Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2020

Generation of sn-1-glucosyl-glycerolphosphate hexamers: an influence of the glycerol stereochemistry from synthesis to antibody interaction.

Francesca Berni^a, Liming Wang^a, Ermioni Kalfopoulou^b, D. Linh Nguyen^c, Daan van der Es^a, Herman S. Overkleeft^a, Cornelis H. Hokke^c, Johannes Huebner^b, Gijsbert A. van der Marel^a, Angela van Diepen^c and Jeroen D. C. Codée^{a*}

^aLeiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands ^bDivision of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany

^cDepartment of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

Supporting information

Table of Contents

Experimental Synthesis of acceptors 11-16	2
	4 6 9
Glycosylation using TMSI/Ph₃PO	
Synthesis of building block 7 from 21	
Phospharamidite couplings	12
Final deprotections	27
Generation and serum analysis of microarray	
¹ H, ¹³ C and ³¹ P NMR spectra	31

Experimental

General

All chemicals (Acros, Fluka, Merck, Sigma-Aldrich, etc.) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 (0.040-0.063 mm). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with 20% H₂SO₄ in ethanol or with a solution of (NH₄)₆Mo₇O₂₄·4H₂O 25 g/l and (NH₄)₄Ce(SO₄)₄·2H₂O 10 g/l, in 10% aqueous H₂SO₄ or with a solution of KMnO₄ (2%) and K₂CO₃ (1%) in water followed by charring at +/- 140 °C. Optical rotation measurements ($[\alpha]_{D}^{20}$) were performed on a Propol automated polarimeter (Sodium D-line, λ = 589 nm) with a concentration of 10 mg/ml (c = 1), unless stated otherwise and the reported value was calculated as the mean of 10 measurements. Infrared spectra were recorded on a Shimadzu FT-IR 8300. ¹H, ¹³C and ³¹P NMR spectra were recorded with a Bruker AV 400 (400, 101 and 162 MHz respectively), a Bruker AV 500 (500, 125 and 202 MHz respectively) or a Bruker DMX 850 (850, 214 and 344 MHz respectively). NMR spectra were recorded in CDCl₃ with chemical shift (δ) relative to tetramethylsilane for both ¹H and ¹³C. When D₂O or CD₃CN were used, ¹H-NMR were recorded with chemical shift (δ) relative to the proton of residual solvent (4.75 ppm and 1.94 ppm respectively). ¹³C-NMR spectra were recorded with chemical shift (δ) relative to TMS (external standard) in case of D₂O and 1.32 ppm as residual solvent in CD₃CN.The ³¹P- NMR spectra were recorded with chemical shift (δ) relative to H₃PO₄. (external standard). High resolution mass spectra were recorded by direct injection (2 µl of a 2 µM solution in water/acetonitrile; 50/50; v/v and 0.1 % formic acid) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 250 °C) with resolution R = 60000 at m/z 400 (mass range m/z = 150-2000) and dioctylphthalate (m/z = 391.28428) as a lock mass. High resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

Synthesis of acceptors 11-16

Scheme S 1: Synthetic strategy for synthesis of acceptors **11-16**. a) AllylBr, NaH, DMF 96%; b) AcOH, H₂O, 50 °C, 300mbar, quant; c) TBDPSCI, Imidazole, DMF, 82% (**11**), 80% (**12**); d) cat., PMBCI, KI, K₂CO₃, ACN, 60 °C, quant (**13**), 96% (**14**); e) cat., BzCI, DIPEA, CAN, 98% (**15**), quant. (**16**).

Note: for experimental procedure and data analysis of steps (a) and (b) see J. Shin, D. H. Thompson, *JOC*, **2003**, 68, 17, 6760-6766

(S)-1-O-allyl-3-O-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (11)

¹H-NMR (400 MHz, CDCl₃), δ : 7.70-7.62 (4H, H_{arom}, m), 7.47-7.35 (6H, H_{arom}, m), 5.95-5.82 (1H, H_{allyl}, m), 5.29-5.15 (2H, H_{2_allyl}, m), 4.03-3.97 (2H, CH_{2_allyl}, m), 3.95-3.86 (1H, CH_{glycerol}, m), 3.71 (2H, CH_{2_glycerol}, J_{CH2-CH}=5.4 Hz, d), 3.58-3.44 (2H, CH_{2_glycerol}, m), 2.49 (1H, OH, J_{OH-CH}=5.1Hz, d), 1.06 (9H, tBu, s).

¹³C-NMR (101 MHz, CDCl₃), δ : 135.7 (CH_{arom}), 134.7 (CH_{allyl}), 133.1 (C_q), 129.9 (CH_{arom}), 127.9 (CH_{arom}), 117.3 (CH_{allyl}), 72.5 (CH_{2_allyl}), 71.0 (CH_{2_glycerol}), 70.9 (CH_{glycerol}), 64.9 (CH_{2_glycerol}), 27.0 (CH_{3_tBu}), 18.9 (C_{q_tBu}).

([α]²⁰_D(CHCl₃): -4.1

HRMS: C₂₂H₃₀O₃Si + Na⁺ required 359.1856, found 359.1901.

(R)-1-O-(*tert*-butyldiphenylsilyl)-3-O-allyl-sn-glycerol (12)

Starting with diol **S2** (1.00 mmol), compound **12** was obtained following the procedure described for **11** in 80% yield (0.80 mmol).

TBDPSO OAllyl ¹H-NMR (400 MHz, CDCl₃), δ : 7.70-7.62 (4H, H_{arom}, m), 7.47-7.35 (6H, H_{arom}, m), 5.95-5.82 (1H, H_{allyl}, m), 5.29-5.15 (2H, 2 x H_{allyl}, m), 4.03-3.97 (2H, CH_{2_allyl}, m), 3.95-3.86 (1H, CH_{glycerol}, m), 3.71 (2H, CH_{2_glycerol}, J_{CH2-CH}=5.4 Hz, d), 3.58-3.44 (2H, CH_{2glycerol}, m), 2.49 (1H, OH, J_{OH-CH}=5.1Hz, d), 1.06 (9H, tBu, s).

¹³C-NMR (101 MHz, CDCl₃), δ : 135.7 (CH_{arom}), 134.7 (CH_{allyl}), 133.1 (C_q), 129.9 (CH_{arom}), 127.9 (CH_{arom}), 117.3 (CH_{allyl}), 72.5 (CH_{2_allyl}), 71.0 (CH_{2_glycerol}), 70.9 (CH_{glycerol}), 64.9 (CH_{2_glycerol}), 27.0 (CH_{3_tBu}), 18.9 (C_{q_tBu})

 $[\alpha]_{D}^{20}(CHCl_{3}): +3.5$

HRMS: C₂₂H₃₀O₃Si + Na⁺ required 359.1856, found 359.1901.

(R)-1-O-allyl-3-O-(4-methoxybenzyl)-sn-glycerol (13)

Diol **S1** (1.00 mmol) was coevaporated three times with toluene and dissolved Under inert atmosphere in dry ACN (2.5 mL, 0.4 M) and the flask was wrapped in aluminium foil. After 10 minutes stirring, PMBCI (1.10 mmol, 1.1 eq) was

added followed by K_2CO_3 (1.10 mmol, 1.1 eq) and KI (1 mmol, 1 eq). The reaction was heated to 60 °C and after stirring overnight TLC analysis (DCM:MeOH; 95:5) showed complete consumption of starting material. The reaction mixture was cooled to r.t., diluted with EtOAc and washed with H₂O. The water layer was extract with EtOAc and the combined organic layers were washed with Brine, dried over MgSO4 and concentrated *in vacuo*. The resulting crude was purified by column chromatography (8:2 \rightarrow 7:3 Pentane:EtOAc) yielding **13** as a colorless oil in quantitative yield (1.00 mmol).

TLC analysis: R_f= 0.35 (Pentane:EtOAc; 7:3)

¹H-NMR (400 MHz, CDCl₃), δ: 7.28-7.23 (2H, H_{arom}, m), 6.91-6.86 (2H, H_{arom}, m), 5.96-5.84 (1H, H_{allyl}, m), 5.31-5.15 (2H, H_{2_allyl}, m), 4.49 (2H, CH_{2_PMB}, s), 4.04-3.95 (3H, CH_{2_allyl}, CH_{glycerol}, m), 3.80 (2H, CH_{3_OMe}, s), 3.57-3.43 (4H, CH_{2_glycerol}, m), 2.46 (1H, OH, J_{OH-CH} =4.2 Hz, d).

¹³C-NMR(101 MHz, CDCl₃), δ: 134.5 (CH_{allyl}), 130.1 (C_q), 129.4 (CH_{arom}), 117.3 (CH_{allyl}), 113.9

 (CH_{arom}) , 73.1 $(CH_{2_{PMB}})$, 72.3 $(CH_{2_{allyl}})$, 71.3 $(CH_{2_{glycerol}})$, 71.04 $(CH_{2_{glycerol}})$, 69.6 $(CH_{2_{glycerol}})$, 55.3 $(CH_{3_{2}OMe})$.

 $[\alpha]_{D}^{20}(CHCI_{3}): -7.1$

HRMS: C₁₄H₂₀O₄ + Na⁺ required 275.1254, found 275.1259

(S)-1-O-(4-methoxybenzyl)-3-O-allyl-sn-glycerol (14)

OH PMBO OAllyl OAll

¹H-NMR (400 MHz, CDCl₃), δ : 7.28-7.23 (2H, H_{arom} , m), 6.91-6.86 (2H, H_{arom} , m), 5.96-5.84 (1H, H_{allyl} , m), 5.31-5.15 (2H, 2 x H_{allyl} , m), 4.49 (2H, CH_{2_PMB} , s), 4.04-3.95 (3H, CH_{2_allyl} , $CH_{glycerol}$, m), 3.80 (2H, CH_{3_OMe} , s), 3.57-3.43 (4H, $CH_{2_glycerol}$, m), 2.46 (1H, OH, J=4.2 Hz, d).

¹³C-NMR(101 MHz, CDCl₃), δ: 134.5 (CH_{allyl}), 130.1 (C_q), 129.4 (CH_{arom}), 117.3 (CH_{allyl}), 113.9 (CH_{arom}), 73.1 (CH_{2_PMB}), 72.3 (CH_{2_allyl}), 71.3 (CH_{2_glycerol}), 71.04 (CH_{2_glycerol}), 69.6 (CH_{2_glycerol}), 55.3 (CH_{3_OMe}).

 $[\alpha]_{D}^{20}(CHCl_{3})$: +7.5

HRMS: C₁₄H₂₀O₄ + Na⁺ required 275.1254, found 275.1259

(R)-1-O-allyl-3-O-benzoyl-sn-glycerol (15)

OH BZO OAIIVI Diol **S1** (10 mmol) was coevaporated with toluene three times and dissolved under inert atmosphere in dry ACN (25 mL, 0.4M). The flask was wrapped in aluminium foil and after ten minutes stirring, BzCl (11 mmol, 1.1 eq), DiPEA (12

mmol, 1.2 eq) and 2-Aminoethyl diphenylborinate (0.1 mmol, 0.01 eq) were subsequently added. The reaction was left to stir at room temperature and after 2h TLC analysis (DCM:MeOH; 95:5) showed complete consumption of starting material. The reaction mixture was diluted with EtOAc and washed with H₂O. The water layer was reextracted with EtOAc and the combined organic layers were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. The resulting crude was purified by column chromatography (85:15 \rightarrow 7:3, pentane:EtOAc) yielding **15** in 98% yield (9.8 mmol).

TLC analysis: $R_f = 0.35$ (Pentane:EtOAc; 75:25)

¹H-NMR (400 MHz, CDCl₃), δ : 8.09-8.03 (2H, H_{arom}, m), 7.61-7.55 (1H, H_{arom}, m), 7.49-7.41 (2H, H_{arom}, m), 5.97-5.85 (1H, H_{allyl}, m), 5.33-5.18 (2H, H_{2_allyl}, m), 4.48-4.36 (2H, CH_{2_glycerol}, m), 4.22-4.11 (1H, CH_{glycerol}, m), 4.08-4.03 (2H, CH_{2_allyl}, m), 3.65-3.53 (2H, CH_{2_glycerol}, m), 2.64-2.56 (1H, OH, bs). ¹³C-NMR(101 MHz, CDCl₃), δ : 166.7 (C_q), 134.2 (CH_{allyl}), 133.2 (CH_{arom}), 129.9 (C_q), 129.7 (CH_{arom}), 128.4 (CH_{arom}), 117.6 (CH_{allyl}), 72.5 (CH_{2_allyl}), 710.9 (CH_{2_glycerol}), 69.0 (CH_{glycerol}), 66.0 (CH_{2_glycerol}). [α]²⁰_D (CHCl₃) : -5.6

HRMS:C₁₃H₁₆O₄ + Na⁺ required 259.0941, found 259.1002

(S)-1-O-benzoyl-3-O-allyl-sn-glycerol (16)

OH BZO OAllyl OAllyl OAllyl

TLC analysis: R_f= 0.35 (Pentane:EtOAc; 75:25)

¹H-NMR (400 MHz, CDCl₃), δ : 8.09-8.03 (2H, H_{arom}, m), 7.61-7.55 (1H, H_{arom}, m), 7.49-7.41 (2H, H_{arom}, m), 5.97-5.85 (1H, H_{allyl}, m), 5.33-5.18 (2H, 2 x H_{allyl}, m), 4.48-4.36 (2H, CH_{2glycerol}, m), 4.22-4.11 (1H, CH_{glycerol}, m), 4.08-4.03 (2H, CH_{2_allyl}, m), 3.65-3.53 (2H, CH_{2_glycerol}, m), 2.64-2.56 (1H, OH, bs).

