_{2} _lycerol, CH_{2} _cbz $)$, 63.4-63.1 (CH_{2} _oce), 61.1 $\left(\mathrm{CH}_{2}\right.$ _glycerol) $)$, $41.4\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 30.7-30.4,26.8,25,7\left(\mathrm{CH}_{2}\right.$ _spacer) $)$, 20.2-20.1 (CH_{2} _OcE $)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.41,-0.36,-0.34,-0.32,-0.30,-0.29,-0.14,-0.11$.
HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128, found 2466.8130
(Protected) GlcGroP-Spacer or Monomer S21

Alchol spacer 9 (0.26 mmol) was coupled with phospharamidite 7 ($0.35 \mathrm{mmol}, 1.3 \mathrm{eq}$) following the general procedure. Compound S21 was obtained after column chromatography (DCM:Acetone, 7.5:2.5) in 81\% yield (0.21 mmol).
TLC analysis, Rf: 0.45 (DCM:Acetone, 7:3
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.47-7.12 (25H, Harom, m), 5.68-5.54 (1H, NH, b), 5.16 ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6$ $\mathrm{Hz}, \mathrm{d}), 5.03\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.88\left(1 \mathrm{H}, \mathrm{CHH}_{_} \mathrm{Bn}, \mathrm{J}=10.6 \mathrm{~Hz}, \mathrm{~d}\right), 4.82-4.61\left(4 \mathrm{H}, 2 \times \mathrm{CH}_{2 \mathrm{Bn}}, \mathrm{m}\right), 4.58-$
 m), 3.75-3.46 $\left(6 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ _glycerol $)$, $3.15-2.98\left(3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ _Nspacer, $\left.m\right)$, 2.68-2.57 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _oce, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{\left.2 _ \text {spacer }, ~ m\right) . ~}^{\text {m }}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right), \delta: 157.3,140.1,139.6,139.5,139.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.4,129.3 \times 2,129.2 \times 2$, $129.1,128.9 \times 2,128.8 \times 2,128.7 \times 2,128.5,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{q}\right), 97.3\left(\mathrm{C}_{1}\right), 82.5\left(\mathrm{C}_{3}\right), 81.0$ $\left(\mathrm{C}_{2}\right), 78.7\left(\mathrm{C}_{4}\right), 78.0-77.8\left(\mathrm{CH}_{\text {glycerol }}\right), 76.0,75.6,73.8,73.5\left(\mathrm{CH}_{2 _ \text {вn }}\right), 71.5\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 69.0$ (CH_{2} _Ospacer), $68.1-68.0\left(\mathrm{CH}_{2}\right.$ _glycerol) , $66.6 \mathrm{CH}_{2}$ Cbzz $), 63.2\left(\mathrm{CH}_{2}\right.$ OcEE $), 61.1\left(\mathrm{CH}_{2}\right.$-glycerol) , $41.4\left(\mathrm{CH}_{2}\right.$ _Nspacer) $)$, 30.7-30.4, 26.8, 25.7 (CH_{2} spacer), 20.2-20.1 (CH_{2} _oce).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.44,-1.37$
HRMS: $\mathrm{C}_{54} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{P}+\mathrm{H}^{+}$required 981.4297 , found 981.4296
(Protected) (GroP)(GlcGroP)-Spacer or Dimer S22

Alchol S21 (0.17 mmol) was coupled with phospharamidite $8(0.26 \mathrm{mmol}, 1.5$ eq) following the general procedure. Compound S22 was obtained after column chromatography (DCM:Acetone, 6:4) in 82\% yield (0.14 mmol).
TLC analysis, R_{f} : 0.32 (DCM:Acetone,
1:1).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, δ : 7.48-7.10 (30H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right)$, 5.71-5.55 (1H, NH, b), 5.16 ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.6$ $\mathrm{Hz}, \mathrm{d})$, $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.90-4.83\left(1 \mathrm{H}, \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.80-4.69\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{-B n}, \mathrm{~m}\right), 4.66-4.56$ $\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{-} \mathrm{Bn}, \mathrm{m}\right), 4.58-4.43\left(3 \mathrm{H}, \mathrm{CHH}_{\text {Bn }}\right), 4.30-4.04\left(11 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$ OCE, $3 \times \mathrm{CH}_{2}$ glycerol, $\left.\mathrm{CH}_{\text {glycerol }}\right)$, 4.05-3.96 ($2 \mathrm{H}, \mathrm{CH}_{2}$ _ospacer, m), 3.95-3.86 $\left(\mathrm{H}_{5}\right), 3.86-3.76\left(1 \mathrm{H}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.75-3.46\left(7 \mathrm{H}, \mathrm{CH}_{\text {goycerol }}, 2 \times \mathrm{H}_{6}\right.$,
 CH_{2} spacer, m), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right), \delta: 157.3,140.1,139.7,139.6,139.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 3,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 3,128.7 \times 2$, 128.6×2, $128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.1-97.0\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.0,75.6\left(\mathrm{CH}_{2 _}\right.$_n $), 75.1-74.2\left(\mathrm{CH}_{\text {glycerol }}\right)$, 73.9 ,

 ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.72,-1.70,-1.67,-1.66-1.47,-1.41$
HRMS: $\mathrm{C}_{67} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{18} \mathrm{P}_{2}+\mathrm{H}^{+}$required 1278.5063, found 1278.5067
(Protected) (GroP) $)_{2}($ GlcGroP)-Spacer or Trimer S23

(DCM:Acetone, 4:6)

