Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Regioselective remote C5 cyanoalkoxylation and cyanoalkylation of 8aminoquinolines with azobisisobutyronitrile

Chunxia Wen,^a Ronglin Zhong,^b Zengxin Qin,^a Mengfei Zhao^a and Jizhen Li *^a

^aDepartment of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun,

130023, China

^bLaboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of

Chemistry, Jilin University, Changchun, 130023, China.

Corresponding author E-mail: ljz@jlu.edu.cn

Contents

1. General information	S2
2. Preparation of starting materials	S3
3. Experimental section	S4
4. The single crystal X-ray diffraction study of N-(5-((2-cyanopropan-2-yl)	oxy) quinolin-8-yl)-2-methylbenzamide
2a	S9
5. Mechanism investigation	S10
6. Characterization data of products	S17
7. ¹ H and ¹³ C NMR spectra	S32
8. References	S105

1. General information

All reagents, starting materials, and solvents were purchased from commercial sources and used without treatment, unless otherwise indicated. All the solvents were dried and newly distilled. NMR spectra were obtained on a Bruker AMX 400 system using chloroform-d as deuterated solvents. The ¹H-NMR spectra were recorded at 400 MHz in CDCl₃, and the ¹³C-NMR spectra were recorded at 100 MHz in CDCl₃. All shifts were given in ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Single crystal X-ray diffraction data were collected using a Bruker-AXS SMART APEX2 CCD diffractometer (Mo K α , $\lambda = 0.71073$ Å). High-Resolution Liquid Chromatography-Mass Spectrometry was recorded on the Bruker MicrOTOF QII. Column chromatography was performed on silica gel 100-200 mesh or 200-300 mesh. Ethyl acetate and petroleum ether were used for column chromatography.

2. Preparation of starting materials¹

Preparation of starting materials: 8-aminoquinoline (0.72 g, 5.0 mmol) was dissolved in 10 mL of dichloromethane and cooled to 0 °C using an ice bath. NEt₃ (0.55 g, 5.5 mmol) was added to the 8-aminoquinoline solution followed by the corresponding acid chloride (5.5 mmol) dropwise. The mixture was stirred for 10 h at room temperature. Then, the mixture was washed with sat. NaHCO₃ (50 mL), and was extracted with dichloromethane for three times (3 x 40 mL). The organic layer was dried over Na₂SO₄. After filtration and evaporation, the amides were purified by column chromatography through silica gel.

3. Experimental section

3.1 Optimization of reaction conditions

	$ \begin{array}{c} 0 \\ H \\ H \\ 1a \end{array} $	AIBN <u>catalyst, oxida</u> solvent, temp PivOH, 12 h,	erature O ₂		CN
Entry	Catalyst	Oxidant	Temp (°C)	Solvent	Yield ^b
					(%)
1 ^{c, d}	Cu(OAc) ₂	PhI(OAc) ₂	90	CH ₃ CN	25
2 ^{c, d}	Cu(OAc) ₂	TBHP	90	CH ₃ CN	30
3 ^{c, d}	Cu(OAc) ₂	$K_2S_2O_8$	90	CH ₃ CN	40
4 ^d	Cu(OAc) ₂	$K_2S_2O_8$	90	CH ₃ CN	50
5	Cu(OAc) ₂	$K_2S_2O_8$	90	CH ₃ CN	60
6	Cu(OAc) ₂	/	90	CH ₃ CN	trace
7	$Cu(NO_3)_2 \cdot 3H_2O$	$K_2S_2O_8$	90	CH ₃ CN	trace
8	NiSO ₄	$K_2S_2O_8$	90	CH ₃ CN	15
9	[Ru]	$K_2S_2O_8$	90	CH ₃ CN	n.r
10	Cu(OAc) ₂	$K_2S_2O_8$	80	CH ₃ CN	66
11	Cu(OAc) ₂	$K_2S_2O_8$	75	CH ₃ CN	68
12	Cu(OAc) ₂	K2S2O8	70	CH ₃ CN	70
13	Cu(OAc) ₂	$K_2S_2O_8$	60	CH ₃ CN	64
14	Cu(OAc) ₂	$K_2S_2O_8$	100	CH ₃ CN	45
15	Cu(OAc) ₂	$K_2S_2O_8$	70	1,4-dioxane	n.r
16	Cu(OAc) ₂	$K_2S_2O_8$	70	DCE	10
17	Cu(OAc) ₂	$K_2S_2O_8$	70	DCM	15
18	Cu(OAc) ₂	$K_2S_2O_8$	70	CH ₃ OH	20
19	Cu(OAc) ₂	$K_2S_2O_8$	70	Toluene	n.r
20	Cu(OAc) ₂	$K_2S_2O_8$	70	DMF	10
21 ^e	Cu(OAc) ₂	$K_2S_2O_8$	70	CH ₃ CN	n.r
22	Cu(OAc) ₂	PhI(OAc) ₂	90	CH ₃ CN	20

Table S1 Optimization for C5-selective cyanoalkoxylation reaction^a

^a Reaction conditions: **1a** (0.2 mmol), AIBN (4.0 equiv), catalyst (0.1 equiv), oxidant (1.0 equiv), PivOH (0.2 equiv), solvent (2.0 mL), under O₂ for 12 h. ^b Isolated yield. ^c Under air. ^d Oxidant (2.0 equiv). ^e Under N₂. [Ru]= [Ru (p-cymene) Cl₂]₂. n.r. = no reaction.

		+ AIBN -	catalyst, oxidant solvent, temperature PivOH, 24 h, N ₂	O H 3a	CN
Entry	Catalyst	Oxidant	Solvent	Temp (°C)	Yield ^b (%)
1	NiSO ₄	PhI(OAc) ₂	CH ₃ CN	90	n.r
2	NiSO ₄	$K_2S_2O_8$	CH ₃ CN	90	24
3	NiSO4	Ag ₂ CO ₃	CH ₃ CN	90	n.r
4	NiSO ₄	$(NH_4)_2S_2O_8$	CH ₃ CN	90	n.r
5	NiSO ₄	$K_2S_2O_8$	1,4-dioxane	90	trace
6	NiSO ₄	$K_2S_2O_8$	THF	90	28
7	NiSO4	$K_2S_2O_8$	DMSO	90	20
8	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/H ₂ O(1/1)	90	n.r
9	NiSO4	$K_2S_2O_8$	CH ₃ CN/DMSO(15/1)	90	27
10	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(10/1)	90	30
11	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(5/1)	90	32
12	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	35
13	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(1/1)	90	30
14	NiCl ₂	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	20
15	Ni(OTf)2	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	22
16	Ni(dppf) ₂ Cl ₂	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	20
17°	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	22
18 ^d	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	90	45
19 ^d	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	120	50
20 ^d	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	140	60
21 ^d	NiSO4	K2S2O8	CH ₃ CN/DMSO(3/1)	150	67
22 ^d	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	160	57
23 ^e	NiSO4	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	150	50
24	NiSO ₄	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	150	42
25	Cu(OAc) ₂	$K_2S_2O_8$	CH ₃ CN/DMSO(3/1)	150	trace

 Table S2
 Optimization for C5-selective cyanoalkylation reaction^a

^a Reaction conditions: 1a (0.2 mmol), AIBN (4.0 equiv), catalyst (10 mol%), PivOH (2.0 equiv), oxidant (2.0 equiv), solvent (2.0 mL), under N₂ for 24 h. ^b Isolated yield. ^c Added 10 mol% Cu(OTf)₂. ^d Added 10 mol% Cu(OAc)₂. ^e Added 10 mol% Fe(acac)₃. n.r. = no reaction.

3.2 Control conditions (without PivOH)

Scheme S1 Control conditions without PivOH

According to previous literatures, the C5 position activation of quinoline usually required weak acidity, which could promote the addition of free radicals. ^[2] We carried out control experiments without PivOH, and the results showed corresponding yields decreased, which indicated that pivalic acid was favorable to the reaction.