¹³C-NMR(101 MHz, CDCl₃), δ : 166.7 (C_q), 134.2 (CH_{allyl}), 133.2 (CH_{arom}), 129.9 (C_{q_arom}), 129.7 (CH_{arom}), 128.4 (CH_{arom}), 117.6 (CH_{allyl}), 72.5 (CH_{2_allyl}), 710.9 (CH_{2_glycerol}), 69.0 (CH_{glycerol}), 66.0 (CH_{2_glycerol}).

 $[\alpha]_{D}^{20}(CHCl_{3})$: +4.7

HRMS:C₁₃H₁₆O₄ + Na⁺ required 259.0941, found 259.0993

Glycosylation using TMSI/Ph₃PO.

General procedure

Donor (1 eq) and acceptor (0.75 eq) were co-evaporated three times with toluene. Under argon atmosphere, they were dissolved in dry DCM (0.1M) and after 10 minutes stirring Ph₃PO (6 eq) was added, followed by slow addition of TMSI (1 eq). The reaction mixture was allowed to stir at r.t. overnight. The reaction mixture was diluted with DCM, washed with Na₂S₂O₃, H₂O and brine. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was subjected to size exclusion gel chromatography (DCM:MeOH=1:1, for purification of the final product obtained as mixture of anomers (unless otherwise stated). The ratio α/β was calculated by ¹H-NMR.

(S)-1-*O*-allyl-2-*O*-(2,3,4,6-*O*-benzyl-α-D-glucopyranosyl)-3-*O*-(*ter*t-butyldiphenylsilyl-*sn*-glycerol (17)

On a scale of 0.10 mmol of donor **10**, following the general procedure, compound **17** was obtained in 72% yield (0.072 mmol) as colourless syrup in a α/β mixture (1.5:1). TLC analysis: R_f= 0.48 (Pentane:EtOAc; 9:1) ¹H-NMR (400 MHz, CDCl₃), $\delta(\alpha)$: 7.68-7.64 (4H, H_{arom}, m), 7.47-7.07 (26H, H_{arom}, m), 5.94-5.81 (1H, H_{allyl}, m), 5.33-5.07 (3H, 2 x H_{allyl}, H₁ m), 5.02-4.90 (1H, CH*H*_{Bn}, m), 4.84-4.62 (2H, 3 x CH*H*_{Bn}, m), 4.68-4.43 (4H, 4

HRMS: C₅₆H₆₄O₈Si + Na⁺ required 915.4263, found 915.4265

(R)-1-*O*-(*tert*-butyldiphenylsilyl)-2-*O*-(2,3,4,6-*O*-benzyl-α-D-glucopyranosyl)-3-*O*-allyl-*sn*-glycerol (18)

On a scale of 0.1 mmol of donor **10**, following the general procedure described above, compound **18** was isolated as colourless oil in a mixture of α/β anomers (>10:1) in 68% yield (0.068 mmol).

Analytical data in accordance with the one reported in: W. F. J. Hogendorf, L. J. van den Bos, H. S. Overkleeft, J. D. C. Codee, G. A. van der Marel, *Bioorg, Med. Chem.*, **2010**, 18, 3668-3678.

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α -D-glucopyranosyl)-3-O-(4-methoxybenzyl)-*sn*-glycerol (19)

On a scale of 0.1 mmol of donor **10**, following the general procedure, compound **19** was obtained in 65% yield (0.065 mmol) as colourless syrup in a α/β mixture (>10:1).

TLC analysis: R_f= 0.34 (Pentane:EtOAc; 8:2)

¹H-NMR (101 MHz, CDCl₃), $\delta(\alpha)$: 7.42-7.22 (20H, H_{arom}, m), 7.203-7.12 (2H, H_{arom}, m), 6.90-6.84 (2H, H_{arom}, m), 5.94-5.81 (1H, H_{allyl}, m), 5.30-5.12 (3H, 2

x H_{allyl}, H₁, m), 5.01 (1H, CH H_{Bn} , J=10.9 Hz, d), 4.88-4.78 (2H, 2 x CH H_{Bn} , m), 4.71-4.61 (3H, 2 x CH H_{Bn} , m) 4.54-4.45 (4H, 4 x CH H_{Bn} , m), 4.17-4.08 (1H, CH_{glycerol}, m), 4.07-3.93 (4H, H₅, H₃, CH_{2_allyl}, m), 3.81 (3H, CH_{3_OMe}, s), 3.76 (1H, CH $H_{glycerol}$, J_{CHH-CHH=10.7 Hz, J_{CHH-CH=3.4 Hz, dd), 3.72-3.51 (7H, CH $H_{glycerol}$, CH_{2_glycerol}, 2 x H₆, H₄, H₂, m).}}

¹³C-NMR(400 MHz, CDCl₃), $\delta(\alpha)$: 139.0, 138.5, 138.2, 138.0 (C_q), 134.7 (CH_{allyl}), 130.3 (C_q), 129.2, 128.3, 128.0 x 2, 127.9 x 2, 127.7, 127.6 x 2, 127.5 (CH_{arom}), 117.0 (CH_{2_allyl}), 96.2 (C₁), 81.9 (C₃), 79.5 (C₂), 77.7 (C₄), 75.7, 75.0 (CH_{2_Bn}), 74.7 (CH_{glycerol}), 73.5, 73.0, 72.3 (CH_{2_Bn}), 72.2 x 2 (CH_{2_Allyl}, CH_{2_Bn}), 70.4 (CH_{2_glycerol}), 70.2 (C₅), 69.7 (C₆), 55.3 (CH_{3_OMe}) [α]²⁰_D(CHCl₃): +31.2

HRMS: $C_{48}H_{54}O_9$ + Na⁺ required 9797.3660, found 797.3667

(S)-1-*O*-(4-methoxybenzyl)-2-*O*-(2,3,4,6-*O*-benzyl-α-D-glucopyranosyl)-3-*O*-allyl-*sn*-glycerol (20)

Bno OAllyl

On a scale of 0.1 mmol of donor **10**, following the general procedure, compound **20** was obtained in 66% (0.066 mmol) yield as colourless syrup in a α/β mixture (9:1).

TLC analysis: R_f= 0.34 (Pentane:EtOAc; 8:2)

¹H-NMR (400 MHz, CDCl₃), $\delta(\alpha)$: 7.39-7.16 (20H, H_{arom}, m), 7.15-7.08 (2H, H_{arom}, m), 6.80-6.73 (2H, H_{arom}, m), 5.93-5.81 (1H, H_{allvl}, m), 5.29-5.11 (3H, 2

PMBO H_{arom} , m), 6.80-6.73 (2H, H_{arom}, m), 5.93-5.81 (1H, H_{allyl}, m), 5.29-5.11 (3H, 2 x H_{allyl}, H₁, m), 4.98 (1H, CH*H*_{Bn}, J=10.8 Hz, d), 4.84-4.77 (2H, 2 x CH*H*_{Bn}, m), 4.74 (1H, CH*H*_{Bn}, J=12.0 Hz, d), 4.69 (1H, CH*H*_{Bn}, J=12.0 Hz, d), 4.57 (1H, CH*H*_{Bn}, J=12.1 Hz, d), 4.48-4.34 (4H, 4 x CH*H*_{Bn}, m), 4.12-3.94 (5H, CH_{glycerol}, H₅, H₃, CH_{2_allyl}, m), 3.79-3.71 (4H, CH*H*_{glycerol}, CH_{3_OMe}, s), 3.67-3.51 (6H, 2 x CH*H*_{glycerol}, 2 x H₆, H₄, H₂, m), 3.45 (1H, CH*H*_{glycerol}, J_{CH*H*-CH*H*=10.6 Hz, J_{CH*H*-CH=2,1 Hz, dd),}}

¹³C-NMR(101 MHz, CDCl₃), $\delta(\alpha)$: 139.1, 138.7, 138.5, 138.2 (C_q), 134.8 (CH_{allyl}), 130.4 (C_q), 129.6, 128.5 x 3, 128.2, 128.1, 128.0, 127.8 x 2, 127.7, 127.6 (CH_{arom}), 117.1 (CH_{2_allyl}), 113.8 (CH_{arom}), 96.3 (C₁), 82.1 (C₃), 79.8 (C₂), 77.8 (C₄), 75.8, 75.1 (CH_{2_Bn}), 74.8 (CH_{glycerol}), 73.6, 73.1, 72.6 (CH_{2_Bn}), 72.5 (CH_{2_Allyl}), 70.8, 70.3 (CH_{2_glycerol}), 70.2 (C₅), 69.6 (C₆), 55.4 (CH_{3_OMe}) [α]²⁰_D(CHCl₃): +19.4

HRMS: C₄₈H₅₄O₉ + Na⁺ required 797.3660, found 797.3664

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O-benzoyl-sn-glycerol (21)

On a scale of 15 mmol of donor **10**, following the general procedure and leaving the reaction stirring for 3 days, compound **21** was obtained in 86% yield (12.9 mmol) as colourless syrup (no presence of β anomer was detected).

TLC analysis: R_f= 0.31 (Pentane:EtOAc; 8:2)

BzO⁻¹H-NMR (400 MHz, CDCl₃), $\delta(\alpha)$: 8.05-8.00 (2H, H_{arom}, m), 7.57-7.52 (1H, H_{arom}, m), 7.43-7.23 (15H, H_{arom}, m), 7.18 (5H, H_{arom}, s), 7.15-7.10 (2H, H_{arom}, m), 5.90-5.79 (1H, H_{allyl}, m), 5.28-5.12 (3H, 2 x H_{allyl}, H₁, m), 4.95 (1H, CH*H*_{Bn}, J=10.8 Hz, d), 4.86-4.76 (2H, 2 x CH*H*_{Bn}, m), 4.65-4.58 (3H, 3 x CH*H*_{Bn}, m), 4.54 (1H, CH*H*_{glycerol}, J_{CH*H*-C*H*H}=10.8 Hz, J_{CH*H*-CH}=4.03 Hz, dd), 4.50-4.40 (3H, 2 x CH*H*_{Bn}, CH*H*_{glycerol}, m), 4.28-4.19 (1H, CH_{glycerol}, m), 4.04-3.94 (4H, H₅, H₃, CH_{2_allyl}, m), 3.78-3.55 (6H, CH_{2_glycerol}, 2 x H₆, H₄, H₂, m).

¹³C-NMR(101 MHz, CDCl₃), $\delta(\alpha)$: 166.5 (C_q), 139.0, 138.5, 138.1, 138.0 (C_q), 134.5 (CH_{allyl}), 133.2 (CH_{arom}), 130.0 (C_q), 129.8, 128.7, 128.6, 128.5, 128.4, 128.0 x 2, 127.9, 127.8 x 2, 127.7, 127.1 (CH_{arom}, 117.4 (CH_{2_allyl}), 96.4 (C₁), 82.0 (C₃), 79.8 (C₂), 77.7 (C₄), 75.7, 75.2 (CH_{2_Bn}), 73.9 (CH_{glycerol}), 73.7, 72.9 (CH_{2_Bn}), 72.4 (CH_{2_Allyl}), 70.6 (C₅), 70.0 (C₆), 68.6, 64.7 (CH_{2_glycerol}). [α]²⁰_D(CHCl₃): +22.4

HRMS: $C_{47}H_{50}O_9$ + Na⁺ required 781.3347, found 781.3354

(S)-1-O-benzoyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O-allyl-sn-glycerol (22)

On a scale of 0.1 mmol of donor **10**, following the general procedure, compound **22** was obtained in 70% yield (0.070 mmol) as colourless syrup in a α/β mixture (6:1).