Alchol S22 (0.12 mmol) was coupled with phospharamidite 8 (0.24 mmol , $2.0 \mathrm{eq})$ following the general procedure. Compound S23 was obtained after column chromatography (DCM:Acetone, $1: 1$) in 77% yield (0.92 mmol).
TLC analysis, $\quad \mathrm{R}_{\mathrm{f}}$: 0.38
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.10 (35H, $\mathrm{H}_{\text {arom }}$ m), 5.71-5.56 (1H, NH, b), 5.18-5.15 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cbz}, \mathrm{s}\right), 4.90-4.81\left(1 \mathrm{H}, \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.80-4.69\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.65-4.45(8 \mathrm{H}$, $\left.8 \times \mathrm{CHH}_{\text {Bn }}, \mathrm{m}\right), 4.28-3.94\left(17 \mathrm{H}, 3 \times \mathrm{CH}_{2 _ \text {oce }}, 5 \times \mathrm{CH}_{2 \text { _lycerol }}, \mathrm{CH}_{\text {glycerol }}\right), 3.94-3.75\left(5 \mathrm{H}, \mathrm{CH}_{2}\right.$ _ospacer, H_{5}, $\mathrm{H}_{3}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 3.75-3.46 ($7 \mathrm{H}, \mathrm{CH}_{\text {göycerol, }} 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}$ _glycerol) , 3.13-2.97 ($3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}$ _Nspacer,

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.1,139.7,139.6,139.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 3,129.3 \times 2,129.2$, $129.1 \times 2,129.0,128.9 \times 2,128.8 \times 3,128.7 \times 2$, 128.6×2, $128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.1-97.0\left(\mathrm{C}_{1}\right)$, $82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right)$, $76.0,75.6\left(\mathrm{CH}_{2} _\right.$हn $), 75.1-74.2\left(\mathrm{CH}_{\text {glycerol }}\right), 73.9$, 73.1, $72.5\left(\mathrm{CH}_{2}\right.$ _nn $), 71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right)$, $69.2\left(\mathrm{CH}_{2}\right.$ _Ospacer) , , 67.8-66.4 $\left(\mathrm{CH}_{2}\right.$ _glycerol, CH_{2} _Cbz $), 63.5-63.3$ ($\mathrm{CH}_{2 _ \text {_OCE }}$), $61.1\left(\mathrm{CH}_{2}\right.$ _lycerol) , $41.4\left(\mathrm{CH}_{2}\right.$ _Nspacer) , 30.7-30.4, 26.8, $25.7\left(\mathrm{CH}_{2}\right.$ _spacer), 20.2-20.1 (CH_{2} _oce). ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-1.72,-1.71,-1.69,-1.68,-1.66,-1.65,-1.64,-1.61,-1.40,-1.38,-1.35$ HRMS: $\mathrm{C}_{80} \mathrm{H}_{97} \mathrm{~N}_{4} \mathrm{O}_{23} \mathrm{P}_{3}+\mathrm{H}^{+}$required 1575.5829, found 1575.5827
(Protected) (GroP) $)_{3}$ (GlcGroP)-Spacer or Tetramer S24

Alchol S23 ($80 \mu \mathrm{~mol}$) was coupled with phospharamidite 8 ($160 \mu \mathrm{~mol}$, $2.0 \mathrm{eq})$ following the general procedure. Compound S24 was obtained after column chromatography (DCM:Acetone, $1: 1$) in 81% yield ($65 \mu \mathrm{~mol}$).
TLC analysis, $\quad R_{f}: \quad 0.33$
(DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.10 (35H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.74-5.56$ ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), 5.18-5.15 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.90-4.81\left(1 \mathrm{H}, \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.80-4.69\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{\text {Bn }}, \mathrm{m}\right), 4.65-4.45(10 \mathrm{H}$, $10 \times \mathrm{CHH}_{-}n, m), 4.28-3.94\left(23 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right.$ _OcE, $7 \times \mathrm{CH}_{2}$ _lycerol, $\left.\mathrm{CH}_{\text {glycerol) }}\right)$, $3.94-3.75\left(6 \mathrm{H}, \mathrm{CH}_{2}\right.$ _Ospacer,, H_{5}, $\left.\mathrm{H}_{3}, 2 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.75-3.46\left(7 \mathrm{H}, \mathrm{CH}_{\text {goycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ _glycerol) $)$, $3.16-2.97\left(3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}\right.$ Nspacer,

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.1,139.6 \times 2$, 139.5. $139.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.4 \times 3,129.3 \times 2,129.2$ $\times 2$, $129.1 \times 2,129.0 \times 3,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6 \times 2,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0-$ $96.9\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right), 78.6\left(\mathrm{C}_{4}\right), 76.0,75.6\left(\mathrm{CH}_{2}\right.$ _nn $), 75.1-74.2$ $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 73.9, 73.1, $72.5\left(\mathrm{CH}_{2}\right.$ _nn $), 71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 69.2\left(\mathrm{CH}_{2}\right.$ Ospacer $)$, 67.8-66.4 $\left(\mathrm{CH}_{2}\right.$ _lycerol , $\left.\mathrm{CH}_{2} \mathrm{Cbz}\right)$, $63.5-63.3\left(\mathrm{CH}_{2} \mathrm{oc}\right.$ E $)$, $61.1\left(\mathrm{CH}_{2}\right.$ _lycerol $)$, $41.4\left(\mathrm{CH}_{2}\right.$ _Nspacer), 30.7-30.4, 26.8, $25.7\left(\mathrm{CH}_{2}\right.$ _spacer $)$, 20.2-20.1 (CH_{2} _OcE).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, δ : -1.67, -1.66, -1.64, -1.63, -1.61, -1.59, -1.57, -1.39, -1.37.
HRMS: $\mathrm{C}_{93} \mathrm{H}_{113} \mathrm{~N}_{5} \mathrm{O}_{28} \mathrm{P}_{4}+\mathrm{H}^{+}$required 1872.6595, found 1872.6601
(Protected) (GroP) $)_{4}$ (GlcGroP)-Spacer or Pentamer S25

(DCM:Acetone, 4:6)