3.3 General procedures for C5-selective cyanoalkoxylation and cyanoalkylation of N-(8-quinolinyl) amides

N-(8-quinolinyl) amide 1 (0.2 mmol, 1.0 equiv), AIBN (0.8 mmol, 4.0 equiv), $Cu(OAc)_2$ (0.02 mmol, 0.1 equiv), PivOH (0.04 mmol, 0.2 equiv) were mixed in CH₃CN (2.0 mL) and stirred in a dried Schlenk tube under oxygen atmosphere at 70 °C for 12 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and transferred to a round bottom flask after dilution with CH₂Cl₂ dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure and further purified by flash chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding the target product **2**.

N-(8-quinolinyl) amide **1** (0.2 mmol, 1.0 equiv), AIBN (0.8 mmol, 4.0 equiv), NiSO₄ (0.02 mmol, 0.1 equiv), PivOH (0. 4 mmol, 2.0 equiv), Cu(OAc)₂ (0.02 mmol, 0.1 equiv) were mixed in CH₃CN/DMSO (1.5 mL/0.5 mL) and stirred in a dried Schlenk tube under nitrogen atmosphere at 150 °C for 24 h. After completion of the reaction (TLC monitored), the organic layer was washed with H₂O, and was extracted with dichloromethane. Then, the organic layer was dried over anhydrous Na₂SO₄, and resulting organic solution was concentrated under reduced pressure and further purified by flash chromatography (SiO₂, petroleum ether/ethyl acetate gradient), yielding the target product **3**.

3.4 Synthetic transformations of 2a and 3a

Scheme S2 Functional groups transformation.

To demonstrate the potential application, the transformations of the products were also investigated (Scheme S2). Upon treatment of **2a** and **3a** with NaOH in EtOH at 90 °C for 12 h, the corresponding amide derivatives **11** and **13** were obtained in 85% yield and 82% yield, respectively. In addition, the 8-aminoquinoline directing group of **2a** and **3a** could be easily removed by simple acid hydrolysis, giving the corresponding product **12** in 70% yield and **14** in 85% yield, respectively.

To a solution of **2a** (0.2 mmol, 1.0 equiv) in 2.0 mL of EtOH, NaOH (0.8 mmol, 4.0 equiv) was added. The mixture was stirred at 90 °C for 12 h. Upon completion of room temperature and evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/EtOAc=2:1) to afford pure **11** as a white solid in 85% yield.

To a solution of 2a (0.2 mmol, 1.0 equiv) in 4.0 mL of EtOH, concentrated HCl (2.0 mL) was added. The mixture was stirred at 100 °C for 12 h. Upon completion of room temperature and evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/EtOAc=5:1) to afford pure 12 as a pale yellow solid in 70% yield.

To a solution of 3a (0.2 mmol, 1.0 equiv) in 2.0 mL of EtOH, NaOH (0.8 mmol, 4.0 equiv) was added. The mixture was stirred at 90 °C for 12 h. Upon completion of room temperature and evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/EtOAc=2:1) to afford pure 13 as a white solid in 82% yield.

To a solution of **3a** (0.2 mmol, 1.0 equiv) in 4.0 mL of EtOH, concentrated HCl (2.0 mL) was added. The mixture was stirred at 100 °C for 12 h. Upon completion of room temperature and evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/EtOAc=5:1) to afford pure **14** as a pale yellow solid in 85% yield.

4. The single crystal X-ray diffraction studies of N-(5-((2-cyanopropan-2-yl)oxy)quinolin-8-yl)-2-methylbenzamide 2a

Single-crystal X-ray structure of 2a

Table S3. Crystal data and structure refinement for **2a**.

Identification code	2a	
Empirical formula	$C_{21}H_{19}N_3O_2$	
Formula weight	345.39	
Temperature	150 (2) K	
Crystal system	Orthorhombic	
Space group	Pna21	
Unit cell dimensions	a = 12.4892 (11) A alpha = 90 deg.	
	b = 7.3635 (6) A beta = 90 deg.	
	c = 18.9497 (17) A gamma = 90 deg.	
Volume	1742.7 (3) A^3	
Z, Calculated density	4, 1.316 Mg/m^3	
Absorption coefficient	0.087 mm^-1	
F (000)	728.0	

Crystal size	0.220 x 0.200 x 0.180 mm
Theta range for data collection	3.262 to 52.75 deg.
Limiting indices	-15<=h<=15, -9<=k<=4, -23<=l<=21
Reflections collected	9497
Independent reflections	3459 [Rint = 0.0519, Rsigma = 0.0425]
Data / restraints / parameters	3459 / 1 / 239
Goodness-of-fit on F^2	1.049
Final R indices [I>2 sigma (I)]	R1 = 0.0403, wR2 = 0.0896
R indices (all data)	R1 = 0.0526, $wR2 = 0.0957$
Largest diff. peak and hole	0.19 and -0.17 e.A^-3
Flack parameter	-0.5(7)

5. Mechanism investigation

5.1 Isotopic labeling experiments

N-(8-quinolinyl) amide **1** (0.2 mmol, 1.0 equiv), AIBN (0.8 mmol, 4.0 equiv), $Cu(OAc)_2$ (0.02 mmol, 0.1 equiv), PivOH (0.04 mmol, 0.2 equiv) were mixed in CH₃CN (2.0 mL) and stirred in a dried Schlenk tube under ¹⁸O₂ atmosphere at 70 °C for 12 h. After completion of the reaction (TLC monitored), it was cooled to room temperature and transferred to a round bottom flask after dilution with CH₂Cl₂. The solvent was concentrated under reduced pressure and further purified by flash

chromatography (SiO₂, petroleum ether/ethyl acetate gradient), providing the product ¹⁸O-2a' and ¹⁸O-2g' (isolated yields 64% and 59%). The product ¹⁸O-2a' (peak 3.7 min) was analyzed by HRMS. HRMS (ESI): m/z: calcd for $[M+H]^+$ C₂₁H₁₉N₃O¹⁸O: 348.1592, found: 348.1599. The product ¹⁸O-2g' (peak 4.05 min) was analyzed by HRMS. HRMS (ESI): m/z: calcd for $[M+H]^+$ C₂₀H₁₆ClN₃O¹⁸O: 368.1046, found: 368.1063.

Figure S1 LC-MS analysis of the ¹⁸O-labled product 2a'.

Figure S2 LC-MS analysis of the ¹⁸O-labled product 2g'.

5.2 Unreacted substrates.

Several quinoline analogues were undertaken under the standard conditions (Figure S3). Quinoline analogues without an amido bond (4, 5) were ineffective. However, substrates N-methyl-N-(8-quinolinyl) benzamide (6), the naphthylamide derivatives (7) and (8) were inactive in the reaction. These results indicated 8-aminoquinoline amide skeleton and free NH were necessary for cyanoalkoxylation and cyanoalkylation reactions.

Figure S3 Unreacted substrates.

To gain insight into the reaction mechanisms, some control experiments were carried out (Scheme S3). Only a trace of the desired products **2a** and **3a** was obtained in the presence of radical scavenger TEMPO (3.0 equiv.), which implied the involvement of free radical in the reaction pathway (eq 1 and eq 2). Furthermore, we tried to capture cyanopropyloxyl radical and cyanopropyl radical by using 3.0 equiv. 1, 1-diphenylethylene, and radical coupling products **9** and **10** were detected *via* LC-MS (eq 3 and eq 4).

Scheme S3 Investigation of the radical pathway.

5.3 Radical control experiments.

We performed control experiments through changing the gas composition under standard conditions (Scheme S4). For the cyanoalkoxylation reaction, the yield of product 2a decreased under air (eq 1), and cyanoalkoxylation did not occur under

nitrogen atmosphere (eq 2). For the cyanoalkylation reaction, only trace of product **3a** was obtained under air (eq 3), product **3a** was completely undetectable under oxygen atmosphere (eq 4). The results showed that gas composition was an important factor for the formation of different radicals.

Scheme S4 Radical control experiments.

5.4 Study of Ni valence number change by UV.

Scheme S5 Mechanism research.

