Electronic Supplementary Material (ESI) for RSC Chemical Biology. This journal is © The Royal Society of Chemistry 2021

Supporting Information: Design, Synthesis and Evaluation of tryptophan analogues as tool compounds to study IDO1 activity

Nicholas J. Cundy^a, Roseanna K. Hare^b, Tina Tang^c, Andrew G. Leach^d, Thomas A. Jowitt^e, Omar Qureshi^c, John Gordon^c, Nicholas M. Barnes^{c,f}, Catherine A. Brady^{c,f},

Emma L. Raven^g, Richard S. Grainger^{a†} and Sam Butterworth^{d†}

 a. School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT; b. Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL.; c. Celentyx Ltd., Birmingham Research Park, 97 Vincent Drive, Birmingham, B15 2SQ, UK; d. Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL; e. Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL; f. Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT; g. School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS.

† Corresponding Authors. Email: r.s.grainger@bham.ac.uk, sam.butterworth@manchester.ac.uk

Contents

1.1 – General Experimental	S2
1.2 – Experimental Procedures	S4
1.3 – ¹ H- and ¹³ C-NMR Spectra	S17
2 – Biological Evaluation Methods	S42
2.1 – General Methods	S42
2.2 – Experimental Detail	S43
3 – Appendix	S45
3.1 – Indole protecting group screen	S45
3.2 – Conditions screen for the dialkylation of 35	S47
3.3 – Metabolic by-products of 16 and 17	S48
3.4 – F164A IDO1 mediated turnover of 1 and 3	S50
3.5 – LC-MS data for 16 /IDO1 steady state assay	S51
3.6 – LC-MS data for 17 /IDO1 steady state assay	S52
3.7 – LC-MS data for 18 /IDO1 steady state assay	S52
3.8 – Pre-incubation control experiments	S53
3.9 – UV-vis spectra of IDO-1, heme, epacadostat, 17, IDO-1 + epacodostat and IDO-1 + 17	S53
3.10 – MST changes induced by 17 , TRP and 1-MT	S54
4 – References	S55

1 – Chemical Synthesis Methods

1.1 – General Experimental

Heated reactions were performed on Heidolph Hei-Tec stirrer hotplates using fitted heatingmantels with the temperature being controlled *via* an external probe. Reactions that required cooling were performed with one of the following: ice/water (0 °C), ice/sodium chloride (-20 °C), dry ice/acetonitrile (-40 °C) or dry ice/acetone (-78 °C) bath. The term 'warmed passively to X °C' refers to the act of allowing a cooled reaction mixture in a non-maintained cooling bath to warm to the stated temperature.

Unless stated otherwise, all solvents and reagents were used without further purification, from one of the following outlets: Alfa Aesar, Acros Organics, Fisher, Fluorochem, Sigma Aldrich, TCI, Merck or VWR chemicals. Petroleum ether refers to 'Petroleum ether 60:40'. Anhydrous solvents were either collected from a solvent purification system using alumina columns or dried from the bottle *via* activated (300 °C, >6 h, <1 mbar) 3 or 4 Å molecular sieves. Any reference to 'water' use refers to purified water collected from a PURELAB option-S 7 reverse osmosis water purifier.

Thin-layer chromatography (TLC) was performed using Merck silica gel F254, aluminiumbacked TLC plates. Flash column chromatography was carried out using Sigma-Aldrich silica gel (Technical grade, 60 Å pore size, 230–400 mesh, 40–63 μ m particle size) with the column diameter and collected fraction size determined using Still's reference guide.¹

Melting points were determined *via* a Stuart SMP10 melting point apparatus with a digital temperature reading (1 °C graduations). Melting points are quoted as ranges where applicable. Infrared Spectra (IR) were recorded using either a Varian 660 FT-IR spectrometer (with UATR attachment for solid samples) or a Perkin Elmer Spectrum 100 FT-IR spectrometer (with UATR attachment for solid samples) at 23 °C. For ¹H-NMR spectra recorded at 400 MHz either a Bruker AVIII400, AV NEO 400 or NEO400 NMR spectrometer was used; for ¹H-NMR spectra recorded at 500 MHz a Bruker AV NEO 500 was used. ¹³C-NMR spectra were recorded at 101 MHz using a Bruker AVIII400, AV NEO 400 or NEO400 or NEO400 NMR spectrometer and are proton decoupled, unless otherwise stated. All ¹H-NMR and ¹³C-NMR spectra were recorded at 25 °C, unless stated otherwise, and the data processed using MestReNova 12.0.2. Chemical shifts (δ) are reported in ppm relative to the standard solvent shift of the deuterated solvent used with coupling constants (*J*) expressed in units of Hertz (Hz). Proton assignments are presented in condensed formula form with the assigned proton being highlighted in italics (i.e. CH₃CH₂CH₃) and will proceed from left to right on the structure of the compound being assigned. COSY, HSQC, HMBC and pendant techniques were used to unambiguously assign

both ¹H-NMR and ¹³C-NMR spectra, JMOD, DEPT45 and/or 135 experiments were used to identify quaternary carbons. The following abbreviations were used to assign resonance multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, dd = double doublet, td = triple doublet, dt = double triplets, tt = triple triplets, ddd = double double doublets, tdd = triple double doublet, ddd = double double double doublets, quin. = quintet, *app.* = apparent. 'Stack' is used to describe a resonance structure in which two or more non-equivalent nuclei are coincident. 'Multiplet', m, is used to describe a resonance that arises from a single, or multiple equivalent, nuclei where the coupling patterns cannot be identified and assigned. Low and high resolution mass spectra were recorded *via* electrospray (ES), affinity-purification (AP) or Atmospheric Solids Analysis Probe (ASAP) techniques using a Waters Xevo G2-XS or a Synapt G2S TOF Mass Spectrometer in positive or negative mode (technique and charge detection method stated in each MS report). LC-MS analysis was performed using either a Waters e2695 separation module coupled with a Waters SQD MS-detector (raw data was processed and extracted using MassLynx V4.1 SCN855), or a ThermoFisher LCQ-fleet LC-MS (raw data was processed and extracted using Xcaliber).

16) 1-Amino-2-(1H-indol-3-yl)cyclopropane-1-carboxylic acid hydrochloride

Acid 31 (80 mg, 0.19 mmol) was dissolved in a solution of hydrogen chloride in 1,4-dioxane (4 M, 2 mL) and stirred at 23 °C under an atmosphere of argon for 23 h. The resultant suspension was diluted with diethyl ether (5 mL) and the solid collected via suction filtration, the solid was washed further with diethyl ether (2×10 mL), transferred to a flask and dried under high-vacuum to afford a diastereomeric mixture (87:13, E/Z) of the indole 16 as a red solid (48 mg, 99%); mp = 260–261 °C; v_{max}/cm^{-1} (neat) 3372 (NH), 2863 br (OH), 1703 (CO); δ_H (400 MHz; CD₃OD) Resonances assignable to the major *E*-diastereomer: 1.97 (1 H, dd, J = 10.2, 6.4, CHCHH'C), 2.19 (1 H, dd, J = 8.4, 6.4, CHCHH'C), 2.93–2.98 (1 H, m, CCHCHH', overlap with minor diastereomer), 7.22-7.27 (1 H, m, CHCHCC or CHCHCNH), 7.31 (1 H, app. dd, J = 7.3, 1.3, CHCHCC or CHCHCNH), 7.56 (1 H, app. d, J = 1.3, CCHNH), 7.71–7.75 (1 H, app. d, J = 7.0, CHCHCC or CHCHCNH), 8.13 (1 H, app. d, J = 8.1, CHCHCC or CHCHCNH). Resonances assignable to the minor Z-diastereomer: 1.91 (1 H, dd, J = 10.2, 6.2, CHC*H*H'C), 2.96–3.05 (1 H, m, CHC*H*H'C), 7.03 (1 H, app. t, J = 7.3, C*H*CHCC or CHCHCNH), 7.07–7.12 (1 H, m, CHCHCC or CHCHCNH), 7.13 (1 H, s, CCHNH), 7.34 (1 H, d, J = 6.9, CHCHCC or CHCHCNH), 7.69 (1 H, d, J = 7.8, CHCHCC or CHCHCNH), CHCHHC resonance missing, assumed to be overlapping with the resonance at 2.19 ppm of the major diastereomer; δ_c (101 MHz; CD₃OD) Resonances assignable to the major Ediastereomer: 17.6 (CH₂), 23.2 (CH), 40.5 (C), 116.2 (CH), 119.8 (CH), 123.9 (CH), 125.7 (CH), 126.6 (CH), 131.7 (C), 136.8 (C), 153.1 (C), 169.5 (C). Resonances assignable to the minor Z-diastereomer: 17.7 (CH₂), 24.4 (CH), 40.9 (C), 108.9 (CH), 112.4 (CH), 119.1 (CH), 120.1 (CH), 122.6 (CH), 125.5 (CH), 129.1 (C), 137.9 (C), 169.9 (C), missing C(8) of the indole

ring; LRMS *m/z* (ASAP+) 200.1 ([M – NH₂]⁺, 100%); HRMS *m/z* (ASAP+) calcd. for C₁₂H₁₀NO₂ 200.0712, found 200.0720.

A known compound prepared according to a standard procedure.