Alchol S24 ($48 \mu \mathrm{~mol}$) was coupled with phospharamidite $8(120 \mu \mathrm{~mol}$, $2.5 \mathrm{eq})$ following the general procedure. Compound S25 was obtained after column chromatography (DCM:Acetone, $1: 1$) in 76% yield ($36 \mu \mathrm{~mol}$).
TLC analysis, $\quad R_{f}: \quad 0.31$
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.10 (35H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.74-5.56$ ($1 \mathrm{H}, \mathrm{NH}, \mathrm{b}$), 5.18-5.15 ($1 \mathrm{H}, \mathrm{H}_{1}$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Cbz, s), $4.90-4.81\left(1 \mathrm{H}, \mathrm{CHH}_{\text {Bn }}, \mathrm{m}\right), 4.80-4.69\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{\text {Bn }}, \mathrm{m}\right), 4.65-4.45(12 \mathrm{H}$, $\left.12 \times \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.28-3.94\left(29 \mathrm{H}, 5 \times \mathrm{CH}_{2}\right.$ _оce, $9 \times \mathrm{CH}_{2}$ _glycerol, $\left.\mathrm{CH}_{\text {glycerol }}\right)$, $3.94-3.75\left(7 \mathrm{H}, \mathrm{CH}_{2}\right.$ _Ospacer, H_{5}, $\left.\mathrm{H}_{3}, 3 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.75-3.46\left(7 \mathrm{H}, \mathrm{CH}_{\text {gòycerol }}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}\right.$ _lycerol) $)$, 3.16-2.97 ($3 \mathrm{H}, \mathrm{OH}, \mathrm{CH}_{2}$ _Nspacer, m), 2.73-2.58 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{2}$ oce, m), 1.65-1.49 ($2 \mathrm{H}, \mathrm{CH}_{2 \text { _spacer }, ~ m}$), 1.45-1.14 ($6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$ spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 157.3,140.1,139.6 \times 2$, 139.5. $139.1\left(\mathrm{C}_{q}\right), 129.4 \times 3,129.3 \times 2,129.2$ $\times 2$, 129.1×2, $129.0 \times 3,128.9 \times 2,128.8 \times 3,128.7 \times 2,128.6 \times 2,128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0-$ $96.9\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right)$, $78.6\left(\mathrm{C}_{4}\right), 76.0,75.6\left(\mathrm{CH}_{2}\right.$ _Bn $), 75.1-74.2$ $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 73.9, 73.1, $72.5\left(\mathrm{CH}_{2}\right.$ _Bn $)$, $71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 69.2\left(\mathrm{CH}_{2}\right.$ Ospacer) , 67.8-66.4 $\left(\mathrm{CH}_{2}\right.$ _glycerol, $\left.\mathrm{CH}_{2} \mathrm{Cbz}\right)$, $63.5-63.3\left(\mathrm{CH}_{2}\right.$ Oce $)$, $61.1\left(\mathrm{CH}_{2}\right.$ _lycerol $)$, $41.4\left(\mathrm{CH}_{2}\right.$ _Nspacer $), 30.7-30.4,26.8,25.7\left(\mathrm{CH}_{2}\right.$ _spacer $)$, 20.2-20.1 (CH_{2} _OcE).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.44,-0.43,-0.40,-0.38,-0.34,-0.32,-0.18,-0.15$.
HRMS: $\mathrm{C}_{106} \mathrm{H}_{129} \mathrm{~N}_{6} \mathrm{O}_{33} \mathrm{P}_{5}+\mathrm{H}^{+}$required 2169.7361, found 2169.7358
(Protected) (GroP) $)_{5}$ (GlcGroP)-Spacer or Hexamer 28

(DCM:Acetone, 4:6)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 7.48-7.10 (35H, $\left.\mathrm{H}_{\text {arom }}, \mathrm{m}\right), 5.74-5.56(1 \mathrm{H}, \mathrm{NH}, \mathrm{b}), 5.18-5.15\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, m), $5.02\left(2 \mathrm{H}, \mathrm{CH}_{2 _\mathrm{Cbz}}, \mathrm{s}\right), 4.90-4.81\left(1 \mathrm{H}, \mathrm{CHH}_{\text {Bn }}, \mathrm{m}\right), 4.80-4.69\left(3 \mathrm{H}, 3 \times \mathrm{CHH}_{-\mathrm{Bn}}, \mathrm{m}\right), 4.65-4.45(14 \mathrm{H}$, $\left.14 \times \mathrm{CH}_{_} \mathrm{Bn}, \mathrm{m}\right), 4.28-3.94\left(35 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right.$ OCE,, $11 \times \mathrm{CH}_{2}$ _glycerol, $\left.\mathrm{CH}_{\text {glycerol }}\right), 3.94-3.75\left(8 \mathrm{H}, \mathrm{CH}_{2}\right.$ _ospacer, $\mathrm{H}_{5}, \mathrm{H}_{3}, 4 \times \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 3.75-3.46 ($7 \mathrm{H}, \mathrm{CH}_{\text {goycerol, }} 2 \times \mathrm{H}_{6}, \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{CH}_{2}$ glycerol), 3.16-2.97 (3H, OH ,
 $\left.\mathrm{CH}_{2 \text { _spacer },} \mathrm{m}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $157.3,140.1,139.6 \times 2$, 139.5. $139.1\left(\mathrm{C}_{q}\right), 129.4 \times 3,129.3 \times 2,129.2$ x 2, 129.1×2, $129.0 \times 3,128.9 \times 2$, $128.8 \times 3,128.7 \times 2$, 128.6×2, $128.4\left(\mathrm{CH}_{\text {arom }}\right), 118.6\left(\mathrm{C}_{\mathrm{q}}\right), 97.0-$ $96.9\left(\mathrm{C}_{1}\right), 82.3\left(\mathrm{C}_{3}\right), 80.8\left(\mathrm{C}_{2}\right), 79.2-79.1\left(\mathrm{CH}_{\text {glycerol }}\right), 78.6\left(\mathrm{C}_{4}\right), 76.0,75.6\left(\mathrm{CH}_{2}\right.$ _Bn $), 75.1-74.2$ $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 73.9, 73.1, $72.5\left(\mathrm{CH}_{2}\right.$ Bn $)$, $71.7\left(\mathrm{C}_{5}\right), 69.7\left(\mathrm{C}_{6}\right), 69.2\left(\mathrm{CH}_{2}\right.$ Ospacer) $)$, 67.8-66.4 $\left(\mathrm{CH}_{2}\right.$ _lycerol ,
 20.2-20.1 (CH_{2} _OCE).
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta:-0.41,-0.36,-0.34,-0.32,-0.30,-0.29,-0.14,-0.11$.
HRMS: $\mathrm{C}_{119} \mathrm{H}_{145} \mathrm{~N}_{7} \mathrm{O}_{38} \mathrm{P}_{6}+\mathrm{H}^{+}$required 2466.8128 , found 2466.8133