TLC analysis: R_f= 0.31 (Pentane:EtOAc; 8:2)

¹H-NMR (400 MHz, CDCl₃), δ(α): 8.02-7.97 (2H, H_{arom}, m), 7.53-7.47 (1H,

 $\begin{array}{c} \text{BzO} \\ \text{H}_{arom}, m), \ 7.39-7.17 \ (20\text{H}, \ \text{H}_{arom}, m), \ 7.11-7.03 \ (2\text{H}, \ \text{H}_{arom}, m), \ 5.94-5.81 \ (1\text{H}, \ \text{H}_{allyl}, m), \ 5.31-5.15 \ (3\text{H}, \ 2 \ \text{x} \ \text{H}_{allyl}, \ \text{H}_1, \ m), \ 4.97 \ (1\text{H}, \ \text{CH}_{\text{Bn}}, \ \text{J}=10.8 \ \text{Hz}, \ d), \ 4.84-4.76 \ (2\text{H}, \ 2 \ \text{x} \ \text{CH}_{\text{H}_{\text{Bn}}}, \ m), \ 4.73 \ (2\text{H}, \ \text{CH}_{2_{\text{Bn}}}, \ \text{J}=2.9 \ \text{Hz}, \ d) \ 4.58-4.49 \ (2\text{H}, \ \text{CH}_{\text{H}_{\text{Bn}}}, \ \text{CH}_{\text{H}_{glycerol}}, \ m), \ 4.44-4.34 \ (2\text{H}, \ \text{CH}_{\text{H}_{\text{Bn}}}, \ \text{CH}_{\text{H}_{glycerol}}, \ m), \ 4.28 \ (1\text{H}, \ \text{CH}_{\text{H}_{\text{Bn}}}, \ \text{J}=12.1 \ \text{Hz}, \ d), \ 4.26-4.20 \ (1\text{H}, \ \text{CH}_{\text{H}_{glycerol}}, \ m), \ 4.05-3.94 \ (4\text{H}, \ \text{H}_{5}, \ \text{H}_{3}, \ \text{CH}_{2_allyl}, \ m), \ 3.71-3.53 \ (4\text{H}, \ 2 \ \text{x} \ \text{H}_{6}, \ \text{H}_{4}, \ \text{H}_{2}, \ m). \ 3.49 \ (1\text{H}, \ \text{CH}_{\text{H}_{glycerol}}, \ \text{J}_{\text{CH}\text{-CH}\text{-}\text{CH}\text{=}}10.6 \ \text{Hz}, \ \text{J}_{\text{CH}\text{-}\text{-CH}\text{=}}3.1 \ \text{Hz}, \ \text{dd}), \ 3.34 \ (1\text{H}, \ \text{CH}_{\text{H}_{glycerol}}, \ \text{J}_{\text{CH}\text{-}\text{-CH}\text{=}}2.1 \ \text{Hz}, \ \text{dd}). \end{array}$

¹³C-NMR(101 MHz, CDCl₃), $\delta(\alpha)$: 166.4 (C_q), 139.0, 138.5, 138.4, 137.9 (C_q), 134.5 (CH_{allyl}), 133.1 ()CH_{arom}), 130.0 (C_q), 129.8, 128.6 x 2, 128.5 x 2, 128.4, 128.2, 128.1, 128.0 x 2, 127.8, 127.7 x 2, (CH_{arom}), 117.4 (CH_{2_allyl}), 96.3 (C₁), 82.0 (C₃), 79.7 (C₂), 77.6 (C₄), 75.8, 75.1 (CH_{2_Bn}), 73.8 (CH_{glycerol}), 73.6, 72.8 (CH_{2_Bn}), 72.5 (CH_{2_Allyl}), 70.5 (C₅), 69.8 (C₆), 68.2, 65.2 (CH_{2_glycerol}). [α]²⁰_D(CHCl₃): +35.6

HRMS: C₄₇H₅₀O₉ + Na⁺ requires 781.3347, found 781.3357

Synthesis of building block 7 from 21

Scheme S2: Synthetic strategy towards compound 7. a) Na_(s), MeOH, quant.; b) DMTrCl, TEA, DCM, 88%; c) (i) Ir(COD)(PPh₂Me)₂PF₆, H₂, THF; (ii) NaHCO_{3(aq)}, I₂, THF, 92%; d) 2-cianoethyl-*N*,*N*-diisopropylchlorophosphoramidite, TEA, DCM, 70%.

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-sn-glycerol (S3)

Compound **21** (12 mmol) was dissolved in dry MeOH (60 mL, 0,2 M) and a piece of Na_(s) was added. The reaction was stirred for 1 hour, until TLC analysis (Pentane:EtOAc, 8:2) showed complete consumption of the starting material. The reaction mixture was neutralized by addition of Amberlite IR-120 (H⁺ form), filtered and concentrated *in vacuo*. The product was obtained quantitatively (12 mmol) and used directly in the

subsequent step without further purification. TLC analysis: $R_f = 0.32$ (Pentane:EtOAc; 7:3)

¹H-NMR (400 MHz, CDCl₃), δ : 7.41-7.20 (18H, H_{arom}, m), 7.19-7.07 (2H, H_{arom}, m), 5.90-5.75 (1H, H_{allyl}, m), 5.22 (1H, CH*H*_{allyl}, J = 17.3, 1.7 Hz, dd), 5.14 (1H, CH*H*_{allyl}, J = 10.4, 1.8 Hz, dd), 4.98-4.89 (2H, H₁, CH*H*_{Bn}, m), 4.89-4.75 (3H, 3 x CH*H*_{Bn}, m), 4.67 (1H, CH*H*_{Bn}, J=11.6 Hz, d), 4.60 (1H, CH*H*_{Bn}, J=12.1 Hz, d), 4.52-4.41 (2H,2 x CH*H*_{Bn}, m), 4.05-3.87 (4H, H₃, H₅, CH_{2-Allyl}, m), 3.87-3.78 (1H, CH_{glycerol}, m), 3.77-3.38 (8H, 2 x H₆, H₄, H₂, 2 x CH_{2-glycerol} m), 3.17-3.04 (1H, OH, bs). ¹³C-NMR(101 MHz, CDCl₃), δ : 138.8, 138.3, 138.0, 137.7 (C_q), 134.6 (CH_{allyl}), 128.7, 128.5 x 3, 128.4 x 2, 128.3, 128.2, 128.1 x 2, 128.0 x 2, 127.9, 127.8 x 2, 127.7 (CH_{arom}), 117.3 (CH_{2-allyl}), 98.8 (C₁), 82.4 (C₃), 79.9 (C₂, CH_{glycerol}), 77.9 (C₄), 75.7, 75.2, 74.2, 73.6 (CH_{2-Bn}), 72.4 (CH_{2-Allyl}), 70.8 (C₅), 70.3 (C₆), 68.5, 63.0 (CH_{2-glycerol}). [α]_D²⁰(CHCl₃): +26.7

HRMS: C₄₀H₄₆O₈ + H⁺ required 655.3265, found 655.3271

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl- α -D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S4)

Compound S3 (12 mmol) was dissolved in dry DCM (60mL, 0.2M) and under inert atmosphere Et₃N (18 mmol, 1.5eq) and DMTrCI (13.8 mmol, 1.15 eq) were added. The reaction mixture stirred for 3 hours until TLC analysis (Pentane:EtOAc:Et₃N, 7:3:0.1) showed complete consumption of starting material. The reaction was guenched by addition of MeOH (1 mL), diluted with DCM and washed with a 1:1 mixture of NaHCO₃ and brine. The aqueous layer was extracted with DCM twice and the combined organic

layer were dried with Na₂S₂O₄, filtered and concentrated in vacuo. Compound S4 was isolated in 88% yield (10.6 mmol) after column chromatography (Pentane:EtOAc:Et₃N, 97:2:1 \rightarrow 80:19:1). TLC analysis: R_f= 0.31 (Pentane:EtOAc; 8:2)

¹H-NMR (400 MHz, CDCl₃), δ: 7.47-7.38 (2H, H_{arom}, m), 7.37-7.04 (27H, H_{arom}, m), 6.84-6.73 (4H, H_{arom} , m), 5.90-5.73 (1H, H_{allyl} , m), 5.36-5.06 (3H, 2 x H_{allyl} , H₁, m), 4.95 (1H, CH H_{Bn} , J=10.7 Hz, d), 4.86-4.73 (2H, 2 x CHH_{Bn}, m), 4.64 (1H, CHH, J=12.0 Hz, d) 4.58-4.53 (2H, CHH_{Bn}, m), 4.51-4.41 (2H, 2 x CHH_{Bn}, m), 4.19-4.01 (2H, CH_{glycerol}, H₅, m), 4.01-3.86 (3H, H₃, CH_{2_allyl}, m), 3.81-3.43 (12H, 2 x CH_{3_OMe}, 2 x H₆, H₄, H₂, CH_{2_glycerol}, m). 3.25 (2H, CH_{2_glycerol}, J_{CH*H*-CH}=5.7 Hz, dd). ¹³C-NMR(101 MHz, CD₃CN), δ: 159.6, 146.2, 140.1, 139.8, 139.6, 139.5, 137.0 x 2 (C_q), 136.1 (CHallyl), 131.0, 130.0, 129.3 x 2, 129.2 x 3, 129.0, 128.9 x 2, 128.8 x 4, 128.4 x 2, 127.8 (CHaron), 118.3 (CH_{2_allyl}), 114.0 (CH_{arom}), 97.0 (C₁), 82.5 (C₃), 81.0 (C₂), 78.9 (C₄), 76.8 (CH_{glycerol}), 76.09, 75.5, 73.9, 72.9 (CH_{2 Bn}), 72.6 (CH_{2 Allvl}), 71.4 (C₅), 71.2 (C₆), 70.1, 64.5 (CH_{2 alvcerol}), 55.9 (2 x CH_{3_OMe}).

 $[\alpha]_{D}^{20}$ (CHCl₃): +21.8 HRMS: C₆₁H₆₀O₁₀ + Na⁺ required 979.4392, found 979.4401

(R)-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S5)

Compound S4 (10.2 mmol) was dissolved in freshly distilled dry THF (68 mL, 0.15 M). After bubbling Ar_(a) for 20 minutes, Ir(COD)(PPh₂Me)PF₆ (0,1 mmol, 0.01 eq) was added to the reaction mixture. Ar_(q)was bubbled for 10 minutes, followed by H_{2(q)} purge for not more than 10 seconds, after which a change in the catalyst colour was observed from red to yellow. After 1 hour TLC analysis (Pentane:Toluene:EtOAc, 85:5:10) showed complete conversion of the starting material to the isomerized intermediate. The reaction mixture was

diluted with THF (20 mL) and a sat. aq. solution of NaHCO₃ (20 mL) was added together with I₂ (15.9 mmol, 1.6 eq). TLC analysis showed complete consumption of the isomerized intermediate after 18 hours of stirring and the reaction mixture was diluted with EtOAc and washed with NaS₂O_{3(sat)(aq)}, NaHCO_{3(sat.)(aq)}, H₂O and brine. The organic layer was dried over Na₂S₂O₄, filtered and concentrated in vacuo. The desired product S5 was isolated after purification with column chromatography (Pentane:EtOAc:Et₃N, 70:25:5) in 92% yield (9.4 mmol) as colourless syrup. TLC analysis: R_f= 0.31 (Pentane:EtOAc; 8:2)

 1 H-NMR (400 MHz, CD₃CN), δ : 7.50-7.44 (2H, H_{arom}, m), 7.38-7.13 (27H, H_{arom}, m), 6.84-6.74 (4H, Harom, m), 5.17 (1H, H₁, J=3.6 Hz, d), 4.92 (1H, CHH_{Bn}, J=11.0 Hz, d), 4.83-4.74 (2H, 2 x CHH_{Bn}, m), 4.64-4.47 (5H, CHH_{Bn}, m), 4.05-3.98 (1H, H₅, m), 3.94-3.82 (2H, H₃, CH_{glycerol}, m), 3.75-3.63 (9H, 2 x CH_{3_OMe}, 2 x H₆, CHH_{glycerol}, m). 3.62-3.53 (1H, CHH_{glycerol}, m), 3.53-3.44 (2H, H₄, H₂, m), 3.25-3.13 (2H, CH_{2_glycerol}, m), 3.04-2.97 (1H, OH, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 158.6, 145.3, 139.2, 138.7, 138.5 x 2, 136.1, 136.0 (C_α), 130.1 x 2, 128.4, 128.3 x 2, 128.1, 128.0, 127.9 x 2, 127.8, 127.7, 127.6 x 2, 127.5, 126.8 (CH_{arom}), 96.3 (C₁), 81.6 (C₃), 80.1 (C₂), 78.9 (CH_{glycerol}), 78.1 (C₄), 75.1, 74.7, 72.9, 72.0 (CH_{2_Bn}), 70.6 (C₅), 69.1 (C₆), 63.6, 62.5 (CH_{2_glycerol}), 54.9 (2 x CH₃).

[α]²⁰_D(CHCl₃): +27.3

HRMS: C₅₈H₆₀O₁₀ + Na⁺ required 939.4079, found 939.4090

(S)-1-O-([N,N-diisopropyl]-2-cyanoethyl-phosphoramidite)-2-O-(2,3,4,6-O-benzyl-α-Dglucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (7)

Compound **S5** (8.5 mmol) was dissolved in dry DCM (85 mL, 0.1 M) and Et₃N (12.75 mmol, 1.5 eq) was added. At 0 °C 2-cyanoethyl-*N*,*N*-diisopropylchlorophosphoramidite (10.2 mmol, 1.2 eq) was added and the reaction was left for 2 hours after which TLC analysis (Pentane:EtOAc:Et₃N, 7:3:0,1) showed complete consumption of the starting material. After diluting the reaction mixture with DCM, a wash with a mixture of NaHCO₃ and brine (1:1) was performed and the

organic layer was dried over Na₂S₂O₄, filtered and concentrated *in vacuo*. The desired product was purified by column chromatography (Pentane:EtOAc:Et₃N, 90:19:1 \rightarrow 75:25:0), affording compound **7** in 70% (5.95 mmol) as a colourless oil.

Analytical data in accordance with the one reported in W. F. J. Hogendorf, L. J. van den Bos, H. S. Overkleeft, J. D. C. Codee, G. A. van der Marel, *Bioorg, Med. Chem.*, **2010**, 18, 3668-3678.