A solution of NH₃ in methanol (7.0 M, 47 µL) was added to a suspension of NH₄Cl (29 mg, 0.54 mmol) and NaCN (26 mg 0.54 mmol) in methanol (1 mL) and stirred vigorously at 0 °C. After 30 min, a solution of 37 (100 mg, 0.539 mmol) in methanol (1 mL) was added dropwise over 2 min and then the solution was allowed to warm to 23 °C. After 72 h, the aldehyde was no longer visible via TLC so the reaction mixture was diluted with water (5 mL), NaHCO_{3(aq)} (sat. soln., 10 drops) was added and then the organics were extracted with ethyl acetate (2 \times 10 mL). The organic was extracted with $HCl_{(aq)}$ (1 M, 3 × 10 mL) and the acidic aqueous layers combined, taken to ~pH 12 via the addition of NaOH_(aq)(1 M, 35 mL) and the remaining organic residues extracted with ethyl acetate (3 \times 10 mL). The organics were combined, dried over MgSO₄, the solids filtered off and concentrated to afford the intermediate cyanoamine. The intermediate was immediately re-solublised in EtOH (0.5 mL) and HCl_(aq) (9 M, 4 mL) was added and heated to reflux. After 24 h, the solution was allowed to cool to 23 °C, concentrated to dryness and dried under high vacuum to afford tryptophan analogue **17** as an off-white solid (69 mg, 48%); mp = 137–139 °C; v_{max}/cm^{-1} (neat) 3243 br (COOH), 1614 br (CO); 6.0, 4.5, $CH^{1}H^{2}CH^{3}H^{4}$), 1.16 (1 H, ddd, J = 9.7, 6.0, 4.2, $CH^{1}H^{2}CH^{3}H^{4}$), 1.35 (1 H, ddd, J = 100CHCHCC or CHCHCNH), 7.09 (1 H, ddd, J = 8.1, 7.0, 1.2, CHCHCC or CHCHCNH), 7.24 (1 H, s, CC*H*NH), 7.33 (1 H, dt, J = 8.1, 1.0, CHC*H*CC or CHC*H*CNH), 7.85 (1 H, dt, J = 7.9, 1.2, CHC*H*CC or CHC*H*CNH); **\delta_c** (101 MHz; CDCI₃) 12.1 (CH₂), 13.5 (CH₂), 19.5 (C), 63.7 (C), 112.4 (CH), 114.8 (C), 120.2 (Stack, 2 × CH), 122.7 (CH), 126.9 (CH), 128.7 (C), 138.1 (C); LRMS *m*/*z* (ES+) 253.1 ([M + Na]⁺, 20%); 231.1 ([M + H]⁺, 14); HRMS *m*/*z* (ES+) calcd for C₁₃H₁₄N₂O₂Na 253.0953, found 253.0952.

A known compound prepared according to a modified literature procedure. The recorded data are in agreement with that reported in the literature with the exception of the missing COOH resonance in the ¹³C-NMR spectra.²

18) Methyl 2-((1H-indol-3-yl)thio)acetate

A solution of I_2 (3.60 g, 14.2 mmol) and KI (2.35 g, 14.2 mmol) in MeOH:H₂O (4:1, 14 mL) was added dropwise over 10 h to a solution of indole **26** (2.00 g, 17.0 mmol) and thioglycolic acid (1.27 mL, 14.2 mmol) in MeOH:H₂O (4:1, 30 mL) at 23 °C. The reaction mixture was stirred for 76 h before being quenched by the addition of NaHCO_{3(aq)} (Sat. Soln., 40 mL) and then diluted further with ethyl acetate (35 mL). The resultant phases were separated, and the organic phase was washed sequentially with Na₂S₂O_{3(aq)} (Sat. Soln., 20 mL), NaOH_(aq) (1 M, 20 mL), water (20 mL) and brine (30 mL). The organic was then dried over MgSO₄, filtered and concentrated under reduced pressure. The resulting crude material was subjected to flash column chromatography ($R_f = 0.3, 6:4 n$ -hexane:ethyl acetate) to give sulfenylindole **18** as a colourless oil* (2.91 g, 93%); **v**_{max}/**cm**⁻¹ (neat) 3364 (NH), 2950 (CH), 1720 (CO); **5**_{*H*} (400 MHz; CDCI₃) 3.46 (2 H, s, SCH₂CO₂CH₃), 3.67 (3 H, s, CO₂CH₃), 7.22–7.30 (2 H, Stack, C*H*CHCC and C*H*CHCNBoc), 7.38–7.42 (2 H, Stack, CHC*H*CC or CHC*H*CNBoc, and CC*H*NH), 7.76–7.81 (1 H, m, CHC*H*CC or CHC*H*CNBoc), 8.45 (1 H, s, N*H*); **5**_{*C*} (101 MHz; CDCI₃) 38.8 (CH₂), 52.4 (CH₃), 104.5 (C), 111.8 (CH), 119.2 (CH), 120.8 (CH), 123.0 (CH), 129.1 (C), 130.5 (CH), 136.3 (C), 171.1 (C); LRMS *m/z* (ES+) 244.0 ([M +

Na]⁺, 94%), 222.0 ([M + H]⁺, 100); **HRMS** *m*/*z* (ES+) calcd for C₁₁H₁₂NO₂S 222.0589, found 222.0596.

A known compound prepared according to a literature procedure.³ No spectral data is available within the literature. *The clear oil darkens on standing with no detectable degradation products via ¹H-NMR.

27) Indole-3-carbaldehyde

Freshly distilled phosphorus(V) oxychloride (1.91 mL, 20.4 mmol) was added to anhydrous *N*,*N*'-dimethylformamide (4 mL) at 0 °C in a flame-dried round-bottom flask and stirred under an atmosphere of argon for 30 min. Indole 26 (2.00 g, 17.0 mmol) in anhydrous *N*,*N*'-dimethylformamide (16 mL) was added to the cooled POCl₃/DMF mixture dropwise over 5 min. The resultant solution was heated to 50 °C and stirred for a further 2 h, after which the reaction was judged complete via TLC ($R_f = 0.3$, 1:1 ethyl acetate: n-hexane). The reaction mixture was allowed to cool to 23 °C before ice (~10 g) was added and stirred vigorously. The resultant solution was brought to pH 11, via dropwise addition of aqueous sodium hydroxide (1 M), forming a colourless precipitate. The suspension was brought to reflux for 15 min and then allowed to cool to 23 °C before the solid was collected via suction filtration. The solid was dried under reduced pressure to afford aldehyde 27, with no need for further purification, as a white crystalline solid (2.24 g, 91%); v_{max}/cm⁻¹ (neat) 3166 (conj. NH), 2979 (CH), 2931 (CH), 2892 (CH), 2820.5 (CH), 1629.9 (conj. CO); **δ**_H (400 MHz; CD₃OD) 7.23 (1H, td, J = 7.2, 1.2, CHCHCC or CHCHCNH), 7.27 (1H, td, J = 7.2, 1.2, CHCHCC or CHCHCNH), 7.45-7.49 (1H, m, CHCHCC or CHCHCNH), 8.08 (1H, s, CCHNH), 8.14-8.17 (1H, m, CHCHCC or CHC*H*CNH), 9.88 (1H, s, C*H*O); δ_c (101 MHz; CD₃OD) 113.1 (CH), 120.1, (CH), 122.4 (CH), 123.6 (CH), 125.0 (CH), 125.7 (C), 138.9 (C), 139.6 (CH), 187.3 (CH); LRMS m/z (ES+) 146.1 ([M + H]⁺, 100%), 118.1 (18).

S7

A known compound prepared according to a literature procedure.⁴ The recorded data are in agreement with that reported in the literature.⁴

28) 3-Formyl-indole-1-tert-butyl carboxylate

Di-*tert*-butyl dicarbonate (3.38 g, 15.5 mmol) was dissolved in dichloromethane (35 mL) and stirred. To this solution, indole **27** (1.50 g, 10.3 mmol), triethylamine (2.16 mL, 15.5 mmol) and DMAP (126 mg, 1.03 mmol) were added sequentially and the resulting solution was stirred at 23 °C for 15 h until determined complete *via* TLC (R_f = 0.7, 100% ethyl acetate). The reaction mixture was quenched with water (20 mL) and stirred for a further 5 minutes. The layers were separated and the organic washed with water (2 × 30 mL) and brine (1 × 40 mL), dried over MgSO₄, filtered and concentrated under reduced pressure to give *N*-Boc indole **28** as a pale yellow solid in sufficient purity (2.52 g, 99%); v_{max}/cm⁻¹ (neat) 1741.8 (CO), 1677.5 (CO); δ_H (**400 MHz; CDCI**₃) 1.71 (9 H, s, C(C*H*₃)₃), 7.34–7.44 (2 H, Stack, C*H*CHC and C*H*CHCNBoc), 8.15 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.21 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 8.23 (1 H, s, CC*H*NBoc), 8.26–8.30 (1 H, m, CHC*H*C or CHC*H*CNBoc), 10.09 (1 H, s, C*H*O); δ_c (101 MHz; CDCI₃) 28.1 (CH₃), 45.9 (C), 85.7 (C), 115.2 (CH), 121.6 (C), 122.1 (CH), 124.6 (CH), 126.1 (CH), 136.0 (C), 136.5 (CH), 148.8 (C), 185.8 (CO); LRMS *m/z* (AP+) 246.2 ([M + 1]⁺, 2%), 190.1 ([M – ^{*i*}Bu + H]⁺, 100), 146.1 ([M – Boc]⁺, 21).

A known compound prepared according to a literature procedure.⁵ The recorded data are in agreement with that reported in the literature.⁵

29

28

p-Toluenesulfonyl hydrazide (1.50 g, 6.10 mmol) was added to a solution of aldehyde **28** (1.14 g, 6.10 mmol) in methanol (30 mL) and stirred at 50 °C for 4 h until determined complete *via* TLC ($R_{\rm I}$ = 0.3, 1:1 ethyl acetate: *n*-hexanes). The reaction was taken off heat and allowed to cool to 23 °C before the methanol was removed under reduced pressure to afford *E*-hydrazide **29**, with no need for further purification, as a crystalline yellow solid (2.51 g, 99%); **mp** = 86–88 °C; **v**_{max}/**cm**⁻¹ (neat) 3194 (NH), 2979 (CH), 1736 (CO), 1551 (SO), 1151 (SO); **δ**_{*H*} (**400 MHz; CDCI**₃) 1.66 (9 H, s, C(CH₃)₃), 2.38 (3 H, s, Ts-CH₃), 7.30 (2 H, AA'BB', Ts-CH), 7.33 (1 H, td, *J* = 7.8, 1.2, C*H*CHCC or *CH*CHCNBoc), 7.38 (1 H, td, *J* = 7.8, 1.2, *CH*CHCC or *CH*CHCNBoc), 7.38 (1 H, td, *J* = 7.8, 1.2, *CH*CHCC or *CH*CHCNBoc), 8.11 (1 H, d, *J* = 7.8, CHC*H*CC or CHC*H*CNBoc), 8.19 (1 H, dt, *J* = 7.8, 1.5, CHC*H*CC or CHC*H*CNBoc); **δ**_{*c*} (**101 MHz; CDCI**₃) 21.7 (CH₃), 28.3 (CH₃), 84.9 (C), 115.2 (CH), 116.0 (C), 122.9 (CH), 123.9 (CH), 125.7 (CH), 126.9 (C), 128.2 (CH), 129.3 (CH), 129.8 (CH), 135.4 (C), 136.0 (C), 143.6 (CH), 144.4 (C), 149.2 (C), quaternary carbamate CO not observed; LRMS *m/z* (ES+) 436.1 ({M + Na}]⁺, 100%), 414.2 ([M + H]⁺, 33); HRMS *m/z* (ES+) calcd for C₂₁H₂₃N₃O₄SNa 436.1307, found 436.1306.

A novel compound prepared according to a modified literature procedure.⁶

30) *tert*-Butyl 3-(2-((benzyloxy)carbonyl)-2-((*tert*-butoxycarbonyl)amino)cyclopropyl)-1*H*-indole-1-carboxylate

An oven-dried two-neck flask, fitted with an oven-dried condenser, was charged with 29 (2.02 g, 4.88 mmol), caesium carbonate (1.59 g, 4.88 mmol), benzyltriethylammonium chloride (111 mg, 0.487 mmol) and anhydrous toluene (40 mL). The resulting suspension was stirred vigorously under an atmosphere of argon for 1.5 h to yield a bright white suspension. A solution of 34 (1.02 g, 3.67 mmol) in anhydrous toluene (40 mL) was then added and the overall solution was heated at 90 °C for 16 h until complete loss of the acrylate was seen via TLC. The reaction mixture was allowed to cool and the remaining solids were removed via suction filtration, the collected solids were washed with ethyl acetate (2 \times 20 mL). The combined organics were diluted with water (20 mL), separated and the resultant organic phase was washed further with water (2 \times 20 mL) and brine (30 mL). Drying over MgSO₄ and concentration under reduced pressure afforded the crude mixture. Analysis of the crude by ¹H-NMR revealed an 92:8 d.r.. (E/Z). The crude was subjected to flash column chromatography ($R_{\rm f} = 0.2, 8.5:1.5$ *n*-hexane:ethyl acetate) to yield diastereometric mixture (86:14, *E/Z*) of cyclopropane **30** as a pale yellow solid (1.69 g, 91%); **mp** = 126–128 °C; v_{max}/cm^{-1} (neat) 3254 (NH), 2976 (CH), 1731 (CO), 1726 (CO), 1678 (CO); δ_{H} (400 MHz; **CDCI**₃) Resonances assignable to the major *E*-diastereomer: 1.46 (9 H, s), 1.65 (9 H, s), 2.16–2.22 (1 H, m), 2.69 (1 H, app. t, J = 8.8, CCHCHH'), 4.74 (2 H, Stack, CO₂CH₂Ph), 5.43 (1 H, s, NH), 6.88 (2 H, m, Ph-CH), 7.12-7.23 (4 H, Stack, 3 × Ph-CH & CHCHCC or CHCHCNBoc)), 7.30 (1 H, ddd, J = 8.4, 7.2, 1.4, CHCHCC or CHCHCNBoc), 7.34–7.37 (1 H, m, CCHNBoc), 7.73 (1 H, s, CHCHCC or CHCHCNBoc), 8.08 (1 H, d, J = 8.1, CHCHCC or CHCHCNBoc). Resonances assignable to the minor Z-diastereomer: 2.27 (1 H, m), 2.88

(1 H, app. t, J = 8.7, CC*H*CHH'). Used for purposes of identifying the diastereomer ratio; δ_{c} (101 MHz; CDCl₃) Resonances assignable to the major *E*-diastereomer: 21.4 (CH₂), 26.2 (CH), 28.4 (CH₃), 28.5 (CH₃), 67.1 (CH₂), 83.7 (C), 115.4 (CH), 119.4 (CH), 122.8 (CH), 124.5 (CH), 125.0 (C), 125.2 (CH), 128.0 (CH), 128.1 (CH), 128.3 (CH), 130.8 (C), 135.4 (C), 144.9 (C), 149.6 (C), 155.9 (C), 170.1 (C). Both quaternary *C*(CH₃)₃ carbons not observed. **Resonances assignable to the minor** *Z***-diastereomer**: No resonances assignable; LRMS *m/z* (ES+) 529.2 ([M + Na]⁺, 100%); HRMS *m/z* (ES+) calcd for C₂₉H₃₄N₂O₆Na 529.2315, found 529.2317.

A novel compound prepared according to a modified literature procedure.⁷

31) 2-(1-(*tert*-Butoxycarbonyl)-1*H*-indol-3-yl)-1-((*tert*-butoxycarbonyl)amino)cyclopropane-1-carboxylic acid

10% Pd/C (100 mg) was suspended in a solution of **30** (200 mg, 0.395 mmol) in methanol (8 mL) and stirred in a round-bottom flask fitted with a septa. H_{2(g)} was then bubbled through the solution for 10 min *via* balloon and then for the remainder of the reaction the balloon needle was suspended above the surface of the solution. After 45 min, the reaction was determined complete *via* TLC. The reaction mixture was passed through a celite bung and was eluted with methanol (2 × 5 mL). The resulting liquor was collected and concentrated under reduced pressure to give a diastereomeric mixture of acid **31** (91:9, *E/Z*) as a white solid (154 mg, 94%); **mp** = 153–154 °C; **v**_{max}/**cm**⁻¹ (neat) 2978 (CH), 1726 (CO), 1702 (CO), Br. COOH absorbance seen but with no definable centre; **\delta_H** (400 MHz; CD₃OD) Resonances assignable to the major *E*-diastereomer: 1.49 (9 H, s C(CH₃)₃), 1.56–1.60 (1 H, m, CHC*H*H'C), 1.66 (9 H, s, C(C*H*₃)₃), 2.10 (1 H, dd, *J* = 8.2, 5.1, CHCH*H*C), 2.67 (1 H, td, *J* = 8.8, 8.1, 1.5, CC*H*CHH'), 7.21 (1 H, td, *J* = 7.4, 1.3, C*H*CHCC or C*H*CHCNBoc), 7.24–7.29 (1

H, m, CHCHCC or CHCHCNBoc), 7.39–7.41 (1 H, m, CCHNBoc), 7.89 (1 H, d, J = 7.6, CHCHCC or CHCHCNBoc), 8.05 (1 H, d, J = 8.1, CHCHCC or CHCHCNBoc). Resonances assignable to the minor Z-diastereomer: 2.80 (1 H, m, CCHCHH'). Used for purposes of identifying the diastereomer ratio; δ_c (101 MHz; CDCI3) Resonances assignable to the major *E*-diastereomer: 21.7 (CH₂), 26.3 (CH), 28.4 (CH₃), 28.8 (CH₃), 41.2 (C), 80.5 (C), 84.8 (C), 115.8 (CH), 117.8 (C), 120.9 (CH), 123.6 (CH), 125.3 (CH), 125.8 (CH), 132.3 (C), 136.7 (C), 151.0 (C), 158.6 (C), 173.9 (C). Resonances assignable to the minor Z-diastereomer: No resonances assignable; LRMS *m/z* (ES+) 439.2 ([M + Na]⁺, 100%); HRMS *m/z* (ES+) calcd for C₂₂H₂₈N₂O₆Na 439.1845, found 439.1851.