Final deprotections

The oligomer is dissolved in dioxane (2 mM) and upon the addition of ammonia solution in $\mathrm{H}_{2} \mathrm{O}(33 \%)$ the reaction mixture turns turbid. Once the solution becomes transparent (1-3 hours) the reaction mixture is concentrated in vacuo. After checking by ${ }^{1} \mathrm{H}$-NMR the disappearing of the cianoehtyl group, the residue is flushed over Dowex Na^{+}cation-exchange resin (type 50WX4-200, stored in 0.5 M NaOH in MilliQ, flushed with MeOH and MilliQ before use) column. After evaporation, the residue is dissolved in MilliQ $(2 \mathrm{mM})$ and 2 drops of AcOH are added. $\mathrm{Ar}_{(\mathrm{g})}$ is bubbled in the reaction mixture for 20 minutes while sonicating, Pd -black ($\approx 10 \mathrm{mg}$) is added and after an additional 10 minutes of $\mathrm{Ar}_{(\mathrm{g})}$ bubbling, the solution is left stirring under $\mathrm{H}_{2(g)}$ atmosphere for 1 week. After filtration over Celite $®$, the reaction mixture is concentrated in vacuo. The final compound is purified by sixe-exclusion chromatography (HW40, dimensions: $16 / 60 \mathrm{~mm}$, eluent: 0.15 M NH 4 OAc). After several co-evaporation with MilliQ, the product is eluted through a small column containing Dowex Na^{+}cation-exchange resin (type 50WX4200, stored in 0.5 M NaOH in MilliQ, flushed with MeOH and MilliQ before use).

(GlcGroP)(GroP) $)_{5}$-Spacer or Hexamer (1)

Compound 23 ($6 \mu \mathrm{~mol}$) was deprotected following the general procedure. The final product 1 was obtained in 78% yield ($4.7 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($850 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$), $\mathrm{\delta}: 5.07$ ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~d}$), 4.05-3.95 (7H, 5 x $\mathrm{CH}_{\text {glycerol }}, \mathrm{CH}_{2 _ \text {alycerol, }}$ m), 3.95-3.78 $(24 \mathrm{H}$, $10 \mathrm{CH}_{2}$ glycererol, $\mathrm{CHH}_{\text {glycerol, }} \mathrm{CH}_{2}$ Ospacer, $\left.\mathrm{H}_{5}, \mathrm{~m}\right), 3.77-3.64\left(4 \mathrm{H}, 2 \times \mathrm{H}_{6}, \mathrm{H}_{3}\right.$,
$\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.49\left(1 \mathrm{H}, \mathrm{H}_{2}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~J}=9.9 \mathrm{~Hz}, \mathrm{dd}\right), 3.38-3.30\left(1 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~m}\right), 3.00-2.91\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Nspacer, m), 1.69-1.56 ($4 \mathrm{H}, \mathrm{CH}_{2 \text { _spacer }}, \mathrm{m}$), 1.45-1.34 ($4 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $100.4\left(\mathrm{C}_{1}\right)$, $79.7\left(\mathrm{CH}_{\text {glycerol }}\right)$, $75.6\left(\mathrm{C}_{3}\right)$, $74.5\left(\mathrm{C}_{5}\right), 74.2\left(\mathrm{C}_{2}\right), 72.3\left(\mathrm{C}_{4}\right)$, 72.2-72.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, 68.9-68.6 $\left(\mathrm{CH}_{2}\right.$ _glycerol $)$, $67.8-67.7\left(\mathrm{CH}_{2}\right.$ glycerol $), 63.1\left(\mathrm{C}_{6}\right), 62.8\left(\mathrm{CH}_{2}\right.$ _glycerol $)$, 42.1 ($\mathrm{CH}_{\left.2 _ \text {Nspacer }\right)}$, 32.0, 29.2, 27.7, $27.1\left(\mathrm{CH}_{\text {2spacer }}\right)$.
${ }^{31}$ P-NMR($162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$), ס: 1.78, 1.89, 1.93, 2.04.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{6} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$required 1204.1941, found 1204.1951

(GroP)(GlcGroP)(GroP) ${ }_{4}$-Spacer or Hexamer (2)