Phosphoramidite couplings

General procedure

The starting material alcohol is co-evaporated three times with dry ACN. Once dissolved in dry ACN (0.1M), a solution of DCI in ACN (0.25 M, 1.5-2.5 eq) is added together with 3Å MS and the reaction mixture is stirred for 15 min at room temperature. A solution of phosphoramidite **7** or **8** (0.176 M in ACN) is added (1.2-2.0 eq) under inert atmosphere. After TLC analysis shows complete consumption of starting material, a solution of CSO (0.5 M in ACN) is added (2.0-3.0 eq) and the reaction is allowed to stir at r.t. for 15 min, after which the reaction is diluted with EtOAc and washed once with a mixture of NaHCO₃ and brine (1:1). The organic layer is dried over Na₂S₂O₄, filtered and concentrated *in vacuo*. The crude is then dissolved in DCM (0.1 M) and a solution of TCA (0.18 M in DCM) is added (5 eq). Once TLC analysis show complete conversion to a lower running spot, the reaction mixture is diluted in DCM and washed with a solution of NaHCO₃ and brine (1:1), dried over Na₂S₂O₄, filtered and concentrated *in vacuo*. The desired product is isolated by column chromatography.

List of intermediates from phoshoramidite couling

n=1, **S15** n=2, **S16** n=3, **26**

(Protected) (GroP)-Spacer or Monomer S6

Alchol spacer **9** (1.1 mmol) was coupled with phospharamidite **8** (1.67 mmol, 1.5 eq) following the general procedure. Compound **S6** was obtained after column chromatography (DCM:Acetone, 7.5:2.5) in 90% yield (0.99 mmol).

TLC analysis, R_f:0.48 (DCM:Acetone, 7:3)

¹H-NMR (400 MHz, CD₃CN), δ : 7.42-7.23 (10H, H_{arom}, m), 5.68-5.54 (1H, NH, b), 5.03 (2H, CH_{2_Cbz}, s), 4.63 (2H, CH_{2_Bn}, s), 4.25-3.97 (6H, CH_{2_OCE}, CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.71-3.54 (3H, CH_{glycerol}, CH_{2_glycerol}, m), 3.07 (2H, CH_{2_Nspacer}, J=6.6 Hz, q), 3.02-2.92 (1H, OH, b), 2.78-2.68 (2H, CH_{2_OCE}, m), 1.68-1.57 (2H, CH_{2_spacer}, m), 1.51-1.23 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.4, 139.6, 138.4 (C_q), 129.4, 129.2, 128.8, 128.7, 128.6, 128.5 (CH_{arom}), 118.6 (C_q), 79.2-79.1 (CH_{glycerol}), 72.4 (CH_{2_Bn}), 69.0 (CH_{2_Ospacer}), 67.6-67.5 (CH_{2_glycerol}), 66.7 (CH_{2_Cbz}), 63.2-63.1 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.32, -1.29

HRMS: C₂₇H₃₇N₂O₈P + H⁺ required 549.2360, found 549.2361

(Protected) (GroP)₂-Spacer or Dimer S7

Alchol **S6** (0.75 mmol) was coupled with phospharamidite **8** (1.1 mmol, 1.5 eq) following the general procedure. Compound **S7** was obtained after column chromatography (DCM:Acetone, 6.5:3.5) in quantitave yield (0.75 mmol).

TLC analysis, R_f: 0.43 (DCM:Acetone, 6:4)

¹H-NMR (400 MHz, CD₃CN), δ: 7.47-7.23 (15H, H_{arom},

m), 5.95-5.86 (1H, NH, b), 5.06 (2H, CH_{2_Cbz} , s), 4.71-4.58 (4H, CH_{2_Bn} , m), 4.34-3.98 (12H, 2 x CH_{2_OCE} , 3 x $CH_{2_glycerol}$, $CH_{2_Ospacer}$, m), 3.93-3.81 (1H, $CH_{glycerol}$, m), 3.72-3.56 (3H, $CH_{glycerol}$, $CH_{2_glycerol}$, m), 3.50-3.35 (1H, OH, b), 3.09 (2H, $CH_{2_Nspacer}$, J=6.6 Hz, q), 2.77-2.67 (2H, 2 x CH_{2_OCE} , m), 1.71-1.55 (2H, CH_{2_spacer} , m), 1.52-1.22 (6H, 3 x CH_{2_spacer} , m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.6, 139.1 (C_q), 129.4, 129.3, 128.9, 128.8, 128.7, 128.5 (CH_{arom}), 118.6 (C_q), 79.1-79.0 (CH_{glycerol}), 76.8-76.7 (CH_{glycerol}), 72.7, 72.4 (CH_{2_Bn}), 69.1-69.0 (CH_{2_Ospacer}), 67.0-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -0.34, -0.33, -0.31, -0.13, -0.10.

HRMS C₄₀H₅₃N₃O₁₃P₂ + H⁺ required 846.3126, found 846.3119

(Protected) (GroP)₃-Spacer or Trimer S8

Alchol **S7** (0.83 mmol) was coupled with phospharamidite **8** (1.4 mmol, 1.7 eq) following the general procedure. Compound **S8** was obtained after column chromatography (DCM:Acetone, 6:4) in 97% yield (0.80 mmol).

TLC analysis, R_f: 0.39 (DCM:Acetone, 6.5:3.5)

¹H-NMR (400 MHz, CD₃CN), δ: 7.47-7.23 (20H, H_{arom}, m), 5.95-5.86 (1H, NH, b), 5.06 (2H, CH_{2_Cbz}, s), 4.71-4.58 (6H, CH_{2_Bn}, m), 4.34-3.98 (18H, 3 x CH_{2_OCE}, 5 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.93-3.81 (2H, 2 x CH_{glycerol}, m), 3.72-3.56 (3H, CH_{glycerol}, CH_{2_glycerol}, m), 3.09 (2H, CH_{2_Nspacer}, J=6.6 Hz, q), 3.10-2.94 (1H, OH, b), 2.77-2.67 (6H, 3 x CH_{2_OCE}, m), 1.71-1.55 (2H, CH_{2_spacer}, m), 1.52-1.22 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.6, 139.1 (C_q), 129.4, 129.3, 128.9, 128.8, 128.7, 128.5 (CH_{arom}), 118.6 (C_q), 79.1-79.0 (CH_{glycerol}), 76.8-76.7 (CH_{glycerol}), 72.7, 72.4 (CH_{2_Bn}), 69.1-69.0 (CH_{2_Ospacer}), 67.0-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.48, -1.47, -1.43, -1.42, -1.41, -1.23, -1.21, -1.19.

HRMS: $C_{53}H_{69}N_4O_{18}P_3 + H^+$ required 1143.3893, found 1143.3900

(Protected) (GroP)₄-Spacer or Tetramer S9

Alchol **S8** (0.12 mmol) was coupled with phospharamidite **8** (0.24 mmol, 2 eq) following the general procedure. Compound **S9** was obtained after column chromatography (DCM:Acetone, 1:1) in 83% yield (0.1 mmol).

TLC analysis, R_f:0.32 (DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ: 7.47-7.23 (25H, H_{arom},

m), 5.82-5.69 (1H, NH, b), 5.03 (2H, CH_{2_Cbz} , s), 4.67-4.54 (8H, CH_{2_Bn} , m), 4.34-3.98 (24H, 4 x CH_{2_OCE} , 7 x $CH_{2_glycerol}$, $CH_{2_Ospacer}$, m), 3.93-3.81 (3H, 3 x $CH_{glycerol}$, m), 3.72-3.56 (3H, $CH_{glycerol}$, CH_{2_glycerol}, m), 3.23-3.13 (1H, OH, b), 3.07 (2H, $CH_{2_Nspacer}$, J=6.6 Hz, q), 2.77-2.67 (8H, 4 x CH_{2_OCE} , m), 1.71-1.55 (2H, CH_{2_spacer} , m), 1.52-1.22 (6H, 3 x CH_{2_spacer} , m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.6, 139.1 (C_q), 129.4 x 2, 129.3, 128.9 x 2, 128.8 x 2, 128.7, 128.5 (CH_{arom}), 118.6 (C_q), 79.1-79.0 (CH_{glycerol}), 76.8-76.7 (CH_{glycerol}), 72.7, 72.4 (CH_{2_Bn}), 69.1-69.0 (CH_{2_Ospacer}), 67.0-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.66, -1.64, -1.62, -1.60, -1.58, -1.40, -1.37.

HRMS: C₆₆H₈₅N₅O₂₃P₄ + H⁺ required 1440.4659, found 1440.4656

(Protected) (GroP)5-Spacer or Pentamer S10

Alchol **S9** (35 μ mol) was coupled with phospharamidite **8** (86 μ mol, 2.5 eq) following the general procedure. Compound **S10** was obtained after column chromatography (DCM:Acetone, 1:1) in 65% yield (23 μ mol).

TLC analysis, R_f: 0.27 (DCM:Acetone, 6:4)

¹H-NMR (400 MHz, CD₃CN), δ: 7.47-7.23 (30H, H_{arom},

m), 5.82-5.69 (1H, NH, b), 5.03 (2H, CH_{2_Cbz} , s), 4.67-4.54 (10H, CH_{2_Bn} , m), 4.34-3.98 (30H, 5 x CH_{2_OCE} , 9 x $CH_{2_glycerol}$, $CH_{2_Ospacer}$, m), 3.93-3.81 (4H, 4 x $CH_{glycerol}$, m), 3.72-3.56 (3H, $CH_{glycerol}$, $CH_{2_glycerol}$, m), 3.20-3.02 (3H, OH, $CH_{2_Nspacer}$, m), 2.77-2.67 (10H, 5 x CH_{2_OCE} , m), 1.71-1.55 (2H, CH_{2_spacer} , m), 1.52-1.22 (6H, 3 x CH_{2_spacer} , m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.6, 139.1 (C_q), 129.4 x 2, 129.3, 128.9 x 2, 128.8 x 2, 128.7, 128.5 (CH_{arom}), 118.6 (C_q), 79.1-79.0 (CH_{glycerol}), 76.8-76.7 (CH_{glycerol}), 72.7, 72.4 (CH_{2_Bn}), 69.1-69.0 (CH_{2_Ospacer}), 67.0-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.67, -1.64, -1.63, -1.61, -1.58, -1.44, -1.40, -1.37.

(Protected) (GlcGroP)(GroP)₅-Spacer or Hexamer 23

Alchol **S10** (22 μ mol) was coupled with phospharamidite **7** (32 μ mol, 1.5 eq) following the general procedure. Compound **23** was obtained after column chromatography (DCM:Acetone, 1:1) in 65% yield (14 μ mol). TLC analysis, R_f: 0.31

(DCM:Acetone, 1:1) R_{f} : 0.31

¹H-NMR (400 MHz, CD₃CN), δ: 7.45-7.16 (50H, H_{arom}, m), 5.79-5.69 (1H, NH, b), 5.21-5.14 (1H, H₁, m), 5.06 (2H, CH_{2_Cbz}), 4.91-4.45 (18H, CH_{2_Bn}, m), 4.31-3.99 (36H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.99-3.78 (8H, 6 x CH_{_glycerol}, H₅, H₃, m), 3.78-3.48 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.28-3.27 (1H, OH, b), 3.09 (2H, CH_{2_Nspacer}, J=6.6 Hz, q), 2.78-2.58 (12H, 6 x CH_{2_OCE}, m), 1.71-1.55 (2H, CH_{2_spacer}, m), 1.52-1.22 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.8, 139.6, 139.1 (C_q), 129.4 x 2, 129.3 X 2, 129.1 x 2, 129.0, 128.9, 128.8 x 2, 128.7, 128.6, 128.4 (CH_{arom}), 118.6 (C_q), 98.4 (C₁), 82.5 (C₃), 81.0 (C₂), 78.7 (C₄), 77.9 (CH_{glycerol}), 77.9 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 72.7 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 66.8-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.5 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.9-30.8, 30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

 $^{31}\text{P-NMR}(162\text{ MHz},\text{ CD}_3\text{CN}),$ δ : -1.66, -1.63, -1.62, -1.60, -1.58, -1.44, -1.38.

HRMS: C₁₁₉H₁₄₅N₇O₃₈P₆ + H⁺ required 2466.8128, found 2466.8129

(Protected) (GIcGroP)(GroP)₄-Spacer or Pentamer S11

Alchol **S9** (35 μ mol) was coupled with phospharamidite **7** (53 μ mol, 1.5 eq) following the general procedure. Compound **S11** was obtained after column chromatography (DCM:Acetone, 1:1) in 67% yield (24 μ mol). TLC analysis, R_f: 0.33

(DCM:Acetone, 6:4)

¹H-NMR (400 MHz, CD₃CN), δ : 7.45-7.11 (45H, H_{arom}, m), 5.71-5.58 (1H, NH, b), 5.16 (1H, H₁, J=3.6 Hz, d), 5.01 (2H, CH_{2_Cbz}, s), 4.89-4.81 (1H, CH_{2_Bn}, m), 4.80-4.66 (3H, CH_{2_Bn}, m), 4.66-4.43 (12H, CH_{2_Bn}, m), 4.31-3.94 (30H, 5 x CH_{2_OCE}, 9 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.74 (6H, 4 x CH_glycerol, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.13-2.94 (3H, OH, CH_{2_Nspacer}, m), 2.74-2.54 (10H, 5 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m). ¹³C-NMR(101 MHz, CD₃CN), δ : 157.2, 140.0, 139.6, 139.4, 139.0 (C_q), 129.4 x 2, 129.3 X 2, 129.2 x 2, 129.1, 129.0 x 2, 128.9 x 2, 128.8 x 3, 128.7 x 2, 128.6, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.0 (C₁), 82.3 (C₃), 80.7 (C₂), 79.0 (C₄), 78.6 (CH_{glycerol}), 76.7 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 73.0, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.0 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ : -0.41, -0.36, -0.34, -0.32, -0.30, -0.29, -0.14, -0.11 HRMS: C₁₀₆H₁₂₉N₆O₃₃P₅ + H⁺ required 2169.7361, found 2169.7368

(Protected) (GroP)(GlcGroP)(GroP)₄-Spacer or Hexamer 24

column chromatography (DCM:Acetone, 1:1) in 77% yield (15 μ mol).