Figure S4 UV absorption of three reaction solutions.

After the above reactions were completed (Scheme S5), we tested the UV absorption wavelength of the above three reaction solutions after filtration. First, we tested the UV absorption wavelength of substrate **1a** dissolved in CH₃CN/DMSO (3/1) solvent, and the measured spectrum was **black** as shown in **line 1** for a reference; the spectrum of the first reaction solution was **red** as shown in **line 2**; the spectrum of the second reaction solution was **green** as shown in **line 3**; the third reaction solution was plotted in **blue** as shown in **line 4** (Figure S4). According to the changes of the maximum absorption wavelength of the three reaction solutions, only **the third reaction was red shifted** (about at 330 nm, **line 4**), while the second reaction did not change. Therefore, we suspected that the reaction mechanism might be that the SET process firstly took place, and divalent nickel converted into monovalent nickel preferentially.

5.5 Computational details for cyanoalkylation reaction.

All geometry optimizations were performed by the B3PW91-D3 functional^{3, 4} in gas phase, where the D3 denotes the third-generation dispersion correction by Grimme and co-workers.⁵ The Stuttgart-Dresden-Bonn basis sets⁶ were employed for valence electrons of Ni and Cu with effective core potentials representing their core electrons and 6-311+G(d) basis sets were used for other atoms. Solvation effect (acetonitrile) was evaluated with polarizable continuum model (PCM).⁷ In this work, thermal correction

and entropy contribution to the Gibbs energy were evaluated at 298.15 K and 1 atm. All these calculations were carried out with Gaussian 09 program.⁸

Scheme S6 The Gibbs energy of reaction for the SET and oxidation process of Ni^{II} complex.

There are two plausible pathways for conversion of Ni^{II} complex. In the first pathway, the Ni^{II} complex firstly converts to a Ni^I complex through a SET process (eq 1), and then the reductive Ni^I is oxidized by the K₂S₂O₈ (eq 2). In the second pathway, the Ni^{II} complex is firstly oxidized by the K₂S₂O₈ (eq 3) to a Ni^{III} complex, and then a SET process occurs (eq 4). As shown in Scheme S6, the Gibbs energy of reaction (ΔG°) of eq (1) is -7.7 kcal/mol suggesting that this SET process is exoergonic and will occur easily. However, ΔG° of eq 4 is 10.6 kcal/mol, suggesting this SET process is endoergonic and such SET process is difficult to occur. These results indicate that the SET process would occur prior to the oxidation process, which is consistent with the experimental results as shown in Figure S4 about the study of Ni valence state change.

Figure S5 The geometry and energy change in the elementary step of proton transfer in the absence(1)/presence(2) of Cu(OAc)₂.

It is interesting that yield of the reaction increased with cooperation of the Cu(OAc)₂. To understand the effect of Cu(OAc)₂, we calculated the Gibbs energy of activation ($\Delta G^{o^{\ddagger}}$) in the absence/presence of Cu(OAc)₂ as shown in Figure S5. Results showed that the $\Delta G^{o^{\ddagger}}$ decreases 4.7 kcal/mol in the presence of Cu(OAc)₂, which was consistent with the experimental results that yield of the reaction increased in the presence of the Cu(OAc)₂. As shown in the structure of **TS(Cu)**, the Cu–N distance was 3.005 Å and Cu–O distance was 2.464 Å, respectively. It indicated that the coordination between cyano and carbonyl groups and Cu^{II} stabilized the TS(Cu) more than INT(Cu), which decreased the $\Delta G^{o^{\ddagger}.9}$

6. Characterization data of products 2a:

White solid, isolated yield: 70%; ¹H NMR (400 Hz, CDCl₃) δ : 10.07 (s, 1H), 8.91 (d, J = 8.6 Hz, 1H), 8.80 (dd, J = 4.2, 1.7 Hz, 1H), 8.47 (dd, J = 8.5, 1.7 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.49 (dd, J = 8.5, 4.2 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.33 (t, J = 7.3 Hz, 2H), 2.60 (s, 3H), 1.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.07 (s), 148.79 (s), 144.72 (s), 139.21 (s), 136.69 (s), 136.57 (s), 131.56 (s), 131.38 (s), 131.31 (s), 130.34 (s), 127.25 (s), 126.02 (s), 123.40 (s), 121.52 (s), 120.68 (s), 116.22 (s), 116.02 (s), 72.74 (s), 27.54 (s), 20.20 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1548.

White solid, isolated yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ : 10.59 (s, 1H), 8.90 (d, J = 8.6 Hz, 1H), 8.87 (d, J = 4.1 Hz, 1H), 8.47 (dd, J = 8.4, 1.3 Hz, 1H), 8.06 (d, J = 6.5 Hz, 2H), 7.58 – 7.49 (m, 5H), 1.83 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.37 (s), 148.83 (s), 144.68 (s), 139.35 (s), 131.86 (s), 131.36 (s), 130.51 (s), 129.70 (s), 128.82 (s), 127.26 (s), 123.58 (s), 123.40 (s), 121.56 (s), 116.19 (s), 116.06 (s), 72.69 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₇N₃O₂: 332.1394, found: 332.1391.

2c:

White solid, isolated yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ : 10.17 (s, 1H), 8.92 (d, J = 8.5 Hz, 1H), 8.81 (d, J = 3.9 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 8.3 Hz, 2H), 7.56 (d, J = 8.5 Hz, 1H), 7.50 (dd, J = 8.4, 4.1 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 1.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.76 (s), 148.90 (s), 145.02 (s), 139.21 (s), 138.23 (s), 133.69 (s), 131.54 (s), 131.31 (s), 131.07 (s), 129.61 (s), 127.68 (s), 123.35 (s), 121.59 (s), 120.65 (s), 119.69 (s), 116.41 (s), 115.99 (s), 72.69 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆BrN₃O₂: 410.0499, 412.0478, found: 410.0492, 412.0477.

2d:

White solid, isolated yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ : 10.37 (s, 1H), 8.93 (d, J = 8.6 Hz, 1H), 8.82 (d, J = 3.7 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 7.82 (dd, J = 7.2, 1.8 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.47 – 7.40 (m, 2H), 1.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.73 (s), 148.92 (s), 145.00 (s), 139.26 (s), 135.72 (s), 131.56 (s), 131.28 (s), 131.19 (s), 131.15 (s), 130.53 (s), 130.14 (s), 127.19 (s), 123.34 (s), 121.58 (s), 120.66 (s), 116.45 (s), 116.00 (s), 72.69 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆ClN₃O₂: 366.1004, found: 366.1002.

2e:

White solid, isolated yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ : 12.23 (s, 1H), 8.99 (d, J = 8.6 Hz, 1H), 8.87 (d, J = 2.8 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H), 8.34 (d, J = 7.7 Hz, 1H), 7.55 – 7.44 (m, 3H), 7.12 (t, J = 7.5 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 4.16 (s, 3H), 1.82 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.47 (s), 157.71 (s), 148.79 (s), 144.46 (s), 139.75 (s), 133.18 (s), 132.55 (s), 132.28 (s), 131.09 (s),

123.41 (s), 122.18 (s), 121.35 (s), 121.28 (s), 120.83 (s), 116.65 (s), 116.33 (s), 111.61 (s), 72.67 (s), 56.11 (s), 27.50 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₃: 362.1499, found: 362.1494. **2f:**

White solid, isolated yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ : 10.56 (s, 1H), 8.89 (d, J = 8.6 Hz, 1H), 8.87 (dd, J = 4.6, 2.1 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.6 Hz, 1H), 7.51 (dd, J = 8.5, 4.3 Hz, 1H), 7.34 (d, J = 7.9 Hz, 2H), 2.45 (s, 3H), 1.83 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ : 165.36, 148.78, 144.56, 142.37, 139.34, 132.25, 131.50, 131.33, 129.48, 127.27, 123.40, 121.52, 120.72, 116.24, 115.95, 72.70, 27.52, 21.55. HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1549.

2g:

White solid, isolated yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ : 10.55 (s, 1H), 8.86 (dd, J = 5.0, 3.4 Hz, 2H), 8.47 (dd, J = 8.5, 1.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 2H), 7.55 – 7.49 (m, 4H), 1.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.22 (s), 148.89 (s), 144.86 (s), 139.29 (s), 138.14 (s), 133.43 (s), 131.41 (s), 131.05 (s), 129.08 (s), 128.69 (s), 123.35 (s), 121.62 (s), 120.65 (s), 116.15 (s), 115.99 (s), 72.66 (s), 27.52 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆ClN₃O₂: 366.1004, found: 366.1001. **2h:**

White solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ : 10.57 (s, 1H), 8.95 – 8.82 (m, 2H), 8.49 (d, *J* = 8.3 Hz, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.53 (dd, *J* = 12.4, 6.4 Hz, 2H), 1.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.49 (s), 148.91 (s), 144.87 (s), 139.25 (s), 138.03 (s), 134.46 (s), 131.42 (s), 130.99 (s), 128.82 (s), 123.34 (s), 121.65 (s), 120.65 (s), 119.11 (s), 116.13 (s), 115.95 (s), 72.67 (s), 27.50 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆IN₃O₂: 458.0360, found: 458.0359.

2i:

White solid, isolated yield: 69%; ¹H NMR (400 MHz, CDCl₃) δ : 10.57 (s, 1H), 8.90 (d, J = 8.6 Hz, 1H), 8.86 (dd, J = 4.1, 1.4 Hz, 1H), 8.46 (dd, J = 8.5, 1.4 Hz, 1H), 7.99 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.6 Hz, 1H), 7.50 (dd, J = 8.5, 4.2 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 2.75 (q, J = 7.6 Hz, 2H), 1.83 (s, 6H), 1.29 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.37 (s), 148.77 (s), 148.58 (s), 144.54 (s), 139.34 (s), 132.51 (s), 131.54 (s), 131.32 (s), 128.30 (s), 127.37 (s), 123.40 (s), 121.52 (s), 120.73 (s),

116.26 (s), 115.93 (s), 72.70 (s), 28.87 (s), 27.52 (s), 15.34 (s). HRMS (ESI): m/z: calcd for $[M+H]^+ C_{22}H_{21}N_3O_2$: 360.1707, found: 360.1702.

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.51 (s, 1H), 8.89 (d, J = 8.7 Hz, 2H), 8.47 (d, J = 8.4 Hz, 1H), 7.64 (s, 2H), 7.56 – 7.48 (m, 2H), 7.20 (s, 1H), 2.43 (s, 6H), 1.83 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.78 (s), 148.83 (s), 144.57 (s), 139.33 (s), 138.48 (s), 135.09 (s), 133.51 (s), 131.48 (s), 131.34 (s), 124.98 (s), 123.38 (s), 121.53 (s), 119.10 (s), 116.19 (s), 116.03 (s), 72.69 (s), 27.50 (s), 21.37 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₁N₃O₂: 360.1707, found: 360.1705. **2k:**

White solid, isolated yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ : 10.56 (s, 1H), 8.91 (d, J = 8.7 Hz, 1H), 8.88 (d, J = 3.9 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 7.88 (s, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.52 (dd, J = 8.5, 4.3 Hz, 1H), 7.46 – 7.37 (m, 2H), 2.48 (s, 3H), 1.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.60 (s), 148.81 (s), 144.62 (s), 139.36 (s), 138.71 (s), 135.09 (s), 132.62 (s), 131.47 (s), 131.34 (s), 128.66 (s), 128.05 (s), 124.18 (s), 123.39 (s), 121.53 (s), 120.72 (s), 116.23 (s), 116.05 (s), 72.69 (s), 27.54 (s), 21.50 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1548.

2l:

White solid, isolated yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ : 10.58 (s, 1H), 8.89 (d, *J* = 8.6 Hz, 1H), 8.87 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.47 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.62 (dd, *J* = 4.0, 2.0 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 1H), 7.51 (dd, *J* = 8.5, 4.2 Hz, 1H), 7.45 (t, *J* = 8.1 Hz, 1H), 7.12 (dd, *J* = 7.8, 2.1 Hz, 1H), 3.91 (s, 3H), 1.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.20 (s), 160.02 (s), 148.85 (s), 144.70 (s), 139.35 (s), 136.58 (s), 131.36 (s), 131.33 (s), 129.80 (s), 123.39 (s), 121.56 (s), 120.70 (s), 119.04 (s), 118.05 (s), 116.16 (s), 116.05 (s), 112.65 (s), 72.68 (s), 55.53 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₃: 362.1499, found: 362.1495.

2m:

White solid, isolated yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ : 10.58 (s, 1H), 8.90 (d, J = 8.6 Hz, 1H), 8.86 (dd, J = 4.2, 1.6 Hz, 1H), 8.47 (dd, J = 8.5, 1.6 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 3H), 7.51 (dd, J = 8.5, 4.2 Hz, 1H), 1.84 (s, 6H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.39 (s), 155.40 (s), 148.77 (s), 144.54 (s), 139.35 (s), 132.26 (s), 131.55 (s), 131.33 (s), 127.12 (s), 125.77 (s), 123.42 (s), 121.52 (s), 120.72 (s), 116.32 (s), 115.95 (s), 72.71 (s), 35.03 (s), 31.20 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₄H₂₅N₃O₂: 388.2020, found: 388.2020.

White solid, isolated yield: 50%; ¹H NMR (400 MHz, CDCl₃) δ : 10.64 (s, 1H), 8.91 (dd, J = 4.2, 1.6 Hz, 1H), 8.84 (d, J = 8.6 Hz, 1H), 8.47 (dd, J = 8.5, 1.6 Hz, 1H), 7.63 (s, 1H), 7.55 – 7.50 (m, 2H), 7.30 (d, J = 3.4 Hz, 1H), 6.59 (dd, J = 3.5, 1.7 Hz, 1H), 1.84 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 156.29 (s), 148.94 (s), 148.28 (s), 144.78 (s), 144.52 (s), 139.25 (s), 131.28 (s), 130.94 (s), 123.37 (s), 121.56 (s), 120.69 (s), 116.19 (s), 116.02 (s), 115.15 (s), 112.47 (s), 72.64 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₆N₃O₃: 322.1186, found: 322.1181.

20:

2n:

White solid, isolated yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ : 9.67 (s, 1H), 8.85 (d, J = 1.6 Hz, 1H), 8.75 (d, J = 8.5 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 2.37 (s, 3H), 1.85 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.70 (s), 148.67 (s), 144.46 (s), 138.79 (s), 131.29 (s), 131.25 (s), 123.26 (s), 121.48 (s), 120.70 (s), 116.04 (s), 115.90 (s), 72.65 (s), 27.47 (s), 25.04 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₅H₁₅N₃O₂: 270.1237, found: 270.1235.

2p:

White solid, isolated yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ : 10.15 (s, 1H), 8.84 (dd, J = 4.2, 1.6 Hz, 1H), 8.76 (d, J = 8.6 Hz, 1H), 8.44 (dd, J = 8.5, 1.7 Hz, 1H), 7.49 (dd, J = 8.5, 4.3 Hz, 2H), 1.81 (s, 6H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 177.09 (s), 148.77 (s), 144.31 (s), 139.28 (s), 131.52 (s), 131.23 (s), 123.34 (s), 121.45 (s), 120.74 (s), 116.26 (s), 115.58 (s), 72.72 (s), 40.26 (s), 27.72 (s), 27.44 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₂₁N₃O₂: 312.1707, found: 312.1707.

White solid, isolated yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ: 9.78 (s, 1H), 8.86 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.79 (d, *J* = 8.6 Hz, 1H), 8.47 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.51 (dd, *J* = 8.5, 4.1 Hz, 2H), 2.54 – 2.44

(m, 1H), 2.10 (d, J = 13.2 Hz, 2H), 1.93 – 1.87 (m, 2H), 1.84 (s, 6H), 1.72 – 1.60 (m, 3H), 1.44 – 1.32 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 174.75 (s), 148.62 (s), 144.27 (s), 139.05 (s), 131.51 (s), 131.29 (s), 123.35 (s), 121.40 (s), 120.71 (s), 116.39 (s), 115.88 (s), 72.71 (s), 46.86 (s), 29.77 (s), 27.51 (s), 25.77 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₂₃N₃O₂: 338.1863, found: 338.1858. **2r:**

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 9.78 (s, 1H), 8.78 – 8.67 (m, 2H), 8.39 (dd, J = 8.4, 1.2 Hz, 1H), 7.47 – 7.38 (m, 6H), 7.35 – 7.31 (m, 1H), 3.88 (s, 2H), 1.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 169.47 (s), 148.73 (s), 144.61 (s), 139.01 (s), 134.62 (s), 131.18 (s), 131.13 (s), 129.53 (s), 129.00 (s), 127.38 (s), 123.23 (s), 121.43 (s), 120.68 (s), 116.02 (s), 115.85 (s), 72.68 (s), 45.27 (s), 27.46 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1549. **2s:**

White solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ : 9.72 (s, 1H), 8.71 (d, J = 8.6 Hz, 1H), 8.65 (d, J = 3.0 Hz, 1H), 8.39 (d, J = 8.4 Hz, 1H), 7.49 – 7.34 (m, 4H), 7.28 (d, J = 5.8 Hz, 2H), 3.90 (s, 2H), 2.40 (s, 3H), 1.80 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 169.38 (s), 148.73 (s), 144.58 (s), 139.05 (s), 137.26 (s), 133.09 (s), 131.11 (s), 130.80 (s), 130.60 (s), 127.83 (s), 126.65 (s), 123.21 (s), 121.38 (s), 120.67 (s), 116.09 (s), 115.81 (s), 72.68 (s), 43.18 (s), 27.48 (s), 19.72 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₁N₃O₂: 360.1707, found: 360.1704.

2t:

White solid, isolated yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ : 10.66 (s, 1H), 8.86 (d, *J* = 8.6 Hz, 1H), 8.34 (d, *J* = 8.6 Hz, 1H), 8.07 (dd, *J* = 7.7, 1.4 Hz, 2H), 7.60 – 7.54 (m, 3H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 2.78 (s, 3H), 1.83 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.24 (s), 157.90 (s), 144.78 (s), 138.85 (s), 135.28 (s), 131.76 (s), 131.46 (s), 130.85 (s), 128.82 (s), 127.23 (s), 122.33 (s), 121.53 (s), 117.41 (s), 116.04 (s), 115.53 (s), 72.69 (s), 27.56 (s), 25.38 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1548.

2u:

White solid, isolated yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ : 10.68 (s, 1H), 8.97 (d, J = 8.7 Hz, 1H), 8.67 (d, J = 4.7 Hz, 1H), 8.06 (d, J = 6.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 1H), 7.60 – 7.52 (m, 4H), 1.83 (s, 1), 1.83 (s, 1

6H). ¹³C NMR (101 MHz, CDCl₃) δ: 165.37 (s), 148.83 (s), 144.68 (s), 139.35 (s), 131.86 (s), 131.36 (s), 130.51 (s), 129.70 (s), 128.82 (s), 127.26 (s), 123.58 (s), 123.40 (s), 121.56 (s), 116.19 (s), 116.06 (s), 72.69 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆ClN₃O₂: 366.1004, found: 366.1003. **2v:**

White solid, isolated yield: 30%; ¹H NMR (400 MHz, CDCl₃) δ : 10.05 (s, 1H), 8.89 (d, J = 8.7 Hz, 1H), 8.80 (dd, J = 4.2, 1.5 Hz, 1H), 8.52 (dd, J = 8.5, 1.6 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.49 (dd, J = 8.5, 4.2 Hz, 1H), 7.41 (t, J = 6.8 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 2.60 (s, 3H), 2.41 – 2.30 (m, 2H), 2.00 (t, J = 10.2 Hz, 2H), 1.90 – 1.82 (m, 2H), 1.72 – 1.64 (m, 3H), 1.47 – 1.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.05 (s), 148.74 (s), 144.40 (s), 139.30 (s), 136.68 (s), 136.61 (s), 131.37 (s), 131.34 (s), 131.24 (s), 130.32 (s), 127.26 (s), 126.01 (s), 123.27 (s), 121.43 (s), 119.90 (s), 116.01 (s), 115.79 (s), 37.98 (s), 35.98 (s), 24.53 (s), 22.45 (s), 20.21 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₄H₂₄N₃O₂: 386.1863, found: 386.1859.

3a:

White solid, isolated yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ : 10.34 (s, 1H), 8.94 (dd, J = 8.8, 1.4 Hz, 1H), 8.89 (d, J = 8.3 Hz, 1H), 8.84 (dd, J = 4.1, 1.4 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.42 (t, J = 6.9 Hz, 1H), 7.34 (t, J = 7.7 Hz, 2H), 2.60 (s, 3H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.29 (s), 147.89 (s), 139.43 (s), 136.76 (s), 136.40 (s), 135.42 (s), 134.83 (s), 133.19 (s), 131.45 (s), 130.49 (s), 129.84 (s), 127.29 (s), 126.07 (s), 125.32 (s), 124.15 (s), 121.56 (s), 115.33 (s), 33.93 (s), 28.91 (s), 20.24 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O: 330.1601, found: 330.1593.

3b:

White solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ : 10.90 (s, 1H), 8.98 (d, J = 8.8 Hz, 1H), 8.94 – 8.91 (m, 2H), 8.11 (d, J = 6.7 Hz, 2H), 7.67 – 7.56 (m, 5H), 1.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.55 (s), 147.93 (s), 139.58 (s), 135.26 (s), 134.91 (s), 133.24 (s), 132.03 (s), 129.74 (s), 128.86 (s), 127.33 (s), 125.33 (s), 124.84 (s), 124.22 (s), 121.59 (s), 115.38 (s), 33.93 (s), 28.90 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₇N₃O: 316.1444, found: 316.1445.

3c:

White solid, isolated yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ : 12.45 (s, 1H), 8.99 (d, J = 8.3 Hz, 1H), 8.96 – 8.91 (m, 2H), 8.34 (dd, J = 7.8, 1.7 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 7.15 (t, J = 7.2 Hz, 1H), 7.09 (d, J = 8.3 Hz, 1H), 4.21 (s, 3H), 1.96 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ : 163.78 (s), 157.78 (s), 147.82 (s), 140.07 (s), 136.47 (s), 133.33 (s), 133.02 (s), 132.39 (s), 129.34 (s), 125.38 (s), 124.95 (s), 124.37 (s), 122.18 (s), 121.35 (s), 121.31 (s), 116.12 (s), 111.64 (s), 56.16 (s), 33.88 (s), 28.92 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1550.

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.85 (s, 1H), 8.95 (dd, J = 8.8, 1.3 Hz, 1H), 8.92 (dd, J = 4.1, 1.3 Hz, 1H), 8.89 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.2 Hz, 2H), 7.63 (dd, J = 8.7, 4.2 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 2.47 (s, 3H), 1.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.53 (s), 147.88 (s), 142.57 (s), 139.58 (s), 135.37 (s), 133.21 (s), 132.10 (s), 129.52 (s), 127.34 (s), 125.31 (s), 124.86 (s), 124.23 (s), 121.55 (s), 115.28 (s), 33.91 (s), 28.90 (s), 21.59 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O: 330.1601, found: 330.1593.

White solid, isolated yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ : 10.83 (s, 1H), 8.95 (dd, J = 8.8, 1.4 Hz, 1H), 8.91 (dd, J = 4.2, 1.4 Hz, 1H), 8.86 (d, J = 8.3 Hz, 1H), 8.12 – 8.07 (m, 2H), 7.63 (dd, J = 8.8, 4.2 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 166.33 (s), 164.37 (s), 163.81 (s), 147.95 (s), 139.50 (s), 135.09 (s), 133.28 (s), 131.07 (d, J = 3.1 Hz), 129.86 (s), 129.71 (d, J = 9.0 Hz), 125.31 (s), 124.81 (s), 124.19 (s), 121.63 (s), 116.03 (s), 115.81 (s), 115.35 (s), 33.93 (s), 28.88 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆FN₃O: 334.1350, found: 334.1349.

3f:

White solid, isolated yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ : 10.86 (s, 1H), 8.95 (dd, J = 8.7, 1.4 Hz, 1H), 8.90 (dd, J = 8.3, 4.8 Hz, 2H), 8.03 (d, J = 8.5 Hz, 2H), 7.62 (dd, J = 8.7, 4.2 Hz, 1H), 7.60 – 7.56 (m, 3H), 1.96 (s, 6H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.54 (s), 155.59 (s), 147.86 (s), 139.59 (s), 135.40 (s), 133.21 (s), 132.10 (s), 129.55 (s), 127.19 (s), 125.81 (s), 125.32 (s), 124.85 (s), 124.23 (s), 121.54 (s), 115.28 (s), 35.06 (s), 33.92 (s), 31.20 (s), 28.90 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₄H₂₅N₃O: 372.2070, found: 372.2066.

3g:

White solid, isolated yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ : 10.86 (s, 1H), 8.95 (dd, J = 8.8, 1.3 Hz, 1H), 8.92 (dd, J = 4.2, 1.3 Hz, 1H), 8.89 (d, J = 8.3 Hz, 1H), 8.01 (d, J = 8.2 Hz, 2H), 7.63 (dd, J = 8.8, 4.2 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 8.2 Hz, 2H), 2.76 (q, J = 7.6 Hz, 2H), 1.96 (s, 6H), 1.30 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.58 (s), 148.79 (s), 147.88 (s), 139.59 (s), 135.38 (s), 133.21 (s), 132.34 (s), 129.55 (s), 128.35 (s), 127.45 (s), 125.32 (s), 124.86 (s), 124.24 (s), 121.55 (s), 115.29 (s), 33.92 (s), 28.90 (s), 15.36 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₁N₃O: 344.1757, found: 344.1749.

3h:

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.64 (s, 1H), 9.14 – 8.73 (m, 3H), 7.82 (d, *J* = 6.0 Hz, 1H), 7.74 – 7.30 (m, 5H), 7.57 – 7.39 (m, 3H), 1.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.99 (s), 148.01 (s), 139.45 (s), 135.60 (s), 135.12 (s), 133.16 (s), 131.69 (s), 131.19 (s), 130.58 (s), 130.24 (s), 130.14 (s), 127.21 (s), 125.31 (s), 124.78 (s), 124.13 (s), 121.61 (s), 115.74 (s), 33.95 (s), 28.90 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆ClN₃O: 350.1055, found: 350.1050. **3i:**

White solid, isolated yield: 64%; ¹H NMR (400 MHz, CDCl₃) δ : 10.85 (s, 1H), 8.96 (dd, J = 8.8, 1.3 Hz, 1H), 8.92 (d, J = 4.1 Hz, 1H), 8.87 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.64 (dd, J = 8.7, 4.2 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 1.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 164.43 (s), 147.98 (s), 139.51 (s), 138.34 (s), 135.00 (s), 133.31 (s), 133.27 (s), 130.01 (s), 129.13 (s), 128.75 (s), 125.33 (s), 124.78 (s), 124.19 (s), 121.66 (s), 115.46 (s), 33.95 (s), 28.89 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆ClN₃O: 350.1055, found: 350.1049.

White solid, isolated yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ : 10.79 (s, 1H), 8.99 – 8.92 (m, 2H), 8.89 (d, *J* = 8.3 Hz, 1H), 7.67 (s, 2H), 7.63 (dd, *J* = 8.7, 4.2 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.23 (s, 1H), 2.45 (s, 6H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 166.04 (s), 147.92 (s), 139.63 (s), 138.56 (s), 135.42 (s), 134.99 (s), 133.68 (s), 133.22 (s), 129.60 (s), 125.34 (s), 125.07 (s), 124.87 (s), 124.25 (s),

121.55 (s), 115.41 (s), 33.93 (s), 28.91 (s), 21.39 (s). HRMS (ESI): m/z: calcd for $[M+H]^+ C_{22}H_{21}N_3O$: 344.1757, found: 344.1749.

3k:

White solid, isolated yield: 61%; ¹H NMR (400 MHz, CDCl₃) δ : 10.87 (s, 1H), 8.98 (dd, J = 8.8, 1.4 Hz, 1H), 8.95 (dd, J = 4.2, 1.4 Hz, 1H), 8.92 (d, J = 8.3 Hz, 1H), 7.94 – 7.87 (m, 2H), 7.65 (dd, J = 8.7, 4.2 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H), 7.50 – 7.41 (m, 2H), 2.52 (s, 3H), 1.99 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.79 (s), 147.92 (s), 139.60 (s), 138.75 (s), 135.33 (s), 134.92 (s), 133.22 (s), 132.79 (s), 129.66 (s), 128.71 (s), 128.09 (s), 125.32 (s), 124.85 (s), 124.25 (s), 124.23 (s), 121.57 (s), 115.38 (s), 33.93 (s), 28.90 (s), 21.52 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O: 330.1601, found: 330.1602.

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.87 (s, 1H), 8.95 (dd, J = 8.8, 1.3 Hz, 1H), 8.92 (dd, J = 4.1, 1.3 Hz, 1H), 8.89 (d, J = 8.3 Hz, 1H), 7.66 – 7.61 (m, 3H), 7.58 (d, J = 8.3 Hz, 1H), 7.47 (t, J = 8.1 Hz, 1H), 7.14 (dd, J = 9.1, 1.9 Hz, 1H), 3.92 (s, 3H), 1.97 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.40 (s), 160.03 (s), 147.94 (s), 139.56 (s), 136.39 (s), 135.23 (s), 133.24 (s), 129.85 (s), 129.79 (s), 125.32 (s), 124.82 (s), 124.21 (s), 121.60 (s), 119.10 (s), 118.17 (s), 115.40 (s), 112.72 (s), 55.54 (s), 33.94 (s), 28.90 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O₂: 346.1550, found: 346.1541.

3m:

3I:

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.86 (s, 1H), 8.99 (dd, J = 8.8, 1.4 Hz, 1H), 8.92 (dd, J = 4.2, 1.4 Hz, 1H), 8.85 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 7.65 (dd, J = 8.8, 4.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 1.96 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ : 164.81 (s), 147.89 (s), 139.29 (s), 138.08 (s), 134.81 (s), 134.27 (s), 133.63 (s), 130.18 (s), 128.91 (s), 125.39 (s), 124.75 (s), 124.29 (s), 121.68 (s), 115.96 (s), 99.22 (s), 33.96 (s), 28.88 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₆IN₃O: 442.0411, found: 442.0407.

3n:

White solid, isolated yield: 45%;¹H NMR (400 MHz, CDCl₃) δ : 10.90 (s, 1H), 8.96 (s, 1H), 8.94 (dd, J = 5.4, 1.4 Hz, 1H), 8.83 (d, J = 8.3 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.56 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 3.5 Hz, 1H), 6.60 (dd, J = 3.5, 1.7 Hz, 1H), 1.96 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 156.48 (s), 148.19 (s), 148.04 (s), 144.68 (s), 139.45 (s), 133.16 (s), 129.86 (s), 124.15 (s), 121.61 (s), 121.09 (s), 120.24 (s), 115.48 (s), 115.40 (s), 112.54 (s), 33.93 (s), 28.89 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₁₆N₃O₂: 306.1237, found: 306.1234.

30:

White solid, isolated yield: 64%; ¹H NMR (400 MHz, CDCl₃) δ : 9.91 (s, 1H), 8.91 (dd, J = 8.8, 1.3 Hz, 1H), 8.85 (dd, J = 4.1, 1.3 Hz, 1H), 8.71 (d, J = 8.3 Hz, 1H), 7.59 (dd, J = 8.8, 4.2 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 2.36 (s, 3H), 1.93 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.92 (s), 147.73 (s), 139.04 (s), 135.17 (s), 133.16 (s), 129.48 (s), 125.21 (s), 124.83 (s), 124.14 (s), 121.49 (s), 115.20 (s), 33.86 (s), 28.86 (s), 25.19 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₅H₁₅N₃O: 254.1288, found: 254.1283. **3p:**

White solid, isolated yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ : 10.39 (s, 1H), 8.91 (dd, J = 8.7, 1.1 Hz, 1H), 8.88 (dd, J = 4.1, 1.2 Hz, 1H), 8.74 (d, J = 8.3 Hz, 1H), 7.59 (dd, J = 8.7, 4.2 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 1.93 (s, 6H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 177.41 (s), 147.83 (s), 139.60 (s), 135.38 (s), 133.13 (s), 129.26 (s), 125.23 (s), 124.85 (s), 124.16 (s), 121.41 (s), 115.01 (s), 40.39 (s), 33.86 (s), 28.88 (s), 27.70 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₈H₂₁N₃O: 296.1757, found: 296.1750.

White solid, isolated yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ : 9.99 (s, 1H), 8.89 (d, J = 8.9 Hz, 1H), 8.85 (d, J = 4.2 Hz, 1H), 8.71 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 8.7, 4.2 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 2.51 – 2.41 (m, 1H), 2.05 (dd, J = 13.2, 2.1 Hz, 2H), 1.90 (s, 6H), 1.89 – 1.83 (m, 2H), 1.66 – 1.55 (m, 3H), 1.40 – 1.27 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 175.11 (s), 147.60 (s), 139.13 (s), 135.16 (s), 133.53 (s), 129.40 (s), 125.30 (s), 124.81 (s), 124.30 (s), 121.43 (s), 115.65 (s), 46.84 (s), 33.87 (s), 29.72 (s), 28.88 (s), 25.77 (s), 25.73 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₂₃N₃O: 322.1915, found: 322.1914.

3r:

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 9.91 (s, 1H), 8.91 (dd, J = 8.8, 1.4 Hz, 1H), 8.82 (dd, J = 4.1, 1.4 Hz, 1H), 8.74 (d, J = 8.3 Hz, 1H), 7.58 (dd, J = 8.8, 4.1 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.30 (d, J = 4.4 Hz, 4H), 7.21 (dd, J = 8.8, 4.5 Hz, 1H), 3.15 (t, 2H), 2.90 (t, 2H), 1.94 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 170.94 (s), 147.71 (s), 140.64 (s), 139.09 (s), 135.07 (s), 133.14 (s), 129.50 (s), 128.59 (s), 128.39 (s), 126.30 (s), 125.21 (s), 124.83 (s), 124.15 (s), 121.48 (s), 115.29 (s), 39.74 (s), 33.87 (s), 31.42 (s), 28.87 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₁N₃O: 344.1757, found: 344.1753.

White solid, isolated yield: 56%; ¹H NMR (400 MHz, CDCl₃) δ : 10.03 (s, 1H), 8.88 (dd, J = 8.8, 1.4 Hz, 1H), 8.74 (dd, J = 4.1, 1.3 Hz, 1H), 8.71 (d, J = 8.3 Hz, 1H), 7.54 (dd, J = 8.8, 4.2 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.45 – 7.39 (m, 4H), 7.36 – 7.31 (m, 1H), 3.90 (s, 2H), 1.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 169.69 (s), 147.75 (s), 139.23 (s), 135.03 (s), 134.50 (s), 133.07 (s), 129.67 (s), 129.54 (s), 129.01 (s), 127.41 (s), 125.16 (s), 124.78 (s), 124.05 (s), 121.41 (s), 115.16 (s), 45.37 (s), 33.86 (s), 28.85 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉N₃O: 330.1601, found: 330.1601.

3t:

White solid, isolated yield: 59%; ¹H NMR (400 MHz, CDCl₃) δ : 9.97 (s, 1H), 8.86 (dd, J = 8.8, 1.4 Hz, 1H), 8.70 (d, J = 8.3 Hz, 1H), 8.67 (dd, J = 4.2, 1.4 Hz, 1H), 7.52 (dd, J = 8.8, 4.2 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.36 (dd, J = 7.2, 3.3 Hz, 1H), 7.28 (t, J = 4.5 Hz, 3H), 3.90 (s, 2H), 2.39 (s, 3H), 1.91 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 169.60 (s), 147.74 (s), 139.20 (s), 137.23 (s), 134.96 (s), 133.09 (s), 133.03 (s), 130.81 (s), 130.60 (s), 129.67 (s), 127.86 (s), 126.65 (s), 125.15 (s), 124.78 (s), 124.07 (s), 121.39 (s), 115.19 (s), 43.28 (s), 33.86 (s), 28.84 (s), 19.71 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₁N₃O: 344.1757, found: 344.1754.

3u:

White solid, isolated yield: 40%;¹H NMR (400 MHz, CDCl₃) δ : 10.94 (s, 1H), 8.92 (d, *J* = 8.5 Hz, 1H), 8.70 (d, *J* = 4.6 Hz, 1H), 8.06 (d, *J* = 6.8 Hz, 2H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 4.6 Hz, 1H), 7.61 – 7.54 (m, 3H), 2.05 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 165.61 (s), 146.75 (s), 141.76 (s), 140.94 (s), 135.68 (s), 134.78 (s), 132.16 (s), 130.00 (s), 128.90 (s), 127.85 (s), 127.32 (s), 125.79 (s), 125.66 (s), 125.56 (s), 115.91 (s), 35.91 (s), 32.00 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₀H₁₇ClN₃O: 350.1055, found: 350.1055.

3v:

White solid, isolated yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ : 10.35 (s, 1H), 8.96 – 8.87 (m, 2H), 8.83 (dd, J = 4.1, 1.4 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 2.60 (s, 3H), 2.38 (dd, J = 14.1, 7.3 Hz, 1H), 2.10 (dd, J = 14.1, 7.3 Hz, 1H), 1.94 (s, 3H), 1.10 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 168.31 (s), 147.85 (s), 139.45 (s), 136.76 (s), 136.40 (s), 135.29 (s), 133.11 (s), 131.45 (s), 130.49 (s), 128.91 (s), 127.29 (s), 126.07 (s), 125.41 (s), 125.22 (s), 124.10 (s), 121.45 (s), 115.32 (s), 39.54 (s), 33.74 (s), 25.74 (s), 20.25 (s), 9.52 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₂N₃O: 344.1757, found: 344.1755.

White solid, isolated yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.93 – 8.85 (m, 2H), 8.82 (dd, *J* = 4.1, 1.3 Hz, 1H), 7.67 (t, *J* = 7.9 Hz, 2H), 7.57 (dd, *J* = 8.8, 4.1 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 2.60 (s, 3H), 2.27 (dd, *J* = 14.2, 5.7 Hz, 1H), 2.02 (s, 3H), 1.95 (dd, *J* = 14.2, 6.0 Hz, 1H), 1.90 – 1.82 (m, 1H), 1.04 (d, *J* = 6.6 Hz, 3H), 0.85 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.25 (s), 147.82 (s), 139.42 (s), 136.77 (s), 136.41 (s), 135.30 (s), 133.16 (s), 131.45 (s), 130.49 (s), 129.47 (s), 127.28 (s), 126.07 (s), 125.42 (s), 125.36 (s), 124.56 (s), 121.40 (s), 115.35 (s), 49.31 (s), 39.04 (s), 26.84 (s), 25.76 (s), 24.05 (s), 23.95 (s), 20.26 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₄H₂₅N₃O: 372.2070, found: 372.2077.

3x:

White solid, isolated yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 10.28 (s, 1H), 8.89 (d, J = 8.2 Hz, 1H), 8.75 (dd, J = 4.1, 1.4 Hz, 1H), 8.21 (dd, J = 8.7, 1.4 Hz, 1H), 7.64 (dd, J = 15.5, 7.9 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.32 (t, J = 7.4 Hz, 2H), 3.58 (s, 3H), 2.59 (s, 3H), 1.75 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.99 (s), 168.16 (s), 147.40 (s), 139.34 (s), 136.69 (s), 136.65 (s), 134.96 (s), 134.14 (s), 132.74 (s), 131.36 (s), 130.31 (s), 127.25 (s), 126.11 (s), 126.01 (s), 124.00 (s), 121.29 (s), 115.78 (s), 52.49 (s), 45.84 (s), 27.54 (s), 20.20 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₂N₂O₃: 363.1703, found: 363.1726.

3y:

White solid, isolated yield: 48%; ¹H NMR (400 MHz, CDCl₃) δ 10.85 (s, 1H), 8.90 (dd, J = 5.0, 3.7 Hz, 2H), 8.86 (d, J = 8.3 Hz, 1H), 8.02 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 8.3 Hz, 1H), 7.62 (dd, J = 8.5, 4.5

Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 2.27 (dd, J = 14.2, 5.7 Hz, 1H), 2.02 (s, 3H), 1.94 (dd, J = 14.2, 5.9 Hz, 1H), 1.89 – 1.82 (m, 1H), 1.03 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.41 (s), 147.89 (s), 139.50 (s), 138.31 (s), 134.89 (s), 133.31 (s), 129.67 (s), 129.12 (s), 128.75 (s), 125.42 (s), 125.38 (s), 124.51 (s), 121.48 (s), 115.51 (s), 49.32 (s), 39.01 (s), 26.76 (s), 25.74 (s), 23.98 (d, J = 9.8 Hz). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₃H₂₂ClN₃O: 392.1524, found: 392.1533. **3z:**

White solid, isolated yield: 50%; ¹H NMR (400 MHz, CDCl₃) δ 10.80 (s, 1H), 8.87 – 8.82 (m, 2H), 8.24 (dd, J = 8.7, 1.4 Hz, 1H), 8.02 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.47 (dd, J = 8.7, 4.2 Hz, 1H), 3.58 (s, 3H), 1.75 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.91 (s), 164.31 (s), 147.42 (s), 139.39 (s), 138.12 (s), 135.15 (s), 133.69 (s), 133.53 (s), 132.96 (s), 129.06 (s), 128.73 (s), 126.16 (s), 124.07 (s), 121.36 (s), 116.04 (s), 52.49 (s), 45.87 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₁₉ClN₂O₃: 383.1157, found: 383.1171.

3aa:

White solid, isolated yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 10.81 (s, 1H), 8.86 (dd, *J* = 19.0, 6.1 Hz, 2H), 8.23 (d, *J* = 8.7 Hz, 1H), 7.66 – 7.61 (m, 3H), 7.49 – 7.43 (m, 2H), 7.13 (d, *J* = 8.2 Hz, 1H), 3.92 (s, 3H), 3.58 (s, 3H), 1.76 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.99 (s), 165.25 (s), 160.01 (s), 147.44 (s), 139.52 (s), 136.68 (s), 134.90 (s), 133.96 (s), 132.79 (s), 129.78 (s), 126.13 (s), 124.05 (s), 121.31 (s), 119.08 (s), 118.02 (s), 115.83 (s), 112.68 (s), 55.52 (s), 52.48 (s), 45.86 (s), 27.53 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₂H₂₂N₂O₄: 379.1652, found: 379.1674.

11:

White solid, isolated yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ : 10.03 (s, 1H), 8.84 (d, J = 8.6 Hz, 1H), 8.80 (dd, J = 4.1, 1.4 Hz, 1H), 8.53 (dd, J = 8.5, 1.4 Hz, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.49 (dd, J = 8.5, 4.2 Hz, 1H), 7.40 (t, J = 7.3 Hz, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.10 (d, J = 8.5 Hz, 1H), 6.70 (s, 1H), 5.56 (s, 1H), 2.60 (s, 3H), 1.64 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 177.24 (s), 168.05 (s), 148.70 (s), 144.85 (s), 139.30 (s), 136.63 (s), 136.58 (s), 131.50 (s), 131.37 (s), 130.44 (s), 130.33 (s), 127.24 (s), 126.02 (s), 123.40 (s), 121.37 (s), 116.03 (s), 115.29 (s), 82.54 (s), 25.03 (s), 20.21 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₂₁N₃O₃: 364.1656, found: 364.1654.

12:

Pale yellow solid, isolated yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ : 8.79 (dd, J = 4.2, 1.7 Hz, 1H), 8.34 (dd, J = 8.5, 1.7 Hz, 1H), 7.43 – 7.38 (m, 2H), 6.87 (d, J = 8.3 Hz, 1H), 1.76 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.58 (s), 145.52 (s), 139.28 (s), 136.57 (s), 130.20 (s), 127.24 (s), 125.97 (s), 122.84 (s), 121.14 (s), 113.11 (s), 73.33 (s), 25.70 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₃H₁₄N₃O: 228.1131, found: 228.1128.

White solid, isolated yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ : 10.28 (s, 1H), 8.87 (d, *J* = 8.2 Hz, 1H), 8.76 (d, *J* = 2.9 Hz, 1H), 8.39 (d, *J* = 8.6 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.45 (dd, *J* = 8.7, 4.1 Hz, 1H), 7.40 (t, *J* = 7.1 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 5.17 (d, *J* = 21.6 Hz, 2H), 2.58 (s, 3H), 1.73 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 180.48 (s), 168.27 (s), 147.85 (s), 139.50 (s), 136.70 (s), 136.46 (s), 134.81 (s), 134.70 (s), 134.04 (s), 131.43 (s), 130.45 (s), 127.27 (s), 126.24 (s), 126.06 (s), 124.70 (s), 121.51 (s), 115.56 (s), 46.45 (s), 27.88 (s), 20.24 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₂₁H₂₂N₃O₂: 348.1707, found: 348.1705.

14:

Pale yellow solid, isolated yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ : 8.80 (dd, J = 10.2, 1.8 Hz, 2H), 7.51 (dd, J = 8.7, 4.2 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 5.20 (s, 2H), 1.90 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 146.98 (s), 144.62 (s), 139.17 (s), 132.70 (s), 125.99 (s), 125.29 (s), 124.21 (s), 123.53 (s), 121.23 (s), 108.18 (s), 33.63 (s), 28.92 (s). HRMS (ESI): m/z: calcd for [M+H]⁺ C₁₃H₁₄N₃: 212.1182, found: 212.1180.

7. ¹H and ¹³C NMR spectra

2j:

2k:

2l:

2n:

2q:

2r:

2t:

2v:

3b:

12.2 11.8 11.4 11.0 10.6 10. 2

3d:

3f:

3h:

3i:

-2200

-2100 -2000

-1900 -1800 -1700 -1600

-1500

-1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 . -500 -400 -300 -200 -100 -0

-100

-2200

ò

3k:

3m:

3n:

30:

3p:

3q:

3r:

3t:

3v:

3x:

13:

8. References

 (a) Y. Ano, M. Tobisu and N. Chatani, Org. Lett., 2012, 14, 354-357; (b) L. D. Tran, J. Roane and O. Daugulis, Angew. Chem. Int. Ed., 2013, 52, 6043-6046; (c) Y. C. Zhang, C. X. Wen and J. Z. Li, Org. Biomol. Chem., 2018, 16, 1912; (d) G. Liao, H. M. Chen and B. F. Shi, Chem. Commun., 2018, 54, 10859.

2. A. M. Suess, M. Z. Ertem, C. J. Cramer and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 9797-9804.

3. A. D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.

4. J. P. Perdew, J. A.Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, **46**, 6671-6687.

5. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

6. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1991, 78, 247-266.

7. B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 106, 5151-5158.

 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, **2013**.

9. Y. N. Li, Y. Chang, Y. F. Li, C. Cao, J. S. Yang, B. L. Wang and D. Q. Liang, *Adv. Synth. Catal.* 2018, **360**, 2488-2492.