Compound 24 (11 $\mu \mathrm{mol}$) was deprotected following the general procedure. The final product 2 was obtained in 73% yield ($8 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (850 MHz , $\mathrm{CD}_{3} \mathrm{CN}$), ס: 5.14 (1 H , H_{1}, J=3.8 Hz, d), 4.114.04 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }} \mathrm{m}$), 4.05-3.95 (8H, $4 \times$ CH $\left._{\text {glycerol, }} 2 \times \mathrm{CH}_{2 _ \text {glycerol, }} \mathrm{m}\right)$, 3.95-3.78 (23H, $9 \times \mathrm{CH}_{2}$ _lycererol, $\mathrm{H}_{6}, \mathrm{CH}_{2}$ _Ospacer, H_{5}, $\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.76-3.68\left(2 \mathrm{H}, \mathrm{H}_{6}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.64\left(1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{\text {glycerol }}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}\right.$, dd), $3.56(1 \mathrm{H}$, $\mathrm{CHH}_{\text {glycerol }}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}$, dd) $3.50\left(1 \mathrm{H}, \mathrm{H}_{2}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~J}=9.9 \mathrm{~Hz}, \mathrm{dd}\right), 3.35(1 \mathrm{H}, \mathrm{H} 4, \mathrm{~J}=9.6 \mathrm{~Hz}$, t), $2.96\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ _Nspacer, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{t}\right)$, 1.69-1.56 ($4 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m), 1.45-1.34 ($4 \mathrm{H}, \mathrm{CH}_{2}$ _spacer, m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $98.6\left(\mathrm{C}_{1}\right)$, 76.2-76.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.8\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{5}\right)$, $72.4\left(\mathrm{C}_{2}\right)$, 71.7$71.6\left(\mathrm{CH}_{\text {glycerol }}\right), 70.6\left(\mathrm{C}_{4}\right), 70.5-70.3\left(\mathrm{CH}_{\text {glycerol }}\right)$, $67.3-66.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 66.1\left(\mathrm{CH}_{2}\right.$ _lycerol $), 65.3$ $\left(\mathrm{CH}_{2 \text { glycerol }}\right)$, $62.8\left(\mathrm{CH}_{2 \text { _glycerol }}\right)$, $61.4\left(\mathrm{C}_{6}\right)$, $42.1\left(\mathrm{CH}_{2 _ \text {_spacer }}\right), 32.0,29.2,27.7,27.1\left(\mathrm{CH}_{2 \text { spacerer }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 1.62, 1.84, 1.94, 2.04.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{6} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$required 1204.1941, found 1204.1956
$\left(\text { GroP }_{2} \mathbf{2}^{(\mathrm{GlcGroP})(G r o P}\right)_{3}$-Spacer or Hexamer (3)

Compound 25 ($6 \mu \mathrm{~mol}$) was deprotected following the general procedure. The final product 3 was obtained in 62% yield (3.7 $\mu \mathrm{mol})$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (850 MHz , $\mathrm{CD}_{3} \mathrm{CN}$), ठ: $5.14(1 \mathrm{H}$,
$\left.\mathrm{H}_{1}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~d}\right)$, 4.11-4.04 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 4.05-3.95 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{CH}_{2}$ _glycerol, m), 3.95$3.78\left(23 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right.$ _glycererol, $\mathrm{H}_{6}, \mathrm{CH}_{2}$ _ospacer, $\left.\mathrm{H}_{5}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right)$, 3.76-3.68 (2H, $\left.\mathrm{H}_{6}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.64(1 \mathrm{H}$, $\mathrm{CH}_{\text {glycerol }}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}$, dd), $3.56\left(1 \mathrm{H}, \mathrm{CH} H_{\text {glycerol }}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}\right.$, dd) $3.50\left(1 \mathrm{H}, \mathrm{H}_{2}\right.$, $\mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{~J}=9.9 \mathrm{~Hz}, \mathrm{dd}), 3.35\left(1 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~J}=9.6 \mathrm{~Hz}, \mathrm{t}\right), 2.96\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Nspacer}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{t}\right), 1.69-1.56(4 \mathrm{H}$, $\left.\mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}\right), 1.45-1.34\left(4 \mathrm{H}, \mathrm{CH}_{2}\right.$ _spacer, m$)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $98.6\left(\mathrm{C}_{1}\right)$, 76.2-76.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.8\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{5}\right)$, $72.4\left(\mathrm{C}_{2}\right)$, 71.7$71.6\left(\mathrm{CH}_{\text {glycerol }}\right), 70.6\left(\mathrm{C}_{4}\right), 70.5-70.3\left(\mathrm{CH}_{\text {glycerol }}\right)$, $67.3-66.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 66.1\left(\mathrm{CH}_{2}\right.$ _glycerol $), 65.3$ $\left(\mathrm{CH}_{2 \text { glycerol }}\right)$, $62.8\left(\mathrm{CH}_{2}\right.$ _glycerol) $)$, $61.4\left(\mathrm{C}_{6}\right)$, $42.1\left(\mathrm{CH}_{2 _ \text {Nspacer) }}\right), 32.0,29.2,27.7,27.1\left(\mathrm{CH}_{\text {sppacer }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 1.62, 1.84, 1.94, 2.04.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{67} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$requires 1204.1941, found 1204.1951
$\left(\text { GroP }_{3}\right)_{3}(\text { GlcGroP)(GroP) })_{2}$-Spacer or Hexamer (4)