TLC analysis, R_f: 0.31 (DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ : 7.47-7.16 (50H, H_{arom}, m), 5.71-5.58 (1H, NH, b), 5.16 (1H, H₁, J=3.6 Hz, d), 5.01 (2H, CH_{2_Cbz}, s), 4.89-4.66 (4H, CH_{2_Bn}, m), 4.66-4.43 (14H, CH_{2_Bn}, m), 4.30-3.94 (36H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.74 (7H, 5 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.13-2.94 (3H, OH, CH_{2_Nspacer}, m), 2.74-2.54 (12H, 6 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.2, 140.1, 139.6 x 2, 139.5, 139.0 (C_q), 129.4 x 2, 129.3 X 2, 129.2 x 2, 129.1, 129.0 x 4, 128.9 x 2, 128.8 x 3, 128.7 x 2, 128.6, 128.5 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.0 (C₁), 82.3 (C₃), 80.7 (C₂), 79.1-79.0 (CH_{glycerol}), 78.6 (C₄), 76.7 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.0, 72.7, 72.4 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.44, -0.43, -0.40, -0.38, -0.34, -0.32, -0.18, -0.15. HRMS: C₁₁₉H₁₄₅N₇O₃₈P₆ + H⁺ required 2466.8128, found 2466.8133

(Protected) (GlcGroP)(GroP)₃-Spacer or Tetramer S12

Alchol **S8** (59 μ mol) was coupled with phospharamidite **7** (88 μ mol, 1.5 eq) following the general procedure. Compound **S12** was obtained after column chromatography (DCM:Acetone, 5.5:4.5) in 86% yield (51 μ mol). TLC analysis, R_f: 0.31

(DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ: 7.50-7.08 (40H, H_{arom}, m), 5.77-5.64 (1H, NH, b), 5.18-5.12 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.92-4.39 (14H, CH_{2_Bn}, m), 4.31-3.97 (34H, 4 x CH_{2_OCE}, 7 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.75 (6H, 4 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.45 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.26-3.16 (1H, OH, b), 3.06 (2H, CH_{2_Nspacer}, J=6.6 Hz, q), 2.78-2.50 (8H, 4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.0, 139.6, 139.5, 139.4, 139.1 (C_q), 129.4 x 2, 129.3 X 2, 129.2, 129.1 x 2, 129.0, 128.9 x 3, 128.8 x 3, 128.7 x 2, 128.6, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 80.9 (C₂), 78.9 (C₄), 78.0-77.8 (CH_{glycerol}), 76.8-76.7 (CH_{glycerol}), 75.9, 75.6, 73.8, 73.5, 72.7 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.1 (CH_{2_Ospacer}), 68.8-66.06(CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.8-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.3-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.39, -0.37, -0.35, -0.33, -0.31, -0.17, -0.10. HRMS: C₉₃H₁₁₃N₅O₂₈P₄ + H⁺ required 1872.6595, found 1872.6603

(Protected) (GroP)(GlcGroP)(GroP)₃-Spacer or Pentamer S13

column chromatography (DCM:Acetone, 1:1) in 76% yield (30 μ mol). TLC analysis, R_f: 0.38 (DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ: 7.47-7.16 (45H, H_{arom}, m), 5.74-5.61 (1H, NH, b), 5.16 (1H, H₁, J=3.6 Hz, d), 5.01 (2H, CH_{2_Cbz}, s), 4.89-4.41 (18H, CH_{2_Bn}, m), 4.30-3.93 (30H, 5 x CH_{2_OCE}, 9 x CH_{2_glycerol}, CH_{2_OSpacer}, m), 3.94-3.74 (5H, 3 x CH_glycerol, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.22-3.10 (1H, OH, m), 3.08-2.94 (2H, CH_{2_Nspacer}, m), 2.74-2.53 (10H, 5 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.2, 140.0, 139.6, 139.4, 139.0 (C_q), 129.4 x 2, 129.3 X 2, 129.2 x 2, 129.1, 129.0 x 2, 128.9 x 2, 128.8 x 3, 128.7 x 2, 128.6, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.0 (C₁), 82.3 (C₃), 80.7 (C₂), 79.0 (C₄), 78.6 (CH_{glycerol}), 76.7 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 73.0, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.0 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.41, -0.36, -0.34, -0.32, -0.30, -0.29, -0.14, -0.11 HRMS: C₁₀₆H₁₂₉N₆O₃₃P₅ + H⁺ required 2169.7361, found 2169.7355

(Protected) (GroP)₂(GlcGroP)(GroP)₃-Spacer or Hexamer 25

AlcholS13(10μmol)wascoupledwithphospharamidite8(25μmol, 2.5eq)followingthegeneralprocedure.Compound25wasobtainedafter

column chromatography (DCM:Acetone, 1:1) in 72% yield (7.2 μ mol). TLC analysis, R_f: 0.31 (DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ: 7.50-7.16 (50H, H_{arom}, m), 5.76-5.65 (1H, NH, b), 5.20-5.12 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.89-4.39 (18H, CH_{2_Bn}, m), 4.30-3.94 (36H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.74 (7H, 5 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.17-2.98 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.48 (12H, 6 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.2, 140.0, 139.6, 139.5, 139.1 (C_q), 129.4 x 3, 129.3, 129.2 x 2, 129.1, 129.0, 128.9, 128.8 x 2,128.7, 128.6, 128.4 (CH_{arom}), 118.6 (C_q), 98.1 (C₁), 82.3 (C₃), 80.7 (C₂), 79.1 (CH_{glycerol}), 78.6 (C₄), 76.8 (CH_{glycerol}), 76.0, 75.7, 73.8, 73.1, 72.7, 72.4 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.1 (CH_{2_Ospacer}), 67.8-66.9 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.77, -1.71, -1.68, -1.63, -1.59, -1.56, -1.43, -1.13, -1.11, -1.03, -1.01.

(Protected) (GlcGroP)(GroP)₂-Spacer or Trimer S14

Alchol S7 (98 µmol) was coupled with phospharamidite 7 (147 µmol, 1.5 eq) following the general procedure. Compound S14 was obtained after column chromatography (DCM:Acetone, 5.5:4.5) in 86% yield (84 µmol). TLC analysis, R_f: 0.35 (DCM:Acetone, 6:4)

¹H-NMR (400 MHz, CD₃CN), δ : 7.44-7.11 (35H, H_{arom}, m), 5.77-5.62 (1H, NH, b), 5.17-5.11 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.90-4.41 (12H, 6 x CH_{2_Bn}, m), 4.29-3.96 (18H, 3 x CH_{2_OCE}, 5 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (5H, 3 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.26-3.14 (1H, OH, b), 3.05 (2H, CH_{2_Nspacer}, J=6.6 Hz, q), 2.77-2.53 (6H, 3 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.4, 140.1, 139.6, 139.5, 139.4, 139.1, 139.0, 138.6 (C_q), 129.4 x 3, 129.3 x 2, 129.2, 129.1, 129.0, 128.9, 128.8 x 2,128.7, 128.6, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 81.0 (C₂), 78.7 (C₄), 78.0, 76.0 (CH_{glycerol}), 76.0, 75.6 x 2, 73.8, 73.6, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.1 (CH_{2_Ospacer}), 68.3, 67.8-66.9 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.67, -1.65, -1.64, -1.62, -1.61, -1.58, -1.45, -1.42, -1.39, -1.38 HRMS: $C_{80}H_{97}N_4O_{23}P_3 + H^+$ required 1575.5829, found 1575.5833

(Protected) (GroP)(GlcGroP)(GroP)₂-Spacer or Tetramer S15

AlcholS14(11μmol)was coupledwithphospharamidite8(28 μmol, 2.5 eq)followingthegeneralprocedure.CompoundS15 wasobtainedafter

column chromatography (DCM:Acetone, 1:1) in 83% yield (9.1 $\mu mol).$

TLC analysis, R_f: 0.31 (DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.11 (40H, H_{arom}, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.89-4.42 (14H, 7 x CH_{2_Bn}, m), 4.30-3.96 (24H, 4 x CH_{2_OCE}, 7 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (5H, 3 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (8H, 4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.7, 139.6, 139.5, 139.1 (C_q), 129.4 x 3, 129.3 x 2, 129.2, 129.1 x 2, 129.0 x 4, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.1 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{gltcerol}), 78.6 (C₄), 76.9-76.8 (CH_{glycerol}), 76.0, 75.6 x 2, 73.9, 73.1, 72.4 (CH_{2_Bn}), 71.8 (C₅), 69.7 (C₆), 69.1 (CH_{2_Ospacer}), 67.9, 67.8, 67.0, 66.7, 66.6, 66.5 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.3 (CH_{2_OCE}), 61.2 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.71, -1.69, -1.65, -1.63, -1.61, -1.59, -1.55, -1.53, -1.43, -1.42, -1.39, -1.36

HRMS: $C_{93}H_{113}N_5O_{28}P_4 + H^+$ required 1872.6595, found 1872.6594

(Protected) (GroP)₂(GlcGroP)(GroP)₂-Spacer or Pentamer S16

Alchol **S15** (24 μmol) was coupled with phospharamidite **8** (60 μmol, 2.5 eq) following the general procedure. Compound **S16** was obtained after

column chromatography (DCM:Acetone, 1:1) in 82% yield (19 $\mu mol).$

TLC analysis, R_f: 0.38 (DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ : 7.48-7.12 (45H, H_{arom}, m), 5.77-5.64 (1H, NH, b), 5.20-5.13 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.87-4.40 (16H, 7 x CH_{2_Bn}, m), 4.30-3.94 (30H, 5 x CH_{2_OCE}, 9 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.74 (5H, 3 x CH_{glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.19-2.99 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (10H, 5 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6 x 2, 139.5, 139.0 (C_q), 129.4 x 2, 129.3 x 2, 129.2 x 2, 129.1, 129.0 x 4, 128.9 x 2, 128.8 x 3,128.7 x 3, 128.6, 128.5 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.0 (C₁), 82.3 (C₃), 80.7 (C₂), 79.1-79.0 (CH_{gltcerol}), 78.6 (C₄), 76.7 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.1, 72.7, 72.4 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -1.68, -1.65, -1.62, -1.60, -1.42, -1.39. HRMS: C₁₀₆H₁₂₉N₆O₃₃P₅ + H⁺ required 2169.7361, found 2169.7365

(Protected) (GroP)₃(GlcGroP)(GroP)₂-Spacer or Hexamer 26

column chromatography (DCM:Acetone, 1:1) in 65% yield (23 μ mol). TLC analysis, R_f: 0.41 (DCM:Acetone, 7:3)

¹H-NMR (400 MHz, CD₃CN), δ : 7.43-7.12 (50H, H_{arom}, m), 5.75-5.64 (1H, NH, b), 5.20-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.88-4.41 (18H, 7 x CH_{2_Bn}, m), 4.30-3.94 (36H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.94-3.74 (6H, 4 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (8H, 2 x CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.17-2.99 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (12H, 6 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6 x 2, 139.5, 139.0 (C_q), 129.4 x 2, 129.3 x 3, 129.2, 129.1, 129.0 x 2, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.0 (C₁), 82.3 (C₃), 80.7 (C₂), 79.1-79.0 (CH_{gltcerol}), 78.6 (C₄), 76.7 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.1, 72.7, 72.4 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -1.69, -1.67, -1.64, -1.63, -1.61, -1.58, -1.44, -1.40, 1.37. HRMS: C₁₁₉H₁₄₅N₇O₃₈P₆ + H⁺ required 2466.8128, found 2466.8125

(Protected) (GlcGroP)(GroP)-Spacer or Dimer S17

Alchol **S6** (160 μ mol) was coupled with phospharamidite **7** (200 μ mol, 1.3 eq) following the general procedure. Compound **S17** was obtained after column chromatography (DCM:Acetone, 7:3) in 64% yield (102 μ mol). TLC analysis, R_f: 0.38

(DCM:Acetone, 7:3)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.11 (30H, H_{arom}, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.89-4.42 (10H, 5 x CH_{2_Bn}, m), 4.30-3.96 (12H, 2 x CH_{2_OCE}, 3 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (4H, 2 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (4H, 2 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.7, 139.6, 139.5, 139.4 (C_q), 129.4 x 2, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 2,128.7, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 81.0 (C₂), 79.2 (CH_{gltcerol}), 78.7 (C₄), 78.0-77.8 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.0 (CH_{2_Ospacer}), 68.3-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.4-63.1 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.64, -1.61, -1.60, -1.48, -1.46, -1.44, -1.43, -1.39, -1.32, -1.28. HRMS: C₆₇H₈₁N₃O₁₈P₂ + H⁺ required 1278.5063, found 1278.5064

(Protected) (GroP)(GlcGroP)(GroP) - Spacer or Trimer S18

Alchol **S17** (86 μmol) was coupled with phospharamidite **8** (215 μmol, 2.5 eq) following the general procedure. Compound **S18** was obtained after column chromatography

(DCM:Acetone, 6:4) in 68% yield (58 μ mol). TLC analysis, R_f: 0.35 (DCM:Acetone, 6:4)

¹H-NMR (400 MHz, CD₃CN), δ : 7.48-7.11 (35H, H_{arom}, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.89-4.42 (12H, 6 x CH_{2_Bn}, m), 4.30-3.96 (18H, 3 x CH_{2_OCE}, 5 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (4H, 2 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (6H, 3 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.0, 139.6 x 2, 139.5, 139.1 (C_q), 129.4 x 2, 129.3 x 3, 129.2, 129.1 x 2, 129.0 x 3, 128.9 x 3, 128.8 x 3,128.7 x 3, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.1 (C₁), 82.3 (C₃), 80.7 (C₂), 79.1-79.0 (CH_{gltcerol}), 78.6 (C₄), 76.8 (CH_{glycerol}), 76.0, 75.6 x 2, 73.9, 73.1, 72.4 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.1 (CH_{2_Ospacer}), 67.9-66.4 (CH_{2_glycerol}, CH_{2_Cbz}), 63.6-63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.43, -0.42, -0.40, -0.39, -0.37, -0.36, -0.35, -0.12, -0.09, -0.07 HRMS: C₈₀H₉₇N₄O₂₃P₃ + H⁺ required 1575.5829, found 1575.5832

(Protected) (GroP)₂(GlcGroP)(GroP) -Spacer or Tetramer S19

Alchol **S18** (41 μmol) was coupled with phospharamidite **8** (102 μmol, 2.5 eq) following the general procedure. Compound **S19** was obtained after column chromatography (DCM:Acetone, 1:1)

in 65% yield (27 µmol).

