Supplementary Material for: Metathramycin, a new bioactive aureolic acid discovered by heterologous expression of a metagenome derived biosynthetic pathway.

Authors: Luke J. Stevenson^{1,3,4}, Joe Bracegirdle^{2,3,4}, Liwei Liu¹, Abigail V. Sharrock¹, David F. Ackerley^{1,3,4}, Robert A. Keyzers^{2,3,4} and Jeremy G. Owen^{1,3,4 *}

Author affiliations:

- 1. School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- 2. School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
- 3. Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
- **4.** Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand

*Correspondence: jeremy.owen@vuw.ac.nz

Figures

2
5
6
7
8
9
10
11

Tables

Table S1: Chemical shifts, numbering and correlations for premetathramycin aglycone 13**Table S2:** Chemical shifts, numbering and correlations for premetathramycin sugars 14

675.3227

747.3477

602.2546

269.0829

341.1083

417.1656

500 550 600 650 700 750 800 850 900

Counts vs. Mass-to-Charge (m/z)

400 450

4 3.5 3 2.5 2

1.5

1

0.5

0

71.0337

50

100 150 200 250 300 350

Figure S1 – MS/MS spectra for mithramycin (1) standard ([M-H]⁻ = 1083.4647):

2

950 1000

Figure S3 – MS/MS spectra for metathramycin (6) ([M-H]⁻ = 967.4186):

Figure S4 – ¹H spectrum of premetathramycin (5) (600 MHz, 1:1 CDCl₃: CD₃OD):

5

Figure S5 – ¹³C spectrum of premetathramycin (5) (150 MHz, 1:1 CDCI₃: CD₃OD):

Figure S6 – COSY spectrum of premetathramycin (5) (600 MHz, 1:1 CDCI₃: CD₃OD):

Figure S7 – HSQC spectrum of premetathramycin (5) (600 MHz, 1:1 CDCI₃: CD₃OD):

Figure S8 – HMBC spectrum of premetathramycin (5) (600 MHz, 1:1 CDCI₃: CD₃OD):

Figure S9 – HSQC-TOCSY spectrum of premetathramycin (5) (600 MHz, 1:1 CDCI₃: CD₃OD):

Figure S10 – ROSEY spectrum of premetathramycin (5) (600 MHz, 1:1 CDCl₃: CD₃OD):

Figure S11 – IR spectrum of premetathramycin (5):

position	120 (5)		¹ H	COSY	НМВС	ROESY
	¹³ C (δ)		(δ, mult., <i>J in Hz)</i>			
1	196.9	CO				
2	113.5	С				
3	164.9	С				
4	77.6	СН	4.70 (br s)	5		5, 6b, 21
5	42.1	СН	3.14 (dt, 10.0, 4.7)	4, 6	6	4, 6a, 6b, 21
6a	26.4	CH_2	2.80 (dd, 11.0, 17.0)	5, 8	5, 7	5, 8, 21
60			3.21 (dd, 17.4, 4.2)	5, 8	5, 7	4, 8
7	133.5	С				
8	117.8	СН	6.85 (s)	6	6, 9, 10, 14, 16	6a, 6b, 10
9	139.1	С				
10	101.2	СН	6.71 (s)	22	8, 11, 12, 14	8, A1, D6, D7
11	160.4	С				
12	112.2	С				
13	156.2	С				
14	108.5	С				
15	165	С				
16	108.8	С				
17	199.2	CO				
18	nd	С				
19	200.4	СО				
20	27.4	CH₃	2.49 (s)		2, 19	
21	59.8	OCH₃	3.69 (s)		4	4, 5, 6a
22	8.4	CH₃	2.13 (s)	10	11, 12, 13	

Table S1 - Chemical shifts and correlations for aglycone of Compound 5. ¹H (600 MHz) and ¹³C (150 MHz) NMR data in 1:1 CDCl₃:CD₃OD.

position	¹³ C (δ)		¹ H	V2OC		ROESY
position			(δ, mult., <i>J in Hz)</i>	0051		
A1	96.5	СН	5.57 (dd, 9.6, 2.2)	A2	11	10, D6, A2b
A2a	43.6	CH_2	1.91 (d, 13.2, 9.6)	۸1	A1 A3 A3 Ma A4	A3-Me
A2b			2.17 (dd, 2.2, 13.0)	AI	A1, A3, A3-IME, A4,	A1, A3-Me
A3	71.2					
A3-Me	26.9	CH_3	1.30 (s)		A1, A2, A3, A4,	A2
A4	76.8	СН	2.93 (d, 9.4)	A5	A3, A3-Me, A5, A6	A6, D2a, D4
A5	71.2	СН	3.64 (ol.)	A4, A6	A4, A6	A6
A6	18.4	CH_3	1.26 (d, 6.2)	A5	A4, A5	A4
B1	97.6	СН	5.37 (d, 9.7)	B2		B2b, B3, B5,
B2a	37.2	CH_2	1.62 (q, 11.7)	B1 B3	B1, B3, B4	B4
B2b			2.50 (ol.)	D1, D3	B1, B3, B4	B1
B3	81.0	СН	3.66 (ol.)	B2, B4	B4, C1	B1
B4	75.5	СН	3.01 (t, 8.8)	B3, B5	B3, B5, B6	B2a, B6
B5	72.2	СН	3.05 (ol.)	B4, B6	B1, B4, B6	B1
B6	17.9	CH_3	1.07 (d, 6.0)	B5	B4, B5	B4
C1	99.7	СН	4.58 (ol.)	C2	B3, C2	C2b, C3, C5
C2a	32.3	CH_2	1.80 (q, 12.0)	C1 C3	C1, C3, C4	
C2b			1.95 (ol.)	01, 00	C1, C3, C4	C1, C3
C3	76.8	СН	3.79 (dt, 12.0, 4.0)	C2, C4	D1	C1, C4, C5, D1
C4	69.1	СН	3.69 (ol.)	C3, C5	C2, C3	D1, C5
C5	71.1	СН	3.61 (ol.)	C4, C6	C1, C3, C4, C6	C1, C3, C4
C6	16.8	CH₃	1.32 (d, 6.7)	C5	C3, C4, C5	
D1	98	СН	4.91 (dd, 9.7, 2.1)	D2	C3, D2	C3, C4, D2b
D2a	44.2	CH_2	1.57 (dd, 13.8, 9.7)	D1	D1	A4, D3-Me
D2b			1.93 (ol.)	DI	D1, D3, D3-Me, D4	D1, D3-Me
D3	76.7	С				
D3-Me	26.9	CH_3	1.22 (s)		D1, D2, D3, D4	D2a, D2b
D4	76.8	СН	3.05 (ol.)	D5	D3, D3-Me, D5, D6	A4, D6
D5	71.5	СН	3.87 (dq, 8.3, 6.0)	D4, D6	D3, D4, D6	
D6	18.3	CH₃	1.31 (d, 5.8)	D5	D4, D5	A1, D4

Table S2 - Chemical shifts and correlations for sugars in compound 5 (ol = overlapped). ¹H (600 MHz) and ¹³C (150 MHz) NMR data in 1:1 CDCl₃:CD₃OD.