Compound 26 ($9 \mu \mathrm{~mol}$) was deprotected following the general procedure. The final product 4 was obtained in 81% yield (7.3 $\mu \mathrm{mol})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (850 MHz, $\mathrm{CD}_{3} \mathrm{CN}$), ס: 5.14 (1 H ,
$\left.\mathrm{H}_{1}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~d}\right)$, 4.11-4.04 ($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 4.05-3.95 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{CH}_{2}$ _glycerol, m), 3.95$3.78\left(23 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right.$ _lycererol, $\mathrm{H}_{6}, \mathrm{CH}_{2}$ _ospacer, $\left.\mathrm{H}_{5}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right)$, 3.76-3.68 $\left(2 \mathrm{H}, \mathrm{H}_{6}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.64(1 \mathrm{H}$, $\mathrm{CHH}_{\text {glycerol }}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}$, dd), 3.56 ($1 \mathrm{H}, \mathrm{CH} H_{\text {glycerol }} \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}$, dd) $3.50\left(1 \mathrm{H}, \mathrm{H}_{2}\right.$, J=3.8 Hz, J=9.9 Hz, dd), $3.35\left(1 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~J}=9.6 \mathrm{~Hz}, \mathrm{t}\right), 2.96\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Nspacer, J=7.5 Hz, t), 1.69-1.56 (4H, CH_{2} spacer, m), 1.45-1.34 (4H, CH $\mathrm{CH}_{\text {_spacer },} \mathrm{m}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $98.6\left(\mathrm{C}_{1}\right)$, 76.2-76.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.8\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{5}\right)$, $72.4\left(\mathrm{C}_{2}\right)$, 71.7$71.6\left(\mathrm{CH}_{\text {glycerol }}\right), 70.6\left(\mathrm{C}_{4}\right), 70.5-70.3\left(\mathrm{CH}_{\text {glycerol }}\right)$, $67.3-66.9\left(\mathrm{CH}_{2}\right.$ _lycerol $)$, $66.1\left(\mathrm{CH}_{2 \text { _alycerol }}\right)$, 65.3 $\left(\mathrm{CH}_{2 \text { glycerol }}\right)$, $62.8\left(\mathrm{CH}_{2}\right.$ _glycerol $), 61.4\left(\mathrm{C}_{6}\right), 42.1\left(\mathrm{CH}_{2 _ \text {_Nspacer }}\right), 32.0,29.2,27.7,27.1\left(\mathrm{CH}_{2 \text { spacer }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: 1.62, 1.84, 1.94, 2.04.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{67} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$required 1204.1941, found 1204.1949
(GroP) $)_{4}($ GlcGroP)(GroP) -Spacer or Hexamer (5)

Compound 27 (16 $\mu \mathrm{mol}$) was deprotected following the general procedure. The final product 5 was obtained in 78% yield ($12 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}$-NMR (850 MHz , $\mathrm{CD}_{3} \mathrm{CN}$), ठ: $5.14\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, $\mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{~d})$, 4.11-4.04
($1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}$), 4.05-3.95 ($8 \mathrm{H}, 4 \times \mathrm{CH}_{\text {glycerol }}, 2 \times \mathrm{CH}_{2}$ _glycerol, m), $3.95-3.78\left(23 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right.$ _glycererol, H_{6}, CH_{2} Ospacer, $\left.\mathrm{H}_{5}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.76-3.68\left(2 \mathrm{H}, \mathrm{H}_{6}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.64\left(1 \mathrm{H}, \mathrm{CH} H_{\text {glycerol }}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}\right.$, dd), $3.56\left(1 \mathrm{H}, \mathrm{CHH}_{\text {glycerol }}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}\right.$, dd) $3.50\left(1 \mathrm{H}, \mathrm{H}_{2}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~J}=9.9 \mathrm{~Hz}\right.$, dd), 3.35 ($1 \mathrm{H}, \mathrm{H}_{4}$, $\mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{t}), 2.96\left(2 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{t}\right), 1.69-1.56\left(4 \mathrm{H}, \mathrm{CH}_{2 _ \text {spacer }}, \mathrm{m}\right), 1.45-1.34\left(4 \mathrm{H}, \mathrm{CH}_{2}\right.$ spacer , m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $98.6\left(\mathrm{C}_{1}\right)$, 76.2-76.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.8\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{5}\right)$, $72.4\left(\mathrm{C}_{2}\right)$, 71.7$71.6\left(\mathrm{CH}_{\text {glycerol }}\right), 70.6\left(\mathrm{C}_{4}\right), 70.5-70.3\left(\mathrm{CH}_{\text {glycerol }}\right)$, $67.3-66.9\left(\mathrm{CH}_{2}\right.$ _glycerol $), 66.1\left(\mathrm{CH}_{2}\right.$ _glycerol) $), 65.3$ $\left(\mathrm{CH}_{2 \text { glycerol }}\right)$, $62.8\left(\mathrm{CH}_{2}\right.$ _glycerol) $)$, $61.4\left(\mathrm{C}_{6}\right)$, $42.1\left(\mathrm{CH}_{2 _ \text {Nspacer) }}\right), 32.0,29.2,27.7,27.1\left(\mathrm{CH}_{\text {sppacer }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, $\delta: 1.62,1.84,1.94,2.04$.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{67} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$required 1204.1941, found 1204.1957
(GroP) $)_{5}$ (GlcGroP)-Spacer or Hexamer (6)