TLC analysis, R_f: 0.31 (DCM:Acetone, 1:1)

¹H-NMR (400 MHz, CD₃CN), δ : 7.42-7.11 (40H, H_{arom}, m), 5.72-5.61 (1H, NH, b), 5.20-5.13 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.89-4.42 (14H, 7 x CH_{2_Bn}, m), 4.30-3.96 (24H, 4 x CH_{2_OCE}, 7 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (4H, 2 x CH_{glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (8H, 4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.7, 139.6, 139.5, 139.4 (C_q), 129.4 x 2, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 2,128.7, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 81.0 (C₂), 79.2 (CH_{gltcerol}), 78.7 (C₄), 78.0-77.8 (CH_{gltcerol}), 76.0, 75.6, 73.8, 73.5, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.0 (CH_{2_Ospacer}), 68.3-66.6 (CH_{2_gltcerol}, CH_{2_Cbz}), 63.4-63.1 (CH_{2_OCE}), 61.1 (CH_{2_gltcerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.42, -0.40, -0.36, -0.34, -0.32, -0.14, -0.12.

HRMS: $C_{93}H_{113}N_5O_{28}P_4 + H^+$ required 1872.6595, found 1872.6598

(Protected) (GroP)₃(GlcGroP)(GroP) -Spacer or Pentamer S20

Alchol **S19** (20 μmol) was coupled with phospharamidite **8** (50 μmol, 2.5 eq) following the general procedure. Compound **S20** was obtained after column chromatography (DCM:Acetone, 1:1)

in 77% yield (15 μmol). TLC analysis, R_f: 0.38 (DCM:Acetone, 4:6) ¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.11 (45H, H_{arom}, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.89-4.42 (16H, 8 x CH_{2_Bn}, m), 4.30-3.96 (30H, 5 x CH_{2_OCE}, 9 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (4H, 3 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (4H, 2 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 139.7, 139.6, 139.5, 139.4 (C_q), 129.4 x 2, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 2,128.7, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 81.0 (C₂), 79.2 (CH_{gltcerol}), 78.7 (C₄), 78.0-77.8 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.0 (CH_{2_Ospacer}), 68.3-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.4-63.1 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -0.41, -0.36, -0.34, -0.32, -0.30, -0.29, -0.14, -0.11.

HRMS: $C_{106}H_{129}N_6O_{33}P_5 + H^+$ required 2169.7361, found 2169.7363

(Protected) (GroP)₄(GlcGroP)(GroP) -Spacer or Hexamer 27

Alchol **S20** (13 μmol) was coupled with phospharamidite **8** (40 μmol, 2.5 eq) following the general procedure. Compound **27** was obtained after column chromatography

(DCM:Acetone, 1:1) in 72% yield (9.4 µmol).

TLC analysis, R_f: 0.31 (DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.11 (50H, H_{arom}, m), 5.73-5.62 (1H, NH, b), 5.19-5.13 (1H, H₁, m), 5.03 (2H, CH_{2_Cbz}, s), 4.89-4.42 (18H, 9 x CH_{2_Bn}, m), 4.30-3.96 (36H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{2_Ospacer}, m), 3.96-3.75 (6H, 4 x CH_{_glycerol}, H₅, H₃, m), 3.74-3.42 (7H, CH_{glycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-3.00 (3H, OH, CH_{2_Nspacer}, m), 2.77-2.53 (4H, 2 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ : 157.3, 139.7, 139.6, 139.5, 139.4 (C_q), 129.4 x 2, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 2,128.7, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.4 (C₁), 82.5 (C₃), 81.0 (C₂), 79.2 (CH_{gltcerol}), 78.7 (C₄), 78.0-77.8 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5, 72.7, 72.4 (CH_{2_Bn}), 71.6 (C₅), 69.7 (C₆), 69.0 (CH_{2_Ospacer}), 68.3-66.6 (CH_{2_glycerol}, CH_{2_Cbz}), 63.4-63.1 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25,7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

 $^{31}\text{P-NMR}(162\text{ MHz},\text{ CD}_3\text{CN}),$ δ : -0.41, -0.36, -0.34, -0.32, -0.30, -0.29, -0.14, -0.11.

HRMS: $C_{119}H_{145}N_7O_{38}P_6$ + H⁺ required 2466.8128, found 2466.8130

(Protected) GlcGroP-Spacer or Monomer S21

Alchol spacer **9** (0.26 mmol) was coupled with phospharamidite **7** (0.35 mmol, 1.3 eq) following the general procedure. Compound **S21** was obtained after column chromatography (DCM:Acetone, 7.5:2.5) in 81% yield (0.21 mmol).

TLC analysis, R_f: 0.45 (DCM:Acetone, 7:3

¹H-NMR (400 MHz, CD₃CN), δ : 7.47-7.12 (25H, H_{arom}, m), 5.68-5.54 (1H, NH, b), 5.16 (1H, H₁, J=3.6 Hz, d), 5.03 (2H, CH_{2_Cbz}, s), 4.88 (1H, CHH_{Bn}, J=10.6 Hz, d), 4.82-4.61 (4H, 2 x CH_{2_Bn}, m), 4.58-4.43 (3H, CHH_{Bn}), 4.22-3.06 (4H, CH_{2_OCE}, CH_{2_glycerol}), 4.05-3.80 (5H, CH_{2_Ospacer}, H₅, CH_{glycerol}, H₃, m), 3.75-3.46 (6H, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.15-2.98 (3H, OH, CH_{2_Nspacer}, m), 2.68-2.57 (2H,CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6, 139.5, 139.4 (C_q), 129.4, 129.3 x 2, 129.2 x 2, 129.1, 128.9 x 2, 128.8 x 2,128.7 x 2, 128.5, 128.4 (CH_{arom}), 118.6 (C_q), 97.3 (C₁), 82.5 (C₃), 81.0 (C₂), 78.7 (C₄), 78.0-77.8 (CH_{glycerol}), 76.0, 75.6, 73.8, 73.5 (CH_{2_Bn}), 71.5 (C₅), 69.7 (C₆), 69.0 (CH_{2_Ospacer}), 68.1-68.0 (CH_{2_glycerol}), 66.6 CH_{2_Cbz}), 63.2 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.44, -1.37

HRMS: $C_{54}H_{65}N_2O_{13}P + H^+$ required 981.4297, found 981.4296

(Protected) (GroP)(GlcGroP)-Spacer or Dimer S22

Alchol **S21** (0.17 mmol) was coupled with phospharamidite **8** (0.26 mmol, 1.5 eq) following the general procedure. Compound **S22** was obtained after column chromatography (DCM:Acetone, 6:4) in 82% yield (0.14 mmol).

TLC analysis, R_f: 0.32 (DCM:Acetone,

1:1).

¹H-NMR (400 MHz, CD₃CN), δ : 7.48-7.10 (30H, H_{arom}, m), 5.71-5.55 (1H, NH, b), 5.16 (1H, H₁, J=3.6 Hz, d), 5.02 (2H, CH_{2_Cbz}, s), 4.90-4.83 (1H, CHH_{Bn}, m), 4.80-4.69 (3H, 3 x CHH_{Bn}, m), 4.66-4.56 (3H, 3 x CHH_{Bn}, m), 4.58-4.43 (3H, CHH_{Bn}), 4.30-4.04 (11H,2 x CH_{2_OCE}, 3 x CH_{2_glycerol}, CH_{glycerol}), 4.05-3.96 (2H, CH_{2_Ospacer}, m), 3.95-3.86 (H₅), 3.86-3.76 (1H, H₃, m), 3.75-3.46 (7H, CH_{gbycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.09-2.97 (3H, OH, CH_{2_Nspacer}, m), 2.78-2.52 (4H,2 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.7, 139.6, 139.5 (C_q), 129.4 x3, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.1-97.0 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{glycerol}), 78.6 (C₄), 76.0, 75.6 (CH_{2_Bn}), 75.1-74.2 (CH_{glycerol}), 73.9, 73.1, 72.5 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.4 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ: -1.72, -1.70, -1.67, -1.66 -1.47, -1.41 HRMS: C₆₇H₈₁N₃O₁₈P₂ + H⁺ required 1278.5063, found 1278.5067

(Protected) (GroP)₂(GlcGroP)-Spacer or Trimer S23

Alchol S22 (0.12 mmol) was coupled with phospharamidite 8 (0.24 mmol, 2.0 eq) following the general procedure. Compound S23 was obtained after column chromatography (DCM:Acetone, 1:1) in 77% yield (0.92 mmol). TLC analysis, 0.38 R_f:

¹H-NMR (400 MHz, CD₃CN), δ : 7.48-7.10 (35H, H_{arom}, m), 5.71-5.56 (1H, NH, b), 5.18-5.15 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.90-4.81 (1H, CHH_{Bn}, m), 4.80-4.69 (3H, 3 x CHH_{Bn}, m), 4.65-4.45 (8H, 8 x CHH_{Bn}, m), 4.28-3.94 (17H, 3 x CH_{2_OCE}, 5 x CH_{2_glycerol}, CH_{glycerol}), 3.94-3.75 (5H, CH_{2_Ospacer}, H₅, H₃, CH_{glycerol}, m), 3.75-3.46 (7H, CH_{gòycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.13-2.97 (3H, OH, CH_{2_Nspacer}, m), 2.73-2.58 (6H, 3 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m). ¹³C-NMR(101 MHz, CD₃CN), δ : 157.3, 140.1, 139.7, 139.6, 139.5 (C_q), 129.4 x3, 129.3 x 2, 129.2, 129.1 x 2, 129.0, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.1-97.0 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{glycerol}), 78.6 (C₄), 76.0, 75.6 (CH_{2_Bn}), 75.1-74.2 (CH_{glycerol}), 73.9, 73.1, 72.5 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.4 (CH_{2_glycerol}, CH_{2_cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}). ³¹P-NMR(162 MHz, CD₃CN), δ : -1.72, -1.71, -1.69, -1.68, -1.66, -1.65, -1.64, -1.61, -1.40, -1.38, -1.35 HRMS: C₈₀H₉₇N₄O₂₃P₃ + H⁺ required 1575.5829, found 1575.5827

(Protected) (GroP)₃(GlcGroP)-Spacer or Tetramer S24

Alchol S23 (80 µmol) was coupled with phospharamidite **8** (160 μ mol, eq) following the general 2.0 procedure. Compound S24 was obtained after column chromatography (DCM:Acetone, 1:1) in 81% yield (65 µmol). TLC analysis, R_f: 0.33

(DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.10 (35H, H_{arom}, m), 5.74-5.56 (1H, NH, b), 5.18-5.15 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.90-4.81 (1H, CHH_{_Bn}, m), 4.80-4.69 (3H, 3 x CHH_{_Bn}, m), 4.65-4.45 (10H, 10 x CHH_{_Bn}, m), 4.28-3.94 (23H, 4 x CH_{2_OCE}, 7 x CH_{2_glycerol}, CH_{glycerol}), 3.94-3.75 (6H, CH_{2_Ospacer}, H₅, H₃, 2 x CH_{glycerol}, m), 3.75-3.46 (7H, CH_{gbycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.16-2.97 (3H, OH, CH_{2_Nspacer}, m), 2.73-2.58 (8H, 4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m). ¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6 x 2, 139.5. 139.1 (Cq), 129.4 x3, 129.3 x 2, 129.2 x 2, 129.1 x 2, 129.0 x 3, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (Cq), 97.0-96.9 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{glycerol}), 78.6 (C₄), 76.0, 75.6 (CH_{2_Bn}), 75.1-74.2 (CH_{glycerol}), 73.9, 73.1, 72.5 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.4 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -1.67, -1.66, -1.64, -1.63, -1.61, -1.59, -1.57, -1.39, -1.37. HRMS: C₉₃H₁₁₃N₅O₂₈P₄ + H⁺ required 1872.6595, found 1872.6601

(Protected) (GroP)₄(GlcGroP)-Spacer or Pentamer S25

Alchol S24 (48 µmol) was coupled with phospharamidite 8 (120 µmol, eq) following the general 2.5 procedure. Compound S25 was obtained after column chromatography (DCM:Acetone, 1:1) in 76% yield (36 µmol). TLC analysis, R_f: 0.31

(DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.10 (35H, H_{arom}, m), 5.74-5.56 (1H, NH, b), 5.18-5.15 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.90-4.81 (1H, CHH_{Bn}, m), 4.80-4.69 (3H, 3 x CHH_{Bn}, m), 4.65-4.45 (12H, 12 x CHH_{Bn}, m), 4.28-3.94 (29H, 5 x CH_{2_OCE}, 9 x CH_{2_glycerol}, CH_{glycerol}), 3.94-3.75 (7H, CH_{2_Ospacer}, H₅, H₃, 3 x CH_{glycerol}, m), 3.75-3.46 (7H, CH_{gòycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.16-2.97 (3H, OH, CH_{2_Nspacer}, m), 2.73-2.58 (8H, 4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m). ¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6 x 2, 139.5. 139.1 (C_q), 129.4 x3, 129.3 x 2, 129.2 x 2, 129.1 x 2, 129.0 x 3, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.0-96.9 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{glycerol}), 78.6 (C₄), 76.0, 75.6 (CH_{2_Bn}), 75.1-74.2 (CH_{glycerol}), 73.9, 73.1, 72.5 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.4 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -0.44, -0.43, -0.40, -0.38, -0.34, -0.32, -0.18, -0.15. HRMS: $C_{106}H_{129}N_6O_{33}P_5$ + H⁺ required 2169.7361, found 2169.7358

(Protected) (GroP)₅(GlcGroP)-Spacer or Hexamer 28

Alchol S25 (23 µmol) was coupled with phospharamidite 8 (58 µmol, 2.5 eq) following the general procedure. Compound 28 was obtained after column chromatography (DCM:Acetone, 1:1) in 65% yield (15 μmol). TLC analysis, R_f: 0.28

(DCM:Acetone, 4:6)

¹H-NMR (400 MHz, CD₃CN), δ: 7.48-7.10 (35H, H_{arom}, m), 5.74-5.56 (1H, NH, b), 5.18-5.15 (1H, H₁, m), 5.02 (2H, CH_{2_Cbz}, s), 4.90-4.81 (1H, CH $H_{_Bn}$, m), 4.80-4.69 (3H, 3 x CH $H_{_Bn}$, m), 4.65-4.45 (14H, 14 x CH $H_{_Bn}$, m), 4.28-3.94 (35H, 6 x CH_{2_OCE}, 11 x CH_{2_glycerol}, CH_{glycerol}), 3.94-3.75 (8H, CH_{2_OSpacer}, H₅, H₃,4 x CH_{glycerol}, m), 3.75-3.46 (7H, CH_{gòycerol}, 2 x H₆, H₄, H₂, CH_{2_glycerol}), 3.16-2.97 (3H, OH, CH_{2_Nspacer}, m), 2.73-2.58 (8H,4 x CH_{2_OCE}, m), 1.65-1.49 (2H, CH_{2_spacer}, m), 1.45-1.14 (6H, 3 x CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 157.3, 140.1, 139.6 x 2, 139.5. 139.1 (C_q), 129.4 x3, 129.3 x 2, 129.2 x 2, 129.1 x 2, 129.0 x 3, 128.9 x 2, 128.8 x 3,128.7 x 2, 128.6 x 2, 128.4 (CH_{arom}), 118.6 (C_q), 97.0-96.9 (C₁), 82.3 (C₃), 80.8 (C₂), 79.2-79.1 (CH_{glycerol}), 78.6 (C₄), 76.0, 75.6 (CH_{2_Bn}), 75.1-74.2 (CH_{glycerol}), 73.9, 73.1, 72.5 (CH_{2_Bn}), 71.7 (C₅), 69.7 (C₆), 69.2 (CH_{2_Ospacer}), 67.8-66.4 (CH_{2_glycerol}, CH_{2_Cbz}), 63.5-63.3 (CH_{2_OCE}), 61.1 (CH_{2_glycerol}), 41.4 (CH_{2_Nspacer}), 30.7-30.4, 26.8, 25.7 (CH_{2_spacer}), 20.2-20.1 (CH_{2_OCE}).

³¹P-NMR(162 MHz, CD₃CN), δ: -0.41, -0.36, -0.34, -0.32, -0.30, -0.29, -0.14, -0.11. HRMS: $C_{119}H_{145}N_7O_{38}P_6$ + H⁺ required 2466.8128, found 2466.8133

Final deprotections

The oligomer is dissolved in dioxane (2mM) and upon the addition of ammonia solution in H₂O (33%) the reaction mixture turns turbid. Once the solution becomes transparent (1-3 hours) the reaction mixture is concentrated *in vacuo*. After checking by ¹H-NMR the disappearing of the cianoehtyl group, the residue is flushed over Dowex Na⁺ cation-exchange resin (type 50WX4-200, stored in 0.5M NaOH in MilliQ, flushed with MeOH and MilliQ before use) column. After evaporation, the residue is dissolved in MilliQ (2mM) and 2 drops of AcOH are added. Ar_(g) is bubbled in the reaction mixture for 20 minutes while sonicating, Pd-black (≈10 mg) is added and after an additional 10 minutes of Ar_(g) bubbling, the solution is left stirring under H_{2(g)} atmosphere for 1 week. After filtration over Celite®, the reaction mixture is concentrated *in vacuo*. The final compound is purified by sixe-exclusion chromatography (HW40, dimensions: 16/60 mm, eluent: 0.15M NH₄OAc). After several co-evaporation with MilliQ, the product is eluted through a small column containing Dowex Na⁺ cation-exchange resin (type 50WX4-200, stored in 0.5M NaOH in MilliQ, flushed with MeOH and MilliQ before use).

(GlcGroP)(GroP)₅-Spacer or Hexamer (1)

Compound **23** (6 μ mol) was deprotected following the general procedure. The final product **1** was obtained in 78% yield (4.7 μ mol).

 $\label{eq:hardware} \begin{array}{l} {}^{1}\text{H-NMR} \ (850 \ \text{MHz}, \ \text{CD}_{3}\text{CN}), \ \delta: \ 5.07 \\ (1\text{H}, \ \text{H}_{1}, \ \text{J=}3.8 \ \text{Hz}, \ \text{d}), \ 4.05\text{-}3.95 \ (7\text{H}, \ 5 \ \text{x} \\ \text{CH}_{glycerol}, \ \text{CH}_{2_glycerol}, \ \text{m}), \ 3.95\text{-}3.78 \ (24\text{H}, \\ 10 \ \ \text{CH}_{2_glycerol}, \ \ \text{CH}_{H_{glycerol}}, \ \ \text{CH}_{2_Ospacer}, \\ \text{H}_{5}, \ \ \text{m}), \ \ 3.77\text{-}3.64 \ \ (4\text{H}, \ 2 \ \text{x} \ \ \text{H}_{6}, \ \ \text{H}_{3}, \end{array}$

CH*H*_{glycerol}, m), 3.49 (1H, H₂, J=3.8 Hz, J=9.9 Hz, dd), 3.38-3.30 (1H, H₄, m), 3.00-2.91 (2H, CH_{2_Nspacer}, m), 1.69-1.56 (4H, CH_{2_spacer}, m), 1.45-1.34 (4H, CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 100.4 (C₁), 79.7 (CH_{glycerol}), 75.6 (C₃), 74.5 (C₅), 74.2 (C₂), 72.3 (C₄), 72.2-72.1 (CH_{glycerol}), 68.9-68.6 (CH_{2_glycerol}), 67.8-67.7 (CH_{2_glycerol}), 63.1 (C₆), 62.8 (CH_{2_glycerol}), 42.1 (CH_{2_Nspacer}), 32.0, 29.2, 27.7, 27.1 (CH_{2spacer}).

³¹P-NMR(162 MHz, CD₃CN), δ: 1.78, 1.89, 1.93, 2.04.

HRMS: $C_{30}H_{67}NO_{36}P_6 + H^+$ required 1204.1941, found 1204.1951

(GroP)(GlcGroP)(GroP)₄-Spacer or Hexamer (2)

Compound **24** (11 μ mol) was deprotected following the general procedure. The final product **2** was obtained in 73% yield (8 μ mol). ¹H-NMR (850 MHz, CD₃CN), δ : 5.14 (1H, H₁, J=3.8 Hz, d), 4.11-4.04 (1H, CH_{glycerol}, m),

4.05-3.95 (8H, 4 x CH_{glycerol}, 2 x CH_{2_glycerol}, m), 3.95-3.78 (23H, 9 x CH_{2_glycererol}, H₆, CH_{2_Ospacer}, H₅, CH_{glycerol}, m), 3.76-3.68 (2H, H₆, H₃, m), 3.64 (1H, CH $H_{glycerol}$, J=4.3 Hz, J=11.8 Hz, dd), 3.56 (1H, CH $H_{glycerol}$, J=6.1 Hz, J=11.8 Hz, dd) 3.50 (1H, H₂, J=3.8 Hz, J=9.9 Hz, dd), 3.35 (1H, H₄, J=9.6 Hz, t), 2.96 (2H, CH_{2_Nspacer}, J=7.5 Hz, t), 1.69-1.56 (4H, CH_{2_spacer}, m), 1.45-1.34 (4H, CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 98.6 (C₁), 76.2-76.1 (CH_{glycerol}), 73.8 (C₃), 72.7 (C₅), 72.4 (C₂), 71.7-71.6 (CH_{glycerol}), 70.6 (C₄), 70.5-70.3 (CH_{glycerol}), 67.3-66.9 (CH_{2_glycerol}), 66.1 (CH_{2_glycerol}), 65.3 (CH_{2glycerol}), 62.8 (CH_{2_glycerol}), 61.4 (C₆), 42.1 (CH_{2_Nspacer}), 32.0, 29.2, 27.7, 27.1 (CH_{2spacer}). ³¹P-NMR(162 MHz, CD₃CN), δ: 1.62, 1.84, 1.94, 2.04.

HRMS: C₃₀H₆₇NO₃₆P₆ + H⁺ required 1204.1941, found 1204.1956

(GroP)₂(GlcGroP)(GroP)₃-Spacer or Hexamer (3)

Compound **25** (6 µmol) was deprotected following the general procedure. The final product **3** was obtained in 62% yield (3.7 µmol).

¹H-NMR (850 MHz, CD₃CN), δ: 5.14 (1H,

 $\begin{array}{l} H_{1}, \ J=3.8 \ Hz, \ d), \ 4.11-4.04 \ (1H, \ CH_{glycerol}, \ m), \ 4.05-3.95 \ (8H, \ 4 \ x \ CH_{glycerol}, \ 2 \ x \ CH_{2_glycerol}, \ m), \ 3.95-3.78 \ (23H, \ 9 \ x \ CH_{2_glycerol}, \ H_{6}, \ CH_{2_Ospacer}, \ H_{5}, \ CH_{glycerol}, \ m), \ 3.76-3.68 \ (2H, \ H_{6}, \ H_{3}, \ m), \ 3.64 \ (1H, \ CH_{glycerol}, \ J=4.3 \ Hz, \ J=11.8 \ Hz, \ dd), \ 3.56 \ (1H, \ CH_{H_{glycerol}}, \ J=6.1 \ Hz, \ J=11.8 \ Hz, \ dd) \ 3.50 \ (1H, \ H_{2}, \ J=3.8 \ Hz, \ J=9.9 \ Hz, \ dd), \ 3.35 \ (1H, \ H_{4}, \ J=9.6 \ Hz, \ t), \ 2.96 \ (2H, \ CH_{2_Nspacer}, \ J=7.5 \ Hz, \ t), \ 1.69-1.56 \ (4H, \ CH_{2_spacer}, \ m), \ 1.45-1.34 \ (4H, \ CH_{2_spacer}, \ m). \end{array}$

¹³C-NMR(101 MHz, CD₃CN), δ: 98.6 (C₁), 76.2-76.1 (CH_{glycerol}), 73.8 (C₃), 72.7 (C₅), 72.4 (C₂), 71.7-71.6 (CH_{glycerol}), 70.6 (C₄), 70.5-70.3 (CH_{glycerol}), 67.3-66.9 (CH_{2_glycerol}), 66.1 (CH_{2_glycerol}), 65.3 (CH_{2glycerol}), 62.8 (CH_{2_glycerol}), 61.4 (C₆), 42.1 (CH_{2_Nspacer}), 32.0, 29.2, 27.7, 27.1 (CH_{2spacer}). ³¹P-NMR(162 MHz, CD₃CN), δ: 1.62, 1.84, 1.94, 2.04.

HRMS: C₃₀H₆₇NO₃₆P₆ + H⁺ requires 1204.1941, found 1204.1951

(GroP)₃(GlcGroP)(GroP)₂-Spacer or Hexamer (4)

Compound **26** (9 μmol) was deprotected following the general procedure. The final product **4** was obtained in 81% yield (7.3 μmol). ¹H-NMR (850 MHz,

CD₃CN), δ: 5.14 (1H,

H₁, J=3.8 Hz, d), 4.11-4.04 (1H, CH_{glycerol}, m), 4.05-3.95 (8H, 4 x CH_{glycerol}, 2 x CH_{2_glycerol}, m), 3.95-3.78 (23H, 9 x CH_{2_glycerol}, H₆, CH_{2_Ospacer}, H₅, CH_{glycerol}, m), 3.76-3.68 (2H, H₆, H₃, m), 3.64 (1H, CH $H_{glycerol}$, J=4.3 Hz, J=11.8 Hz, dd), 3.56 (1H, CH $H_{glycerol}$, J=6.1 Hz, J=11.8 Hz, dd) 3.50 (1H, H₂, J=3.8 Hz, J=9.9 Hz, dd), 3.35 (1H, H₄, J=9.6 Hz, t), 2.96 (2H, CH_{2_Nspacer}, J=7.5 Hz, t), 1.69-1.56 (4H, CH_{2_spacer}, m), 1.45-1.34 (4H, CH_{2_spacer}, m).

¹³C-NMR(101 MHz, CD₃CN), δ: 98.6 (C₁), 76.2-76.1 (CH_{glycerol}), 73.8 (C₃), 72.7 (C₅), 72.4 (C₂), 71.7-71.6 (CH_{glycerol}), 70.6 (C₄), 70.5-70.3 (CH_{glycerol}), 67.3-66.9 (CH_{2_glycerol}), 66.1 (CH_{2_glycerol}), 65.3 (CH_{2glycerol}), 62.8 (CH_{2_glycerol}), 61.4 (C₆), 42.1 (CH_{2_Nspacer}), 32.0, 29.2, 27.7, 27.1 (CH_{2spacer}). ³¹P-NMR(162 MHz, CD₃CN), δ: 1.62, 1.84, 1.94, 2.04.

HRMS: $C_{30}H_{67}NO_{36}P_6 + H^+$ required 1204.1941, found 1204.1949

(GroP)₄(GlcGroP)(GroP) -Spacer or Hexamer (5)

Compound 27 (16 µmol) deprotected was following the general procedure. The final product 5 was obtained in 78% yield (12 μmol). ¹H-NMR (850 MHz, CD₃CN), δ: 5.14 (1H, H₁, J=3.8 Hz, d), 4.11-4.04

(1H, CH_{glycerol}, m), 4.05-3.95 (8H, 4 x CH_{glycerol}, 2 x CH_{2_glycerol}, m), 3.95-3.78 (23H, 9 x CH_{2_glycerol}, H₆, CH_{2_Ospacer}, H₅, CH_{glycerol}, m), 3.76-3.68 (2H, H₆, H₃, m), 3.64 (1H, CHH_{glycerol}, J=4.3 Hz, J=11.8 Hz, dd), 3.56 (1H, CHH_{glycerol}, J=6.1 Hz, J=11.8 Hz, dd) 3.50 (1H, H₂, J=3.8 Hz, J=9.9 Hz, dd), 3.35 (1H, H₄, J=9.6 Hz, t), 2.96 (2H, CH_{2_Nspacer}, J=7.5 Hz, t), 1.69-1.56 (4H, CH_{2_spacer}, m), 1.45-1.34 (4H, CH_{2_spacer}, m).

 $\label{eq:scalar} {}^{13}\text{C-NMR}(101 \text{ MHz, CD}_3\text{CN}), \ \delta: \ 98.6 \ (C_1), \ 76.2\ -76.1 \ (CH_{glycerol}), \ 73.8 \ (C_3), \ 72.7 \ (C_5), \ 72.4 \ (C_2), \ 71.7\ -71.6 \ (CH_{glycerol}), \ 70.6 \ (C_4), \ 70.5\ -70.3 \ (CH_{glycerol}), \ 67.3\ -66.9 \ (CH_{2_{glycerol}}), \ 66.1 \ (CH_{2_{glycerol}}), \ 65.3 \ (CH_{2_{glycerol}}), \ 62.8 \ (CH_{2_{glycerol}}), \ 61.4 \ (C_6), \ 42.1 \ (CH_{2_{Nspacer}}), \ 32.0, \ 29.2, \ 27.7, \ 27.1 \ (CH_{2_{spacer}}).$

³¹P-NMR(162 MHz, CD₃CN), δ: 1.62, 1.84, 1.94, 2.04.

HRMS: $C_{30}H_{67}NO_{36}P_6 + H^+$ required 1204.1941, found 1204.1957

(GroP)₅(GlcGroP)-Spacer or Hexamer (6)

Compound **28** (21 μ mol) was deprotected following the general procedure. The final product **6** was obtained in 68% yield (14 μ mol).

¹H-NMR (850 MHz, CD₃CN), δ: 5.14 (1H, H₁, J=3.8 Hz, d), 4.11-4.04 (1H, CH_{glycerol}, m), 4.05-3.95 (8H, 4 x CH_{glycerol}, 2 x CH_{2_glycerol}, m), 3.95-3.78

 $\begin{array}{l} (23H, 9 \ x \ CH_{2_glycererol}, H_6, \ CH_{2_Ospacer}, \ H_5, \ CH_{glycerol}, \ m), \ 3.76-3.68 \ (2H, \ H_6, \ H_3, \ m), \ 3.64 \ (1H, \ CH_{H_{glycerol}}, \ J=4.3 \ Hz, \ J=11.8 \ Hz, \ dd), \ 3.56 \ (1H, \ CH_{H_{glycerol}}, \ J=6.1 \ Hz, \ J=11.8 \ Hz, \ dd) \ 3.50 \ (1H, \ H_2, \ J=3.8 \ Hz, \ J=9.9 \ Hz, \ dd), \ 3.35 \ (1H, \ H_4, \ J=9.6 \ Hz, \ t), \ 2.96 \ (2H, \ CH_{2_Nspacer}, \ J=7.5 \ Hz, \ t), \ 1.69-1.56 \ (4H, \ CH_{2_spacer}, \ m), \ 1.45-1.34 \ (4H, \ CH_{2_spacer}, \ m). \end{array}$

¹³C-NMR(101 MHz, CD₃CN), δ: 98.6 (C₁), 76.2-76.1 (CH_{glycerol}), 73.8 (C₃), 72.7 (C₅), 72.4 (C₂), 71.7-71.6 (CH_{glycerol}), 70.6 (C₄), 70.5-70.3 (CH_{glycerol}), 67.3-66.9 (CH_{2-glycerol}), 66.1 (CH_{2-glycerol}), 65.3 (CH_{2-glycerol}), 62.8 (CH_{2-glycerol}), 61.4 (C₆), 42.1 (CH_{2-Nspacer}), 32.0, 29.2, 27.7, 27.1 (CH_{2spacer}). ³¹P-NMR(162 MHz, CD₃CN), δ: 1.62, 1.84, 1.94, 2.04.

HRMS: C₃₀H₆₇NO₃₆P₆ + H⁺ requires 1204.1941, found 1204.1948

Generation and Serum analysis of microarrays

The amino-spacer equipped GTA-fragments were dissolved in spotting buffer (Nexterion Spot, Schott Nexterion) with 10% DMSO in 384-wells V-bottom plates (Genetix, New Milton, UK). The GTAfragments were printed in three final concentrations (30µM, 10µM and 3µM) in triplicate on epoxysilane-coated glass slides (Slide E, Schott, Nexterion) by contact printing using the Omnigrid 100 microarrayer (Genomic Solutions, Ann Arbor, MI) equipped with SMP3 pins with uptake channels that deposit 0.7 nl at each contact. The slides were rested in a high humidity chamber for 18 hours and were stored in the dark until used. The slides were washed with PBS (3x) and subsequently all unreacted sites on the arrays were blocked by shaking the slides for 1 hour with ethanolamine (0.25 ml, 0.05M in PBS containing 20 mg/ml of BSA). The slides were flushed with PBS containing 5% of Tween® 20 and PBS containing 1% of Tween® 20 subsequently. After removal of the PBS containing 1% of Tween® 20, the arrays were shaken with the primary antibody dilutions (0.25 ml, diluted with PBS containing 1% of Tween® 20 and 10 mg/ml of BSA) for 60 minutes. Serum obtained from rabbits immunized with native LTA isolated from E. faecalis strain 12030 was used at a 1:1000 dilution, while rabbit serum raised against the previously reported BSA-WH7 at a 1:500 dilution. The slides were flushed with PBS containing 5% of Tween® 20 and PBS containing 1% of Tween® 20 subsequently. After removal of the PBS containing 1% of Tween® 20, slides were shaken with anti-rabbit-IgG secondary antibodies, labeled with DyLight 550 reporter groups (0.25 ml, 0.5 µg/ml final dilution in PBS containing 1% of Tween® 20 and 10 mg/ml of BSA) for 30 minutes in the dark. The slides were flushed with PBS containing 5% of Tween® 20, PBS and MilliQ subsequently. The slides were dried by centrifugation and were analyzed on fluorescence on 532 nm and 635 nm using a G2565BA scanner. Data and image analyses were performed with GenePix Pro 7.0 software (Molecular Devices, Sunnyvale, CA, USA) as described previously (J. Proteome Res., 8 (2009), pp. 4301-4310). Fluorescence intensities were quantified and corrected for background/non-specific antibody adhesion by subtracting the fluorescence at blank spots, where only spotting buffer was printed without GTA fragment. The average of the triplicate spots was normalized to the highest intensity on the array and visualized in bar graphs using Microsoft Excel.

¹H, ¹³C and ³¹P NMR spectra

(R)-1-O-(*tert*-butyldiphenylsilyl)-3-O-allyl-sn-glycerol (12)

(R)-1-O-allyl-3-O-(4-methoxybenzyl) -sn-glycerol (13)

S35

(S)-1-O-allyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O-(tert-butyldiphenylsilyl-sn-

(R)-1-*O*-allyl-2-*O*-(2,3,4,6-*O*-benzyl- α -D-glucopyranosyl)-3-*O*-(4-methoxybenzyl)-*sn*-glycerol (19)

(S)-1-O-(4-methoxybenzyl)-2-O-(2,3,4,6-O-benzyl- α -D-glucopyranosyl)-3-O-allyl-sn-glycerol (20)

(R)-1-O-allyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O-benzoyl-*sn*-glycerol (21)

(S)-1-O-benzoyl-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O-allyl-*sn*-glycerol (22)

(R)-1-*O*-allyl-2-*O*-(2,3,4,6-*O*-benzyl-α-D-glucopyranosyl)-*sn*-glycerol (S3)

(R)-2-O-(2,3,4,6-O-benzyl-α-D-glucopyranosyl)-3-O(4,4'-dimethoxytrityl)-sn-glycerol (S5)

(GroP)-Spacer or Monomer S6

(GroP)₂-Spacer or Dimer S7

(GroP)₃-Spacer or Trimer S8

(GroP)₄-Spacer or Tetramer S9

(Protected) (GroP)₅-Spacer or Pentamer S10

(Protected) (GIcGroP)(GroP)5-Spacer or Hexamer23

(Protected) (GIcGroP)(GroP)₄-Spacer or Pentamer S11

(Protected) (GroP)(GlcGroP)(GroP)₄-Spacer or Hexamer 24

(Protected) (GIcGroP)(GroP)₃-Spacer or Tetramer S12

(Protected) (GroP)(GlcGroP)(GroP)₃-Spacer or Pentamer S13

(Protected) (GroP)₂(GlcGroP)(GroP)₃-Spacer or Hexamer 25

(Protected) (GIcGroP)(GroP)₂-Spacer or Trimer S14

(Protected) (GroP)(GlcGroP)(GroP)₂-Spacer or Tetramer S15

(Protected) (GroP)₂(GlcGroP)(GroP)₂-Spacer or Pentamer S16

(Protected) (GroP)₃(GlcGroP)(GroP)₂-Spacer or Hexamer 26

·1.00 -1.05 -1.10 -1.15 -1.20 -1.25 -1.30 -1.35 -1.40 -1.45 -1.50 -1.55 -1.60 -1.65 -1.70 -1.75 -1.80 -1.85 -1.90 -1.95 -2.00 -2.05 -2.10 -2.15 f1 (ppm)

(Protected) (GIcGroP)(GroP)-Spacer or Dimer S17

(Protected) (GroP)(GlcGroP)(GroP) - Spacer or Trimer S18

(Protected) (GroP)₂(GlcGroP)(GroP) -Spacer or Tetramer S19

(Protected) (GroP)₃(GlcGroP)(GroP) -Spacer or Pentamer S20

(Protected) (GroP)₄(GlcGroP)(GroP) -Spacer or Hexamer 27

(Protected) GIcGroP-Spacer or Monomer S21

(Protected) (GroP)(GlcGroP)-Spacer or Dimer S22

135.44 138.52 138.52 138.52 138.52 138.52 138.52 138.52 138.52 138.53 138.53 128.54 128.55

(Protected) (GroP)₂(GlcGroP)-Spacer or Trimer S23

(Protected) (GroP)₃(GlcGroP)-Spacer or Tetramer S24

(Protected) (GroP)₄(GlcGroP)-Spacer or Pentamer S25

(Protected) (GroP)₅(GlcGroP)-Spacer or Hexamer 28

(GroP)(GlcGroP)(GroP)₄-Spacer or Hexamer (2)

S101

S103

(GroP)₃(GlcGroP)(GroP)₂-Spacer or Hexamer (4)

(GroP)₄(GlcGroP)(GroP) -Spacer or Hexamer (5)

S107
(GroP)₅(GlcGroP)-Spacer or Hexamer (6)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 f1 (ppm)