A novel compound prepared according to a standard procedure. Note: If left for >1 h under hydrogenolysis conditions the product rapidly degrades – presumably via reduction of the 2,3-double bond however this was never verified in our experiments.⁸

33) Benzyl (tert-butoxycarbonyl)serinate

N-Boc Serine **32** (2.00 g, 9.27 mmol) was dissolved in a suspension of caesium carbonate (3.81 g, 11.7 mmol) in *N*,*N'*-dimethylformamide (40 mL) and stirred vigorously at 23 °C for 20 min. Benzyl bromide (1.39 mL, 11.7 mmol) was then added dropwise over 3 min and the reaction allowed to stir. After 17.5 h, the reaction mixture was diluted with water (20 mL) and extracted with ethyl acetate (30 mL). The organic and aqueous layers were separated and the organic was washed with water (2 × 15 mL) and brine (20 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was subjected to flash column chromatography ($R_{\rm f}$ = 0.2, 2:1 *n*-hexanes:ethyl acetate) to yield benzyl ester **33** compound as a colourless oil (2.23 g, 78%); $\nu_{\rm max}/\rm{cm}^{-1}$ (neat) 3391 (OH), 2976 (CH), 1688 (CO); δ_H (**400 MHz; CDCI₃)** 1.44 (9 H, s, C(CH₃)₃), 2.18 (1 H, t, *J* = 6.2, C*H*CH₂), 3.92 (1 H, dd, *J* = 6.2, 3.7, CHCH₂), 4.43 (1 H, s, OH), 5.20 (1 H, d, *J* = 12.4,

PhC*H*H'CO₂), 5.22 (1 H, d, *J* = 12.4, PhCH*H*CO₂), 5.44 (1 H, s, N*H*), 7.31–7.40 (5 H, m, *Ar-H*); δ_c (101 MHz; CDCl₃) 28.4 (CH₃), 56.0 (CH), 63.7 (CH₂), 67.5 (CH₂), 128.3 (CH), 128.6 (CH), 128.8 (CH), 135.3 (C), 155.9 (CO) 170.8 (CO); LRMS *m*/z (ES+) 318.1 ([M + Na]⁺ 100%).

A known compound prepared according to a literature procedure.⁹ The recorded data are in agreement with that reported in the literature with the exception of the missing quaternary carbon of the ^tBu-group in the ¹³C-NMR spectrum.¹⁰

A solution of alcohol **33** (8.52 g, 28.9 mmol), triethylamine (10.1 mL, 72.1 mmol) and 4-dimethylaminopyridine (3.52 g, 28.9 mmol) in anhydrous dichloromethane (150 mL) was cool to 0 °C and stirred under an atmosphere of argon for 15 min. Methanesulfonyl chloride (3.70 mL, 37.5 mmol) was then added dropwise over the course of 5 min, the resultant mixture was allowed to warm to 23 °C over-night. After 16.5 h, the reaction mixture was diluted with HCl_(aq) (1 M, 10 mL). The organic and aqueous layers were separated and the organic was washed with HCl_(aq) (1M, 10 mL), water (2 × 10 mL) and brine (20 mL). This organic solution was dried with MgSO4 and concentrated under reduced pressure to give a light brown oil. The crude was subjected to flash column chromatography ($R_{\rm f}$ = 0.3, 9:1 *n*-hexane:ethyl acetate) to afford amino acrylate **34** as a white solid (6.64 g, 83%); v_{max}/cm⁻¹ (neat) 3397 (NH), 2980 (CH), 1705 (CO), 1630 (CC); δ_H (**400 MHz; CDCI**₃) 1.48 (9 H, s, C(CH₃)₃), 5.26 (2 H, s, PhC*H*₂CO₂), 5.79 (1 H, d, *J* = 1.5, CC*H*₀H_b or CCH_aH_b), 6.18 (1 H, *app.* s, CC*H*₀H_b or CCH_aH_b), 7.03 (1 H, s, N*H*), 7.32–7.40 (5 H, m, *Ar-H*); δ_C (**101 MHz; CDCI**₃) 28.4 (CH₃), 67.8 (CH₂), 80.9 (C), 105.6 (CH₂), 128.3 (CH), 128.7 (CH), 128.8 (CH), 131.5 (C), 135.3 (C), 152.7 (CO), 164.0 (CO); LRMS *m/z* (ES+) 300.1 ([M + Na]*, 100%). A known compound prepared according to a literature procedure.¹¹ The recorded data are in agreement with that reported in the literature.¹¹

36) 1-(Indol-3-yl)cyclopropane-1-carbonitrile

A solution of n-BuLi in hexanes (2.25 M, 22.8 mL, 51.2 mmol) was added to a flame-dried, two-neck round-bottom flask that had been charged with anhydrous tetrahydrofuran (50 mL) and cooled to -40 °C under an atmosphere of argon. Freshly distilled (ⁱPr)₂NH (7.20 mL, 51.2 mmol) was then added to the cooled *n*-BuLi/tetrahydrofuran solution dropwise over 5 min while maintaining the temperature at -40 °C. After 0.5 h, the resulting LDA solution was transferred via cannula (by positive pressure of argon) to a solution of nitrile 35 (2.00 g, 12.8 mmol) in anhydrous tetrahydrofuran (20 mL) which had been cooled to -78 °C. The resulting solution was allowed to mature for 0.5 h, in which time a yellow suspension had formed signifying the formation of the nitrile anion. 1-bromo-2-chloroethane (1.60 mL, 19.2 mmol) was then added in one portion and the solution immediately turned to a brown translucent solution. The resulting brown solution was allowed to warm passively to 23 °C and after 20 h the reaction was determined complete via TLC. The reaction mixture was quenched by slow addition of water (20 mL) and then diluted further with ethyl acetate (20 mL). The two layers were separated and the organic was washed with HCl_(aq) (2 M, 2 × 20 mL), water (20 mL) and brine (40 mL). After drying over MgSO₄, the solids were filtered off and the organic was concentrated to give the crude as a brown oil. The crude was subjected to flash column chromatography (R_f = 0.5, 1:1 *n*-hexane:ethyl acetate) and the product-containing fractions were combined, concentrated and recrystallised from hot n-hexane and ethyl acetate to afford 1,1'cyclopropane **36** as pale-yellow, needle-like crystals (1.94 g, 83%); mp = 168-170 °C; v_{max}/cm⁻¹ (neat) 3392 (NH), 3126 (CH), 2093 (CH), 3057 (CH), 2227 (CN); δ_H (400 MHz; CDCI₃) 1.34–1.39 (2 H, AA'BB', Cyclopropane CH₂), 1.64–1.69 (2 H, AA'BB', Cyclopropane

CH₂), 7.11 (1 H, d, *J* = 2.6, CC*H*NH), 7.21 (1 H, td, *J* = 8.1, 7.2, 1.4, C*H*CHCC or C*H*CHCNH), 7.26 (1 H, td, *J* = 7.7, 7.2, 1.4, C*H*CHCC or C*H*CHCNH), 7.38 (1 H, dd, *J* = 8.1, 1.4, CHC*H*CC or CHC*H*CNH), 7.83 (1 H, dd, *J* = 7.7, 1.4, CHC*H*CC or CHC*H*CNH), 8.13 (1 H, s, N*H*); **δ***c* (101 MHz; CDCl₃) 5.9 (C), 15.5 (2 × CH₂), 111.7 (CH), 112.0 (C), 119.0 (CH), 120.5 (CH), 123.1 (CH), 123.3 (CH), 126.5 (C), 136.3 (C), one quaternary-C (CN) resonance was not observed; LRMS *m*/*z* (ES+) 183.1 ([M + H]⁺, 100%), 156.1 ([M – CN]⁺, 95); HRMS *m*/*z* (ES+) calcd for C₁₂H₁₁N₂183.0922, found 183.0921.

A reported compound prepared according to a modified literature procedure.² No reference data is available to compare the recorded spectra to.

37) 1-(Indol-3-yl)cyclopropane-1-carbaldehyde

A solution of DIBAL (4.30 mL, 4.28 mmol, 1.0 M) in toluene was added dropwise over 20 min to a stirred solution of nitrile **36** (600 mg, 3.29 mmol) in anhydrous tetrahydrofuran (10 mL) which had been cooled to -20 °C under argon. After a further 40 min, the reaction was determined complete *via* TLC. Upon completion, the remaining DIBAL was quenched *via* dropwise addition of MeOH (2.5 mL) over 5 min. The reaction mixture was then diluted further with a solution of Rochelle's salt (Sat. soln, 20 mL) and allowed to stir. After 1 h, the mixture was extracted with ethyl acetate (15 mL). The two-phases were separated and the aqueous was back-extracted with ethyl acetate (2 × 10 mL) and the combined organics were washed with water (2 × 10 mL) and brine (20 mL), dried over MgSO₄, filtered and concentrated to afford the crude as a yellow oil. The crude oil was subjected to flash column chromatography (R_I = 0.4, 6:4 *n*-hexane:ethyl acetate) to afford aldehyde **37** as a colourless oil (481 mg, 79%); **v**_{max}/cm⁻¹ (neat) 3376 s (NH), 3092 (CH), 3055 (CH), 3009 (CH), 2829 (CH – aldehyde), 2721 (CH – aldehyde), 1699 (CO); **δ_H (400 MHz; CDCI₃)** 1.38–1.42 (2 H, AA'BB', C*H*₂), 1.63–1.67

(2 H, AA'BB', C*H*'₂), 7.12 (1 H, d, *J* = 2.5, CC*H*NH), 7.15 (1 H, ddd, *J* = 8.2, 7.2, 1.3, C*H*CHCC or C*H*CHCNH), 7.24 (1 H, ddd, *J* = 8.2, 7.2, 1.3, C*H*CHCC or C*H*CHCNH), 7.39 (1 H, dt, *J* = 8.1, 0.9, CHC*H*CC or CHC*H*CNH), 7.59 (1 H, dt, *J* = 8.1, 0.9, CHC*H*CC or CHC*H*CNH), 8.13 (1 H, s, NH), 9.45 (1 H, s, C*H*O); **δ**_c (101 MHz; CDCI₃) 16.5 (2 × CH₂), 29.0 (C), 111.6 (CH), 113.7 (C), 119.2 (CH), 120.1 (CH), 122.7 (CH), 124.3 (CH), 128.0 (C), 136.4 (C), 202.3 (CHO); LRMS *m/z* (ES+) 208.1 ([M + Na]⁺, 100%); 186.1 ([M + H]⁺, 5); HRMS *m/z* (TOF ES+) calcd for C₁₂H₁₁NONa 208.0739, found 208.0738.

A literature compound prepared according to a modified literature procedure.² The recorded data are in agreement with that reported in the literature.

1.3 – ¹H- and ¹³C-NMR Spectra

Page intentionally left blank, NMR spectra to follow.

S OMe	leter Value	RSG_NC_327.10.ftd	RSG_NC_327_CHAR_1H	Bruker BioSpin GmbH	Facility		t spect	CDCI3	ure 295.5	uence zg30	it 1D	5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010	(f Scans 32	3ain 203.0	Delay 1.5000	th 11.0600	tion		1 Time 1.9923	Date 2018-04-13T11:30:00 ה	on Date 2019-01-03T14:33:04		eter 400.13	/idth 8223.7	-1710.2	1H	size 16384	ize 65536		
	Param	Title	Comment	Origin	Owner	Site	Instrumen	Solvent	Temperatu	Pulse Seq	Experimer	Probe	:	Number o	Receiver (Relaxation	Pulse Wid	Presatura	Frequency	Acquisitior	Acquisitior	Modificatio	Class	Spectrome	Spectral W	Lowest Frequency	Nucleus	Acquired S	Spectral S	1	
																										-					
																												3-	30.5 70.2	- 4 - 00	
																														- Q	ð / ppm
																													0.80 2.04 1.99	- 2	1
																														10 - 9 - 9	
																														12 11	!

S OMe	Value	RSG_NC_327.12.fid RSG_NC_327_CHAR_13C Bruker BioSpin GmbH Facility spect CDCl3 295.6 udeft 1D 5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010 3880 2050.0 3.380 8.8000 8.8000 8.8000 8.8000 8.8000 8.8000 8.2019-01-03T14:33:04 100.62 25252.5 -1114.7	13C 9089 65536	
	Parameter	Title Comment Origin Owner Site Instrument Author Solvent Temperature Pulse Sequence Experiment Pulse Sequence Experiment Probe Number of Scan Receiver Gain Receiver Gain Relaxation Dela Pulse Width Pres aturation Frequency Acquisition Date Modification Date Spectrometer Frequency Spectral Width Lowest Frequency	Nucleus Acquired Size Spectral Size	
			-171.1 52.4 − 52.4 − 136.8 − 136.8 − 136.8 − 136.8 − 136.3 − 136.8 − 136.3 −	190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ō/ppm
		Mine da na van sage d		220 210 200

0	ZI	Parameter Value	Title RSG_NC_021_CHAR_13C. 10.fid	Comment RSG_NC_021_CHAR_13C	Owner Facility Site	Spectrometer spect	Solvent MeOD	Temperature 296.2	Pulse Sequence udeft	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/ 0010	Number of 380 Scans	Receiver Gain 2050.0	Relaxation Delay 3.0000 Pulse Width 8.8000	Presaturation Frequency	Acquisition Time 0.3599	Acquisition Date 2016-11-30T09:11:00 Modification Date 2016-11-30T18:33:52 Class	Spectrometer 100.62 Frequency	Spectral Width 25252.5	Lowest -985.9 Frequency	Nucleus 13C Acquired Size 9089
																				1/3°1 1/3°1 1/2°1 1/2°1 1/2°1 1/2°1 1/2°1 1/2°1 1/2°1 1/2°1	220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 δ/ ppm

O BR N O S O S O S O S O S O S O S O S O S O	rameter Value	RSG_NC_056_CHAR_13C. 10.fid	1ent RSG_NC_056_CHAR_13C	Bruker BioSpin GmbH	r Facility	ometer spect		nt CDCI3	erature 295.0	Sequence udeft	ment 1D	5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010	er of 380	ver Gain 2050.0	ation Delay 3.0000	Width 8 8000	turation ency	sition Time 0.3599	sition Date 2017-02-17T02:17:00	cation Date 2017-02-17T13:27:56		ometer 100.62 ency	al Width 25252.5	st -1126.3		us 13C ed Size 9089	ral Size 32768	
	Par	Title	Comm	Origin	Owner Site	Spectr	Author	Solven	Tempe	Pulse	Experir	Probe	Numbe Scans	Receiv	Relaxa	Pulse	Presat Freque	Acquis	Acquis	Modific	Class	Spectr Freque	Spectr	Lowes		Acountie	Spectr	.0
																											-	20 10
																							and and a state of the second state of the sec	_	-	82،1	; - -	40 30
																					-		ar farma farma da da se da	_	- (6'9t	, - - -	20
																							A Mark Could Bar Shadow Sha				-	20 60
																	_		-					_		7.88	}	90 80
																								_]	-2-	.121. 115.	-	110 100 5 / ppm
																							in a suble		- L - 9 - L - L - 0	152 154 156 156	, , , ,	130 120
																							and a procession of a second se	_	-8 -8	.841 136.		150 140
																							والمتعارية والمرابع والمراجع والمراجع والمعارية والمحاركة والمحاركة والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	_	-7,	.281		20 210 200 190 180 170 160

HN-Ts	N	Boc	Parameter Value	Title RSG_NC_089.11.fid	Comment RSG_NC_089_CHAR_1H	Origin Bruker BioSpin GmbH	Owner Facility	Site	spectrometer spect Author	Solvent CDCI3	Temperature 295.3	Pulse Sequence zg30	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/ 0010	Number of Scans 32	Receiver Gain 362.0	Relaxation Delay 1.5000	Pulse Width 11.0600	Presaturation Frequency	Acquisition Time 1.9923	Acquisition Date 2017-04-02T18:42:00	Modification Date 2017-05-16T17:21:40	Class	Spectrometer 400.13 Frequency	Spectral Width 8223.7	Lowest -1720.7 Frequency	 Acquired Size 16384	Spectral Size 65536	Γ
																													-0
																			_								3 3	00.£ 89.8	- N - - M
																													- 4
																													δ / ppm
																									_			3.25 1.94 1.11 1.11	- 2
																											T	80.1 88.0	- თ -
																													11 - 10
																													-12-

L L L L L L L L L L L L L L L L L L L	Parameter Value	Title RSG_NC_089.51.fid Comment RSG_NC_089_CHAR_13C	Origin Bruker BioSpin GmbH Owner Facility Stra	Spectrometer spect	Solvent CDCI3	Temperature 295.5 Pulse Sequence udeft	Experiment 1D	Probe 5 mm PADUL 13C-1H/D Z- GRD Z108621/0010	Number of Scans 380	Receiver Gain 2050.0	Relaxation Delay 3.0000	Pulse Width 8.8000	Frequency	Acquisition Time 0.3599	Acquisition Date 2018-02-28T11:52:00	Spectrometer 100.62 Frequency	Spectral Width 25252.5	Nucleus Nucleus Nucleus 13C	2. 4. 6. 0. 4. 8. 3. 1. 9. 7. 9. 9089 144. 3. 6. 0. 4. 8. 3. 1. 9. 4. 4. 5. 0. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
																			126.9- 128.1- 128.1- 128.1- 128.1- 128.1- 128.1- 128.1- 128.1- 128.1- 128.1-	

NHBoc	Boc CO ₂ Bh	Parameter Value	Title RSG_NC_203.10.fid	Comment RSG_NC_203_CHAR_1H	Origin Bruker BioSpin GmbH	Owner Facility Site	Spectrometer spect	Author	Solvent CDCI3	Temperature 295.6	Pulse Sequence zg30	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/ 0010	Number of Scans 32	Receiver Gain 362.0	Relaxation Delay 1.5000	Pulse Width 11.0600	Presaturation Frequency	Acquisition Time 1.9923	Acquisition Date 2017-10-26T15:48:00	Modification Date 2018-02-28T11:21:56	Class	Spectrometer 400.13 Frequency	Spectral Width 8223.7	Lowest -1721.1 Economic	- Nircleris 1H	Acquired Size 16384	Spectral Size 65536	r	
																													-0	
	-																	. <u> </u>									1 -	89.8		
																								_	~	، الماليا		22 6 1 3 1 9 1 2 9 1 0	- ~	
																											Р F	91.0	- ෆ	
																									_				- 4	
																											I- I-	88.0	- IJ	
																													5 / ppm	:
								_																			I I I I I I I I I I I I I I I I I I I	1 62 4 32 1 26	- 2	
																									~		ъ т-	48.0 27.0	- ∞	
																													– တ -	
																													-10	
																													- =	
																													-12	

Boc CO2Bh	Parameter Value	Tite RSG_NC_203.12.fid	Comment RSG_NC_203_CHAR_13C	Origin Bruker BioSpin GmbH	Owner Facility Site	Spectrometer spect	Author	Solvent CDCI3	Temperature 295.6	Pulse Sequence udeft	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010	Number of Scans 380	Receiver Gain 2050.0	Relaxation Delay 3.0000	Pulse Width 8.8000	Presaturation	Acquisition Time 0.3599	Acquisition Date 2017-10-26T16:24:00	Modification Date 2018-02-28T11:22:00	Frequency 700.62	Spectral Width 25252.5		Nucleus 13C	594508888554295 37 11 544332888554295 77 85457 58861 59ectral Size 32768 511111111111111 86 61 22222	60 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 5/2000
													-										יינויטי נעיט אווייניק אין אין גערילי אינויאיזער איויראויאיזעריט אוויא איזייק איזיק איזיק איזיק איזיק אין אין איזי		021 252 251 252 251 252 251 252 155 251 251	210 200 190 180 170 160 150 140 130 120 50

NHBoc N Boc	Parameter Value	Title RSG_NC_290.1.1.1r	Comment RSG_NC_290_CHAR_1H Origin Bruker BioSpin GmbH	Owner nmrsu	Site	Spectrometer spect	Solvent CDCI3	Temperature 296.1	Pulse Sequence zg	Experiment 1D	Probe Z116098_0631 (PABBO 400S1 BBF-H-D-05 Z SP)	Number of Scans 32	Receiver Gain 32.0	Relaxation Delay 3.0000	Pulse Width 10.0000	Presaturation Frequency	Acquisition Time 2.6214	Acquisition Date 2018-02-15T13:26:38	Modification Date 2018-02-19T18:38:32	Class	Spectrometer 400.07 Frequency	Spectral Width 6250.0	Lowest -2308.9	Frequency Niiclaus 1H	Acquired Size 16384	Peectral Size 65536		-0.5
							 															-					01.0 00.1 99.0 25.1 25.01 25.1	5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 δ/ppm
																											20.0 67.0 78.0 82.1 22.1	9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5

Parameter Value	Title RSG_NC_290.2.1.1r Comment RSG_NC_290_CHAR_13C	Origin Bruker BioSpin GmbH Owner nmrsu	Site Spectrometer spect	Author	Solvent CDCl3 Temperature 208.4	Pulse Sequence zgpg30	Experiment 1D	Probe Z116098_0631 (PABBO 400S1 BBF-H-D-05 Z SP)	Number of Scans 480	Receiver Gain 39.1	Relaxation Delay 3.0000	Pulse Width 10.0000	Presaturation Frequency	Acquisition Time 0.6881	Acquisition Date 2018-02-15T13:57:17	Modification Date 2018-02-19T18:38:34	Spectrometer 100.60	Frequency Secondary Width 23800 5		Lowest -2101.3 Frequency	Nucleus 13C	Spectral Size 65536	
																				t to be the			-0
																							- 9
																						51'Z ~ 56'3 ~ 58' 4 ~	- 20
																				يا مع يا ساريا ال		8.82	30
																						- 2.14	- 40
																				adi 1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1	NUMBER OF BUILDENERS		- 09
																				dine			- 02
																			_			- 6.08	- 08
																				under state of the second s		- 878	00 90 0 ppm
																				1	Whenever		110
																						/112'8'/ /112'8 //50'6	120
														-						4		123.6- 125.3- 125.3-	130
																					NUMPER AND A	-7.961 -6.261	140
																			_			-0.131	150
																						-9.821	160
																						-6.671	170
																				مرابع مرابع	THINKING MANAGEMENT		0 180
																				-	<u>s</u>		19(

Shoo OH Walue ameter Value e Name /Volumes/NICK CUNDY e Name /Volumes/NICK CUNDY RSG_NC_190/10/fid RSG_NC_190_CHAR_11 Bruker BioSpin GmbH Facility Facility Facility Reduce 296.0 equence 2930 ent 10 ent 296.0 equence 2930 ent 10 ert 10 ert 32 ert 33 ert 32 ert 32 ert 33 ert 34 ert 34 ert 34 ert 34 ert 34 ert 34 ert 34 ert 34 ert 34 ert 33 ert 33 ert 34 ert 3	on Delay 1.5000 Midth 11.0600 ration 1.9923 ion Time 1.9923 ion Date 2017-10-06T07:10:00 tion Date 2017-11-28T21:38:24 meter 400.13 roy 8223.7 i Width 8223.7 i Width 8223.7 i Midth 8223.7 i Size 65536 Size 65536
Para File Pata File Commer Commer Spectror Solvent Tempers Frobe Number Pulse Sc	Pulse W Pulse W Presatur Frequen Acquisiti Modificat Class Spectron Frequen Nucleus
	±−00.0 - 1. - 1. - 0.0
	3.0 3.0 2.5 2.0
	₹ <u>1</u> , <u>60.0</u> 5. 3.5
	-0. E
	6.5 6.7 6.7 6.7 6.7 7 7 6.7 7 7 7 7 7 7 7 7
	I-69 ⁻¹ 1-69 ⁻¹ 80
	9.0
	0. 9.5

Bno NHBoc	Parameter Volumes/ NICK CUNDY/ Data File Name / Volumes/ NICK CUNDY/ RSG_NC_190/12/fid Title RSG_NC_190.12.fid	Comment RSG_NC_190_CHAR_13C Origin Bruker BioSpin GmbH Owner Facility Site	Spectrometer spect Author	Solvent CDCl3 Temperature 296.4 Dulse Servitance udeft	Experiment 1D Probe 5 mm PADUL 13C-1H/D Z- GRD Z108621/0010	Number of Scans 380 Receiver Gain 2050.0 Relaxation Delay 3.0000 Pulse Width 8.8000 Presaturation Frequency 0.3599 Acquisition Time 0.3599 Acquisition Date 2017-11-28T21:38:28 Class Spectrometer 100.62	Spectral Width 25252.5 Spectral Width 25252.5 Lowest -1110.6 Frequency 13C Aconited Size 0080	Spectral Size 32768
								-0
								- 9
								- 20 -
							28.4 —	30-
								40
							- 0.88	. 20
							— 9.69 — 9.69	- 0,
			-					80
								-06 ⊑
								100 8 / pp
							afa balan	110
								120
							128.3	130
							132.3-	140
								150
						de la comparación de La comparación de la c		160
							—8.071	170
						Line and the second		180
								٥ د

0	Bno	Parameter Value	Title RSG_NC_192.10.ftd	Comment RSG_NC_192_CHAR_1H	Origin Bruker BioSpin GmbH	Owner Facility	Site	Spectrometer spect	Author	Solvent CDCl3	Temperature 296.3	Pulse Sequence zg30	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010	Number of Scans 32	Receiver Gain 203.0	Relaxation Delay 1.5000	Pulse Width 11.0600	Presaturation	Frequency	Acquisition Time 1.9923	Acquisition Date 2017-10-10T02:40:00	Modification Date 2018-02-27T16:23:36	Class	Spectrometer 400.13 Frequency	Spectral Width 8223.7	Lowest -1721.1	Frequency	Nucleus 1H	Acquired Size 16384	Spectral Size 65536	
																																-0
																												اللا		F	00.6	
																																- ~
																																- භ
																																- 4
																					-									∍ ≆ ∓	40.0 00.1 20.1	6 5 8 / ppm
																		_												₽- ₽-	₽9.₽ ₽7.0	- ~
																																- ∞ -
																																– တ -
																																-0
																																- =
																																12

Bno	Parameter Value	Title RSG_NC_192.12.fid Comment RSG_NC_192_CHAR_13C	Origin Bruker BioSpin GmbH	Owner Facility	Site	Spectrometer spect	Solvent CDCl3	Temperature 296.4	Pulse Sequence udeft	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/0010	Number of Scans 380	Receiver Gain 2050.0	Relaxation Delay 3.0000	Pulse Width 8.8000	Presaturation Frequency	Acquisition Time 0.3599	Acquisition Date 2017-10-10T03:17:00	Modification Date 2018-02-27T16:23:42	Class	Spectrometer 100.62 Frequency	Spectral Width 25252.5	Lowest -1112.0	Frequency	Nucleus 13C	Acquired Size 3009 Spectral Size 32768		
																								Andrew Press Arthur			-0	
																								Trendo La Porte de			- 1	
																								d human house		4 .82	0	
																								n an		,	- 0	
																								Long Landon State State State			50 4	
																								underski kanderse			- 09	
																								Annaly Insure Allowed	_	8.78	02	
																						_		an manufacture of the	_	8.08	80	
																								vun Apprixtun			-06	
														-										allowing provide		9.201	10 100	undo
																								neerstaat			120 1	- 2
									_															addad barrana	Ł	8.821 7.821 7.821	130	
																								Andrew Charles	٢	131.5 131.5	140	
																						_		and and a second second	_	۱62.7	150	
																				-				International Internet	_	0.491	160	
																								undiprimentationale			17(
																								un annual an annual an annual an			90 18	
																								uterophile veter and the loss			200 1	
																								กษณะโรกมูโรกชีวิจรรมหนึ่ง			210	
																								Welfullion			220	

Parameter Value	Title RSG_NC_442.12.fid Comment RSG_NC_442_CHAR_13C Origin Bruker BioSpin GmbH Owner Facility Site Facility Muthor spect	Solvent CDCI3 Temperature 294.8 Pulse Sequence udeft Experiment 1D Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/ 0010	Number of Scans 380 Receiver Gain 2050.0 Relaxation Delay 3.0000 Pulse Width 8.8000 Presaturation Frequency Acquisition Time 0.3599 Acquisition Date 2018-08-28720:26:46 Class	Spectrometer 100.62 Frequency 100.62 Spectral Width 25252.5 Lowest -1115.5 Frequency 1115.5 Acquired Size 9089 Spectral Size 65536
				Minutel/International metal manual metal m

°	ZI	Parameter Value	Title RSG_NC_447.12.ftd	Comment RSG_NC_447_CHAR_13C Oriain Bruker BioSpin GmbH	Owner Facility	Site	Instrument spect	Author	Solvent CDCI3	Temperature 294.6	Pulse Sequence udeft	Experiment 1D	Probe 5 mm PADUL 13C-1H/ D Z- GRD Z108621/ 0010	Number of Scans 380	Receiver Gain 2050.0	Relevation Delay 3 0000	Pulse Width 8.8000	Presaturation	Frequency	Acquisition Time 0.3599	Acquisition Date 2018-08-16T11:28:00	Modification Date 2018-08-28T19:26:08 Class	Spectrometer 100.62	Frequency	Spectral Width 25252.5	Lowest -1113.7 Frequency	Nucleus 13C	Acquired Size 9089	Spectral Size 65536
																								אווי איז איז איז איז איז איז איז איז איז אי	بنائدهم فرمنا ومراجع فالمراقع والمراجع والمتلحة المترضية والمتركب ومناول والمركز فروين أروار والمروقية وأربر ومراول		0.6 8.8	11	70 60 50 40 30 20 10 0
																								de las anos de las des services de las des des des des de substituir de service de la service de la de la de d	hi da an		11.6 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7		160 150 140 130 120 110 100 90 80 δ/ppm
													-											مان مان المان ا	ha da da di kan da na da na da	{E	5.20	50	220 210 200 190 180 170

2 – Biological Evaluation Methods

2.1 – General Methods

All reagents and solutions were purchased from Sigma-Aldrich or ThermoFisher at 99.5% purity or higher. Molecular biology grade water was used to make up all stock solutions, stock solutions of sodium ascorbate and catalase were stored for a maximum period of 6 weeks before a fresh solution was prepared.

The assays (with the exception of the thermal shift assay) were performed using the same component solutions, at the same concentrations but with differing volumes – volumes will be stated in the assay descriptions. Stock solution refers to a mixture of tris·HCl, pH 8 buffer (50 mM), sodium ascorbate (20 mM) and methylene blue (10 μ M) – fresh stock solution was prepared for each experiment. Catalase (10 μ g mL⁻¹) was prepared from a suspension of catalase solution (24 mg mL⁻¹) with an assayed activity of 11895 units mL⁻¹. Samples of recombinant IDO1 F164A were kindly provided by Prof. Emma L. Raven (University of Bristol, School of Chemistry) for use in the biochemical assays (5 μ M). Trichloroacetic acid (TCA, 30% in water) was used to quench the assays prior to LC-MS analysis.

'UV-Vis' refers to UV-visible spectra recorded using a Varian Cary50 UV-Visible spectrophotometer measuring continuous (10 readings s⁻¹) absorbance at 321 nm.¹² LC-MS analysis was performed using either a Waters e2695 separation module coupled with a Waters SQD MS-detector (raw data was processed and extracted using MassLynx V4.1 SCN855), or a ThermoFisher LCQ-fleet LC-MS (raw data was processed and extracted using Xcaliber). All graphical data was plotted and analysed using Prism 5 or 6. All reported plots were generated from the data analysis performed in Prism.

2.2 – Experimental Detail

Steady State Assay

Steady state assay experiments were carried out at The University of Birmingham, School of Chemistry, by Nicholas Cundy. Total assay volume = 1 mL, performed in a sealed quartz cuvette of 1.2 mL maximum volume. Oxygenated stock solution (O_2 gas passed through the stock solution for 10 min) was transferred to the UV cuvette. Catalase and IDO1 was added to the oxygenated stock solution and the cuvette was sealed under an atmosphere O_2 . After 5 min, Trp/1-MT/inhibitor (1 mM) was added, the cuvette was re-sealed under an atmosphere of O_2 , the cuvette was transferred to the UV-vis spectrometer and absorbance readings were initiated to detect *N*-formyl-*L*-kynurenine (Abs = 321 nm). After 2 h, the absorbance readings were ceased, and the assay mixture was transferred to an Eppendorf vial containing TCA (100 μ L). The assay mixture was subjected to centrifugation (13,000 rpm, 5 min), transferred to a HPLC vial and submitted for LC-MS analysis.

Inhibition Assay

Inhibition assay experiments were carried out at the University of Birmingham, School of Chemistry, by Nicholas Cundy. Total assay volume = 1 mL, performed in a sealed quartz cuvette of 1.2 mL maximum volume. Oxygenated stock solution (O_2 gas passed through the stock solution for 10 min) was transferred to the UV cuvette. Catalase and IDO1 was added to the oxygenated stock solution and the cuvette was sealed under an atmosphere O_2 . After 5 min, inhibitor (Varied concentrations) was added, the cuvette was re-sealed under an atmosphere of O_2 , the cuvette was transferred to the UV-vis spectrometer and absorbance readings were initiated (Abs = 321 nm). After 15 min, the UV recording was paused, Trp (1 mM) was added and then UV recording was resumed. After a further 1.75 h, the absorbance readings were ceased, and the assay mixture was transferred to an Eppendorf vial containing TCA (100 μ L). The assay mixture was subjected to centrifugation (13,000 rpm, 5 min), transferred to a HPLC vial and submitted for LC-MS analysis.

Differential Scanning Fluorimetry/Thermal Shift Assay

Thermal melting experiments were carried out at the University of Manchester by Roseanna Hare using a Stratagene Mx3005p Real Time PCR machine (Agilent Technologies). All experiments were conducted at 200 uL volume in 96-well PCR plates, using 20 mM HEPES, pH 7.5, 140 mM NaCl, containing either 2% or 5% DMSO. IDO1 protein was used at a final concentration of 1 or 10 μ M as required. Compounds were diluted into buffer from a 10 mM DMSO stock solution and added at a final concentration of 10 μ M, 100 μ M or 500 μ M. Where required SYPRO Orange (Molecular Probes) was added as a fluorescence probe at a final dilution of 1:500, 1:1000 or 1:2000 (v/v). Excitation and emission filters for the SYPRO-Orange

dye were set to 465 nm and 590 nm, respectively. The temperature was raised with a step of 1 °C per minute from 25 °C to 96 °C, and fluorescence readings were taken at each interval. Experiments were performed in triplicate and the observed temperature shifts, ΔT_m^{obs} , were recorded as the difference between the transition midpoints of sample and reference wells containing protein without ligand in the same conditions and determined by non-linear least squares fit of the initial fluorescence event, reported in °C.

Microscale Thermophoresis Assay

Recombinant IDO was labelled with fluorescent dye using NHS-esterification of surface lysine residues. NT-650 dye (Nanotemper) which is a strong red-fluorescent dye with an excitation wavelength of 650 nm was used at a ratio of 2:1 dye to protein. IDO was diluted to 20 µM in phosphate buffered saline pH 7.4 (PBS) and mixed 1:1 with 40 µM NT-650 in PBS/DMSO. The sample was left for 30 minutes at room temperature before being buffer exchanged to in 20 mM Tris, 150 mM NaCl, 0.005% Tween-20, 1mM EDTA, 2 mM MqCL2, 4% DMSO (running buffer) using a 5 ml Hi-Trap desalting column (Cytiva). Labelled IDO was then centrifuged at 14,000 rpm for 10 minutes and checked for concentration using UV absorbance at 280 nm with an absorbance of 1.1 (1 cm pathlength) equivalent to 1 mg/ml. Final labelled IDO concentration was 6 µM. A binding check to determine if there is a change in thermophoresis caused by binding to compounds L-tryptophan (TRP), 1-MT and compound 17 was performed using 10 nM 650-IDO in running buffer, with and without 500 µM of each compound. The instrument (Nanotemper Pico) was set-up in expert mode with a medium MST power and LED-laser set to 10 %. MST-induces changes in fluorescence were plotted using the change in fluorescence at 2.5 s response time. A concentration dependant change in MST was conducted for compound-17 using the same conditions and a 16-sample serial dilution from 500 µM.

UV-vis analysis

UV-vis spectra were recorded on an Agilent Cary 60 UV-Vis Spectrophotometer at a final concentration of 10 μ M IDO and/or 10 μ M compounds/hemin in phosphate buffered saline pH 7.4 (PBS) containing 0.1% DMSO. All samples were incubated for 1-1.5 hours at ambient temperature to allow equilibration before measuring.

3 – Appendix

3.1 – Indole protecting group screen

Tosyl was primarily utilised as the protecting group for the 1,3-dipolar cycloaddition chemistry (Scheme SI1); tosyl hydrazone **S1** gave a moderate yield of tryptophan analogue **S5** with preference for the *E*-diasteroemer. Difficulty was faced when attempting to remove the tosyl group (Table SI1), as such alternative protecting groups were trialled. Nosyl- and acetyl hydrazones **S2** and **S3** gave poor conversion to the respective tryptophan analogues and thus were not viable protecting groups. Boc hydrazone **S4** proved superior in the cycloaddition chemistry giving a good yield with increased selectivity for the *E*-diastereomer.

Scheme SI1 - Indole protecting group screen

Entry	Conditions	Result
1	Mg(s), MeOH,))), 23 °C	S 6
2	Mg(s), THF:MeOH (1:1),))), 23 °C	S 6
3	Mg(s), NH₄CI, MeOH,))) 23 °C	S 6
4	Li(s), naphthalene, THF, -78 °C	S 6
5	Na(s), MeOH, 23 °C	S 6
6	Thioglycolic acid, LiOH, DMF, 23 °C	S 6
7	Thioglycolic acid, LiOH, DMF, 70 °C	S 6
8	KOH, MeOH, 80 °C	S 6

Table SI1 –	Attempted	Tosyl	Deprotection	conditions
			/	

With Boc selected as the optimised protecting group, a literature deprotection strategy was employed to ultimately access desired tryptophan analogue **16**.¹³ Surprisingly, further difficulty was faced when attempts to deprotect the acetyl amide and methyl ester were made (Scheme

SI2). Boc-protection of acetamide **S9** was required to provide an activated imide-like functionality for the subsequent hydrolysis of the acetyl-group. Later attempts to saponify methyl ester **S11**, under a variety of conditions, ultimately lead to recovery of **S11** or degradation.

Scheme SI2 - Attempted deprotection sequence

i) 1M LiOH, H₂O:THF (1:2), reflux, 24 h, decomposed; ii) 1M LiOH, H₂O₂, H₂O:THF (1:2), 23–70 °C, 18 h, decomposed; iii) Lil, EtOAc, reflux, 20 h, **S10** recovered.

Amino acrylate **34** was synthesised to install more readily cleavable protecting groups to the protected tryptophan analogue. This strategy proved successful and allowed highly efficient access to tryptophan analogue **16** (See full text for discussion).

3.2 – Conditions screen for the dialkylation of 35

Due to sparing experimental detail within published report of cyclopropane **36**, an optimisation screen was required (Scheme SI3).² Initial trials utilising 1,2-dichloroethene and LDA lead to the recovery of Claisen-adduct **S13** only (Entry 1, Table SI2). Subsequent trials with aqueous base systems, with 1,2-dibromoethane or 1-bromo-2-chloroethane, failed to give any conversion and starting material was isolated in all instances (Entries 2–4, Table SI2). *N*-Boc nitrile **S12**, 1-bromo-2-chloroethane and LDA (4 eq.) lead to recovery of Claisen-adduct **S13** only – one equivalent of base was added to a solution of **S12** and 1-bromo-2-chloroethane with the remaining three equivalents added 30 mins later (Entry 5, Table SI2). Forgoing the Boc-group, addition of all equivalents of LDA followed by rapid addition of 1-bromo-2-chloroethane lead to the successful cyclodialkylation of nitrile **35** to give cyclopropyl **36** (Entry 6, Table SI2)

Scheme SI3 - Optimisation of 1,1'-spirocyclic cyclopropane 36 synthesis

Table SI2 - Optimisation conditions for the synthesis of 1,1'-spirocyclic cyclopropane 36

Entry	R	Х	Х'	Base	Solv.	PTC	Temp./°C	Result
1	Boc	CI	CI	LDA ^a	THF	N/A	-78-23	S14, <mark>27%</mark>
2	Boc	Br	Br	NaOH⁵	PhMe	TBAB	23	S13
3	Boc	Br	CI	NaOH⁵	PhMe	BTAC	70	S13
4	Boc	Br	CI	NaOH⁵	Neat.	BTAC	50	S13
5	Boc	Br	CI	LDA	THF	N/A	-30-23	S14, <mark>21%</mark>
6	Н	Br	CI	LDA	THF	N/A	-40 to -78-23	36, <mark>83%</mark>

^a LDA solutions were prepared from freshly titrated nBuLi and distilled (ⁱPr)₂NH.

^b 50% aqueous solutions.

3.3 – Metabolic by-products of **16** and **17**

As part of this work, we hypothesised various metabolic by-products of 1,2-cyclopropyl tryptophan analogue **16** in order to survey the assay mixture post-incubation of IDO1 and **16**. Cyclopropyl N-formyl kynurenine analogue **38** (See full text) is a hypothesised product of an electrophilic-base mechanism of IDO1-mediate dioxygenation. Amino acid **39** is predicted to arise from radical ring-opening of 16 giving captodative radical 20 which could undergo a proton-abstraction (i, Scheme SI4) from an active site residue or the assay media give amino acid **S15**. Ultimately, metabolic product **39** is liberated from the heme-centre as a result of rearomatisation on the indole ring system (ii, Scheme SI4). Alternatively, amino acid 20 could undergo a radical addition to molecular oxygen to give hemi-peroxy aminal S16 (iii, Scheme SI4). This presumably unstable intermediate is predicted to collapse to give an imine and undergo rapid hydrolysis to give an α -keto acid. Upon liberation from the heme-centre and rearomatisation of the indole ring, metabolite 40 could be present in the post-assay media (iv, Scheme SI4). If metabolite S16 is liberated from the heme-centre prior to the degradation of the hemi-peroxy aminal it is also possible to envisage a mechanism by which the alkyl peroxy species is reduced to the alcohol by catalase present in the assay media. In this scenario, the resulting hemi aminal would likely degrade rapidly and giving α -keto acid **40**.

Scheme SI4 - Plausible metabolic outcomes for 16

The same analysis was performed for inhibitor **17**. Spirocyclic cyclopropyl *N*-formyl kynurenine analogue **41** (see full text) is a hypothesised product of an electrophilic-base mechanism of IDO1-mediate dioxygenation. Radical ring-opening of **17** could lead to primary radical **22**. Hydrogen abstraction (i, Scheme SI5) from an active site residue or from media present in the active site would lead to amino acid **S17** – collapse of the heme-peroxy intermediate under

the quenching conditions is predicted to lead to metabolite **42** (ii, Scheme SI5). If the primary radical undergoes a radical recombination with molecular oxygen in solution, alkyl peroxy **S18** is predicted to form (iii, Scheme SI5). Upon release from the heme-centre, alcohol **43** is predicted to arise from degradation of the alkyl peroxy by catalase present within the assay media (vi, Scheme SI5).

Scheme SI5 - Plausible metabolic outcomes for 17

3.4 – F164A IDO1 mediated turnover of 1 and 3

3.6 - LC-MS data for 17/IDO1 steady state assay

3.7 - LC-MS data for 18/IDO1 steady state assay

3.8 - Pre-incubation control experiments

3.9 – UV-vis spectra of IDO-1, heme, epacadostat, **17**, IDO-1 + epacodostat and IDO-1 + **17**.

3.10 – MST changes induced by **17**, TRP and 1-MT

4 – References

- 1 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923–2925.
- 2 D. C. Horwell, M. J. McKiernan and S. Osborne, *Tetrahedron Lett.*, 1998, **39**, 8729–8732.
- P. R. Reid, T. M. Bridges, D. J. Sheffler, H. P. Cho, L. M. Lewis, E. Days, J. S. Daniels,
 C. K. Jones, C. M. Niswender, C. D. Weaver, P. J. Conn, C. W. Lindsley and M. R.
 Wood, *Bioorg. Med. Chem. Lett.*, 2011, 21, 2697–2701.
- 4 C. Zhang, D. Xu, J. Wang and C. Kang, *Russ. J. Gen. Chem.*, 2017, **87**, 3006–3016.
- 5 J. E. Camp, D. Craig, K. Funai and A. J. P. White, *Org. Biomol. Chem.*, 2011, **9**, 7904– 7912.
- L. A. Adams, V. K. Aggarwal, R. V Bonnert, B. Bressel, R. J. Cox, J. Shepherd, J. de Vicente, M. Walter, W. G. Whittingham and C. L. Winn, *J. Org. Chem.*, 2003, 68, 9433–9440.
- 7 C. Zhu, J. Li, P. Chen, W. Wu, Y. Ren and H. Jiang, *Org. Lett.*, 2016, **18**, 1470–1473.
- L. Kisfaludy, F. Korenczki, T. Mohácsi, M. Sajgó and S. Fermandjian, Int. J. Pept.
 Protein Res., 1986, 27, 440–442.
- J. J. Clemens, M. D. Davis, K. R. Lynch and T. L. Macdonald, *Bioorg. Med. Chem. Lett.*, 2003, 13, 3401–3404.
- 10 B. L. Maheswara Rao, S. Nowshuddin, A. Jha, M. K. Divi and M. N. A. Rao, *Synth. Commun.*, 2017, **47**, 2127–2132.
- 11 A.-S. Carlström and T. Frejd, *Synthesis (Stuttg).*, 1989, 414–418.
- J. Basran, S. A. Rafice, N. Chauhan, I. Efimov, M. R. Cheesman, L. Ghamsari and E.L. Raven, *Biochemistry*, 2008, 47, 4752–4760.
- 13 D. Donati, A. Garzon-Aburbeh, B. Natalini, C. Marchioro and R. Pellicciari, *Tetrahedron*, 1996, **52**, 9901–9908.