Compound 28 (21 $\mu \mathrm{mol}$) was deprotected following the general procedure. The final product 6 was obtained in 68% yield ($14 \mu \mathrm{~mol}$).
${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($850 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$), $\delta: 5.14$ ($1 \mathrm{H}, \mathrm{H}_{1}, \mathrm{~J}=3.8 \mathrm{~Hz}, \mathrm{~d}$), 4.11-4.04 (1H, $\left.\mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 4.05-3.95(8 \mathrm{H}, 4 \mathrm{x}$ $\mathrm{CH}_{\text {glycerol, }} 2 \times \mathrm{CH}_{2}$ _lycerol, m), 3.95-3.78 (23H, $9 \times \mathrm{CH}_{2}$ _lycererol, $\mathrm{H}_{6}, \mathrm{CH}_{2}$ _Ospacer, $\left.\mathrm{H}_{5}, \mathrm{CH}_{\text {glycerol }}, \mathrm{m}\right), 3.76-3.68\left(2 \mathrm{H}, \mathrm{H}_{6}, \mathrm{H}_{3}, \mathrm{~m}\right), 3.64\left(1 \mathrm{H}, \mathrm{CHH}_{\text {glycerol }}\right.$, $J=4.3 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}, \mathrm{dd}), 3.56\left(1 \mathrm{H}, \mathrm{CH}_{\text {glycerol }}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{~J}=11.8 \mathrm{~Hz}\right.$, dd) $3.50\left(1 \mathrm{H}, \mathrm{H}_{2}, \mathrm{~J}=3.8 \mathrm{~Hz}\right.$, $\mathrm{J}=9.9 \mathrm{~Hz}, \mathrm{dd}), 3.35\left(1 \mathrm{H}, \mathrm{H}_{4}, \mathrm{~J}=9.6 \mathrm{~Hz}, \mathrm{t}\right), 2.96\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ Nspacer, $\left.\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{t}\right), 1.69-1.56\left(4 \mathrm{H}, \mathrm{CH}_{2}\right.$ spacer, m), 1.45-1.34 (4H, CH _spacer 2 m).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$, ס: $98.6\left(\mathrm{C}_{1}\right)$, 76.2-76.1 $\left(\mathrm{CH}_{\text {glycerol }}\right)$, $73.8\left(\mathrm{C}_{3}\right)$, $72.7\left(\mathrm{C}_{5}\right)$, $72.4\left(\mathrm{C}_{2}\right)$, 71.7$71.6\left(\mathrm{CH}_{\text {glycerol }}\right), 70.6\left(\mathrm{C}_{4}\right), 70.5-70.3\left(\mathrm{CH}_{\text {glycerol }}\right)$, $67.3-66.9\left(\mathrm{CH}_{2}\right.$ _lycerol $), 66.1\left(\mathrm{CH}_{2}\right.$ _glycerol) $), 65.3$ $\left(\mathrm{CH}_{2 \text { glycerol }}\right)$, $62.8\left(\mathrm{CH}_{2}\right.$ _glycerol $)$, $61.4\left(\mathrm{C}_{6}\right)$, $42.1\left(\mathrm{CH}_{2 _ \text {Nspacer }}\right), 32.0,29.2,27.7,27.1\left(\mathrm{CH}_{\text {sppacer }}\right)$.
${ }^{31} \mathrm{P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right), \delta: 1.62,1.84,1.94,2.04$.
HRMS: $\mathrm{C}_{30} \mathrm{H}_{6} \mathrm{NO}_{36} \mathrm{P}_{6}+\mathrm{H}^{+}$requires 1204.1941, found 1204.1948

Generation and Serum analysis of microarrays

The amino-spacer equipped GTA-fragments were dissolved in spotting buffer (Nexterion Spot, Schott Nexterion) with 10% DMSO in 384 -wells V-bottom plates (Genetix, New Milton, UK). The GTAfragments were printed in three final concentrations $(30 \mu \mathrm{M}, 10 \mu \mathrm{M}$ and $3 \mu \mathrm{M})$ in triplicate on epoxysilane-coated glass slides (Slide E, Schott, Nexterion) by contact printing using the Omnigrid 100 microarrayer (Genomic Solutions, Ann Arbor, MI) equipped with SMP3 pins with uptake channels that deposit 0.7 nl at each contact. The slides were rested in a high humidity chamber for 18 hours and were stored in the dark until used. The slides were washed with PBS (3x) and subsequently all unreacted sites on the arrays were blocked by shaking the slides for 1 hour with ethanolamine (0.25 $\mathrm{ml}, 0.05 \mathrm{M}$ in PBS containing $20 \mathrm{mg} / \mathrm{ml}$ of BSA). The slides were flushed with PBS containing 5% of Tween® 20 and PBS containing 1% of Tween $® 20$ subsequently. After removal of the PBS containing 1% of Tween® 20, the arrays were shaken with the primary antibody dilutions (0.25 ml , diluted with PBS containing 1% of Tween $® 20$ and $10 \mathrm{mg} / \mathrm{ml}$ of BSA) for 60 minutes. Serum obtained from rabbits immunized with native LTA isolated from E. faecalis strain 12030 was used at a $1: 1000$ dilution, while rabbit serum raised against the previously reported BSA-WH7 at a 1:500 dilution. The slides were flushed with PBS containing 5\% of Tween® 20 and PBS containing 1% of Tween® 20 subsequently. After removal of the PBS containing 1% of Tween® 20, slides were shaken with anti-rabbit-lgG secondary antibodies, labeled with DyLight 550 reporter groups ($0.25 \mathrm{ml}, 0.5 \mu \mathrm{~g} / \mathrm{ml}$ final dilution in PBS containing 1% of Tween $® 20$ and $10 \mathrm{mg} / \mathrm{ml}$ of BSA) for 30 minutes in the dark. The slides were flushed with PBS containing 5\% of Tween® 20, PBS and MilliQ subsequently. The slides were dried by centrifugation and were analyzed on fluorescence on 532 nm and 635 nm using a G2565BA scanner. Data and image analyses were performed with GenePix Pro 7.0 software (Molecular Devices, Sunnyvale, CA, USA) as described previously (J. Proteome Res., 8 (2009), pp. 4301-4310). Fluorescence intensities were quantified and corrected for background/non-specific antibody adhesion by subtracting the fluorescence at blank spots, where only spotting buffer was printed without GTA fragment. The average of the triplicate spots was normalized to the highest intensity on the array and visualized in bar graphs using Microsoft Excel.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra
（S）－1－O－allyl－3－O－（tert－butyldiphenylsilyl）－sn－glycerol（11）

	$\begin{array}{ll} \text { TH } \\ \text { ウু } \\ \text { min } \end{array}$			$\begin{aligned} & \text { I } \\ & \hline- \\ & \hline \end{aligned}$				安家岂			$\begin{aligned} & \text { Ț } \\ & \text { À } \end{aligned}$					
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	${ }^{1} 0$

(R)-1-O-(tert-butyldiphenylsilyl)-3-O-allyl-sn-glycerol (12)

[^0](R)-1-O-allyl-3-O-(4-methoxybenzyl) -sn-glycerol (13)

(S)-1-O-(4-methoxybenzyl)-3-O-allyl-sn-glycerol (14)

(R)-1-O-allyl-3-O-benzoyl-sn-glycerol (15)

BzO $\underbrace{\text { OHAllyl }}$

[^1]
(S)-1-O-benzoyl-3-O-allyl-sn-glycerol (16)

BzO OAlly

170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70	65	60
											f1 (ppm)											

(S)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-3-O-(tert-butyldiphenylsilyl-snglycerol (17)

 (l)
 ตัa

(R)-1-O-(tert-butyldiphenyIsilyl)-2-O-(2,3,4,6-O-benzyl- $\alpha-\mathrm{D}-\mathrm{glucopyranosyl})-3-\mathrm{O}$-allyl-snglycerol (18)

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-3-O-(4-methoxybenzyl)-sn-glycerol (19)

(S)-1-O-(4-methoxybenzyl)-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O-allyl-sn-glycerol (20)

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-3-O-benzoyl-sn-glycerol (21)

(S)-1-O-benzoyl-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O-allyl-sn-glycerol (22)

| 170 | 165 | 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 |
| :--- |

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α-D-glucopyranosyl)-sn-glycerol (S3)

い

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- $\alpha-D-g l u c o p y r a n o s y l)-3-O(4,4 '$-dimethoxytrityl)-sn-glycerol (S4)

(R)-2-O-(2,3,4,6-O-benzyl-a-D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S5)

(GroP)-Spacer or Monomer S6

4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.0	-1.5	-2.0	${ }^{-} \cdot 1.5$	-3.0	-3.5	-4.0	-4.5
									f1 (ppm)									

(GroP) ${ }_{2}$-Spacer or Dimer S7

(GroP) ${ }_{3}$-Spacer or Trimer S8

(GroP) ${ }_{4}$-Spacer or Tetramer S9

(Protected) (GroP) $)_{5}$-Spacer or Pentamer S10

(Protected) (GIcGroP)(GroP) $)_{5}$-Spacer or Hexamer23

$\underbrace{-1}$

[^2](Protected) (GlcGroP)(GroP) $)_{4}$-Spacer or Pentamer S11

(Protected) (GroP)(GlcGroP)(GroP) ${ }_{4}$-Spacer or Hexamer 24

(Protected) (GlcGroP)(GroP) $)_{3}$-Spacer or Tetramer S12

(Protected) (GroP)(GlcGroP)(GroP) ${ }_{3}$-Spacer or Pentamer S13

(Protected) (GroP) $\left.\mathbf{2}^{(}{ }^{(G l c G r o P)(G r o P)}\right)_{3}$-Spacer or Hexamer 25

(Protected) (GIcGroP)(GroP) ${ }_{2}$-Spacer or Trimer S14

T				1					1							
160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(Protected) (GroP)(GlcGroP)(GroP) $)_{2}$-Spacer or Tetramer S15

(Protected) $\mathbf{(G r o P}_{2} \mathbf{2}^{(\text {GlcGroP) }}$ (GroP) $)_{2}$-Spacer or Pentamer S16

(Protected) $(\text { GroP })_{3}(\text { GlcGroP)(GroP) })_{2}$-Spacer or Hexamer 26

(

(Protected) (GlcGroP)(GroP)-Spacer or Dimer S17

(Protected) (GroP)(GlcGroP)(GroP) -Spacer or Trimer S18

$\underbrace{L_{n}}_{m}$
(Protected) (GroP) $)_{2}($ GlcGroP)(GroP) -Spacer or Tetramer S19

(Protected) (GroP) $)_{3}$ (GlcGroP)(GroP) -Spacer or Pentamer S20

(Protected) (GroP) $)_{4}($ GlcGroP)(GroP) -Spacer or Hexamer 27

(Protected) GlcGroP-Spacer or Monomer S21

(Protected) (GroP)(GlcGroP)-Spacer or Dimer S22

(Protected) (GroP) $)_{2}$ (GlcGroP)-Spacer or Trimer S23

(Protected) (GroP) $)_{3}$ (GlcGroP)-Spacer or Tetramer S24

(Protected) (GroP) $)_{4}$ (GlcGroP)-Spacer or Pentamer S25

$\underbrace{n \rightarrow 0}$

	35											1					
4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.0	-1.5	-2.0	-2.5	-3.0	-3.5	-4.0	4.5

(Protected) (GroP) $)_{5}$ (GlcGroP)-Spacer or Hexamer 28

(GlcGroP)(GroP) $)_{5}$-Spacer or Hexamer (1)

[^3](GroP)(GlcGroP)(GroP) $)_{4}$-Spacer or Hexamer (2)

[^4]$\left.\left(\text { GroP }_{2}\right)_{(\text {GlcGroP) }}{ }^{(G r o P}\right)_{3}$-Spacer or Hexamer (3)

$\left(\text { GroP }_{3}\right)_{3}(\text { GlcGroP)(GroP) })_{2}$-Spacer or Hexamer (4)

(GroP) $)_{4}$ (GIcGroP)(GroP) -Spacer or Hexamer (5)

[^5](GroP) $_{5}$ (GlcGroP)-Spacer or Hexamer (6)

105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20

[^6]
[^0]:

[^1]:

[^2]: $\begin{array}{llllllllllll}4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & { }^{-0.5} \\ & & & & & & & & & \\ f 1(\mathrm{ppm})\end{array}$

[^3]: $\begin{array}{ll}10 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & -3 & -4 & -5 & -6 & -7 & -8 & -9 & -10 & -11 & -12 & -13 & -14 & -15 & -16 & -17\end{array}$

[^4]:

[^5]:

[^6]:

