Electronic Supporting Information

for

A synthon for unknown 1,3-zwitterions? – A K/OR phosphinidenoid complex with an additional Si-CI function

Robert Kunzmann, Yamato Omatsu, Gregor Schnakenburg, Arturo Espinosa Ferao,* Tatsuya Yanagisawa, Norihiro Tokitoh,* and Rainer Streubel*

Abstract: Although the chemistry of frustrated Lewis pairs (FLPs) has seen tremendous developments, investigations on anionic, monomolecular FLPs are still scarce, and 1,3-zwitterions unknown. Herein, synthesis and reactions of a K/OR phosphinidenoid complex containing a Si-Cl function is reported, and this anionic "crypto-FLP" allow access to novel P-heterocyclic ligands via stepwise reactions.

Table of Contents

Table of Contents

1 Experimental Procedures	2
2. Crystallographic data of complexes 2. 4 and 5.	4
3. NMR spectra of all new complexes.	6
4. Computational part	26
4. Computational details	26
4.2 Stability of oxaphosphasiliranes	26
4.3 Computed main optical transitions for 3a'	27
4.4 Cartesian coordinates and energies	27
5. References	45

1. Experimental Procedures

General information.

All operations were performed under an argon atmosphere, using Schlenk techniques or a glove box. Before use, the argon is dried by phosphorus pentoxide and traces of oxygen are removed by a copper catalyst. The values of water and oxygen in the glovebox are kept under 0.1 ppm, each. All used solvents are purified before use, by fresh distillation from sodium wire. Additionally diethyl ether and toluene for glove box use were taken from a MBRAUN SPS800 solvent purification system. All NMR spectra were recorded at room temperature on a Bruker Avance I 300 MHz (300.1 MHz for ¹H, 75.5 MHz for ¹³C, 59.9 for ²⁹ Si and 121.5 MHz for ³¹P) or a Bruker Avance III HD 500 MHz Prodigy (500.1 MHz for ¹H, 125.7 MHz for ¹³C, 99.3 for ²⁹ Si and 202.4 MHz for ³¹P) spectrometer, respectively. Benzene-*d*₆ and THF-d₈ were used as solvents for NMR spectroscopy. ¹H and ¹³C spectra were references to the residual proton resonances of these solvents. For ²⁹Si and ³¹P NMR measurements a solution of Tetramethylsilane in CDCl₃ or 85% H₃PO₄, respectively, were used as external standards. All melting points were measured on a Büchi Type S device, in sealed capillaries, the values are not corrected. Elemental analyses were carried out on a Elementa Vario EL gas chromatograph. Mass spectra were recorded on a Thermo Finnigan MAT 95 XL in the case of EI spectra, and on a Thermo Fischer Scientific Orbitrap XL in the case of ESI spectra. All IR spectra were measured from solids on a Bruker Alpha Diamond ATR FTIR device. The UV/vis spectra were recorded on a Shimadzu UV-1650PC. Single crystal x-ray analyses were performed on a Bruker X8-KappaApexII diffractometer at 100 K. SHELXT-2014 and SHELXL-2014^[1] program packages were used for solving the structures involving intrinsic phasing methods refined by full-matrix least-squares technique in anisotropic approximation for non-hydrogen atoms. P-bounded Hydrogen atoms were located by Fourier synthesis and refined isotropically, all other H atoms where included using a riding model on the bound carbon atom.

Preparation of complex 2:

To a suspension of **1** (2,29 g, 3.2 mmol) in 30 mL toluene, 3.9 ml of dimethyldichlorosilane (4,13 g, 32.0 mmol, 10 eq.) were added at room temperature. After 4 days stirring all volatiles were removed in *vacuo* (10^{-2} mbar). The residue was extracted four times with 10 mL *n*-pentane and filtered to separate from [Li(12-crown-4)]Cl. After removal of the solvent in *vacuo* (10^{-2} mbar) a white solid was obtained. Traces of a rose-colored impurity were removed by washing with 0.5 mL acetonitrile at -40 °C. The white powder was then dried in *vacuo* (10^{-2} mbar).

Yield: 1.542 g (2.467 mmol, 77 %). ¹H NMR (300,1 MHz, C₆D₆): δ [ppm] = 0.02 (s, 9H, Si-CH₃), 0.22 (s, 9H, Si-CH₃), 0.26 (s, 3H, O-Si-CH₃), 0.37 (s, 3H, O-Si-CH₃), 0.87 (d, 1H, P-CH, ²J_{P,H} = 2.9 Hz), 8.33 (dd, 1H, ¹J_{P,H} = 334.2 Hz, ³J_{H,H} = 1.2 Hz, ¹J_{C,H} = 7.6 Hz, PH). ¹³C{¹H} NMR 125,5 MHz, C₆D₆): δ [ppm] = 0.2 (d_{sat}, ³J_{P,C} = 2.1 Hz, ¹J_{Si,C} = 51.7 Hz, Si-CH₃), 2.0 (d_{sat}, ³J_{P,C} = 3.6 Hz, ¹J_{Si,C} = 53.0 Hz, Si-CH₃), 3.2 (d_{sat}, ³J_{P,C} = 6.2 Hz, ¹J_{Si,C} = 72.5 Hz, O-Si-CH₃), 26.5 (d_{sat}, ¹J_{P,C} = 10.0 Hz, ¹J_{Si,C} = 34.7 Hz, P-C), 197.3 (d_{sat}, ²J_{P,C} = 7.5 Hz, ¹J_{W,C} = 125.7 Hz, *cis*-CO), 199.3 (d_{sat}, ²J_{P,C} = 26.1 Hz, ¹J_{W,C} = 139.3 Hz, *trans*-CO). ²⁹Si{¹H</sup>} NMR (59,6 MHz, C₆D₆): δ [ppm] = 0.3 (d_{sat}, ²J_{P,Si} = 5.6 Hz, *Si*Me₃), 2.2 (d, ²J_{P,Si} = 9.5 Hz, *Si*Me₃), 13.1 (d, ²J_{P,Si} = 14.8 Hz, *Si*Me₂Cl). ³¹P NMR (121,4 MHz, C₆D₆): δ [ppm] = 82.3 (d_{sat}, ¹J_{W,P} = 278.5 Hz, ¹J_{P,H} = 334.2 Hz). IR (ATR Diamond, \tilde{v} [cm⁻¹], selected peaks): 2364 (w, v(PH)), 2070 (s, v(CO)), 1979 (w, v(CO)), 1896 (vs, v(CO)), 1250 (s, v(P-O-Si). MS (EI, 70 eV, ¹⁸⁴W, selected peaks): m/z (%) = 624.0 (20) [M]⁺⁺, 596.0 (8) [M-1 CO]⁺⁺, 568.0 (48) [M-2 CO]⁺⁺, 540.0 (10) [M-3 CO]⁺⁺, 512.0 (34) [M-4 CO]⁺⁺, 484.0 (30) [M-5 CO]⁺⁺, 146.9 (48) [C₃H₈OPSi₂]⁺⁺, 73.0 (100) [SiMe₃]⁺⁺. M.p. 76 °C. EA [%]: theor./exp. C 26.91/27.44, H 4.19/4.30.

Preparation of complex 3:

To a solution of complex **2** (1.272 g, 2.04 mmol) in 10 mL diethyl ether a solution of KHMDS (405.9 mg, 2.04 mmol, 1.0 eq.) and 18crown-6 (537.6 mg, 2.04 mmol, 1.0 eq.) in 18 mL diethyl ether was added slowly at room temperature. After 20 minutes of stirring, all volatiles were removed in *vacuo* (10^{-2} mbar). The orange residue was washed five times with 4 mL *n*-pentane and then dried in *vacuo* (10^{-2} mbar) to yield an orange solid.

Yield: 1.651 g (1.78 mmol, 88 %). ¹H NMR (300,1 MHz, THF-*d*₈): δ [ppm] = 0.07 (d, 9 H, ⁴J_{P,H} = 1.2 Hz, Si(CH₃)₃), 0.19 (s, 9 H, Si(CH₃)₃), 0.36 (s, 3H, O-SiCH₃), 0.42 (s, 3H, O-SiCH₃), 1.68 (s, 1 H, P-CH), 3.62 (s, 24 H, CH₂). ¹³C{¹H} NMR 75,5 MHz, THF-*d*₈): δ [ppm] = 1.6 (d_{sat}, ³J_{P,H} = 12.6 Hz, ¹J_{Si,C} = 51.5 Hz, Si(CH₃)₃), 3.7 (d, ³J_{P,C} = 5.2 Hz, O-Si-CH₃), 3.8 (s_{sat}, ¹J_{Si,C} = 50.8 Hz, Si(CH₃)₃), 4.0 (d, ³J_{P,C} = 0.9 Hz, O-Si-CH₃), 26.9 (d, ¹J_{P,C} = 70.8 Hz, P-CH), 71.1 (s, CH₂), 206.8 (d_{sat}, ¹J_{W,C} = 127.6 Hz, ²J_{P,C} = 6.7 Hz, *cis*-CO), 210.6 (d, ¹J_{W,P} = 127.6 Hz, ²J_{P,C} = 15.4 Hz, *trans*-CO). ²⁹Si{¹H} NMR (59,6 MHz, THF-*d*₈): δ [ppm] = -5.7 (d, ²J_{P,Si} = 27.5 Hz, *Si*Me₃), -1.1 (d, ²J_{P,Si} = 3.2 Hz, *Si*Me₃), 6.0 (d, ²J_{P,Si} = 11.9 Hz, O-*Si*(CH₃)₂). ³¹P NMR (121,4 MHz, THF-*d*₈): δ [ppm] = 214.5 (s_{sat}, ¹J_{W,P} = 72.1 Hz). IR (ATR Diamond, $\tilde{\nu}$ [cm⁻¹], selected peaks): 2071 (w, v(CO)), 2029 (m, v(CO)), 1983 (w, v(CO)), 1933 (w, v(CO)), 1856 (vs, v(CO)), 1250 (s, v(P-O-Si). UV/vis 432 (0.582). $\epsilon_{432} = 2.5606 \cdot 10^3 L \cdot mol⁻¹ \cdot cm⁻¹.MS (ESI, positive, ¹⁸⁴W, selected peaks): m/z (%) = 303.1 (100) [M]⁺. MS (ESI, negative, ¹⁸⁴W, selected peaks): m/z (%) = 531.0 (40) [M-SiMe₂Cl+H]⁻⁻. M.p. 89 °C. EA [%]: theor./exp. C 33.68/33.39, H 5.33/5.37.$

Preparation of complexes 4 and 5:

Complex **4**: To a solution of complex **3** (503.4 mg, 0.54 mmol) in 6 mL diethyl ether 200 μ L (173.6 mg, 1.75 mmol, 3.2 eq.) of *tert*-butyl isocyanate were added. After 90 minutes of stirring, all volatiles were removed in *vacuo* (10⁻² mbar). The crude product was then purified by low-temperature chromatography under an argon atmosphere (-20 °C, h = 4 cm, \emptyset = 3,5 cm, undried Al₂O₃. The used eluent was a mixture a *n*-pentane and diethyl ether (97:3). The product is contained in the first fraction. After removal of all volatiles in *vacuo* (10⁻² mbar), a white solid was obtained which was further dried in *vacuo* (10⁻² mbar).

Complex **4**: Yield: 85.2 mg (0.12 mmol, 23 %). ¹H NMR (300,1 MHz, C₆D₆): δ [ppm] = 0.11 (s, 3H, O-Si-*CH*₃), 0.24 (s, 9H, Si-*CH*₃), 0.29 (s, 3H, O-Si-*CH*₃), 0.34 (s, 9H, Si-*CH*₃), 1.25 (s, 9 H, *t*Bu), 1.43 (d, 1H, ²*J*_{P,H} = 2.3 Hz, P-*CH*). ¹³C{¹H} NMR 125,5 MHz, C₆D₆): δ [ppm] = 2.7 (d_{sat}, ³*J*_{P,C} = 1.8 Hz, ¹*J*_{Si,C} = 52.3 Hz, Si-*CH*₃), 2.9 (s_{sat}, ¹*J*_{Si,C} = 69.2 Hz, O-Si-*CH*₃), 2.9 (d_{sat}, ³*J*_{P,C} = 3.1 Hz, ¹*J*_{Si,C} = 53.1 Hz, Si-*CH*₃), 3.9 (s_{sat}, ¹*J*_{Si,C} = 69.1 Hz, O-Si-*CH*₃), 28.8 (s, N-C(*C*H₃)₃), 32.0 (d_{sat}, ¹*J*_{P,C} = 6.6 Hz, ¹*J*_{Si,C} = 31.2 Hz, P-*C*H), 55.8 (d, ¹*J*_{P,C} = 3.7 Hz, N-*C*(*C*H₃)₃), 183.6 (d, ¹*J*_{P,C} = 45.5 Hz, P-*C*-N), 197.6 (d_{sat}, ²*J*_{P,C} = 3.7 Hz, ¹*J*_{W,C} = 129.9 Hz, *cis*-CO), 199.6 (d_{sat}, 1C, ²*J*_{P,C} = 26.8 Hz, ¹*J*_{W,C} = 139.1 Hz, *trans*-CO). ¹⁵N{¹H} NMR 50.7 MHz, C₆D₆): δ [ppm] = -232.5 (s). ²⁹Si{¹H} NMR (59,6 MHz, C₆D₆): δ [ppm] = 0.5 (d, ²*J*_{P,Si} = 4.5 Hz, *Si*Me₃), 0.9 (d, ²*J*_{P,Si} = 10.4 Hz, *Si*Me₃), 16.2 (d, ²*J*_{P,Si} = 9.4 Hz, O-*Si*(*C*H₃)₂). ³¹P NMR (202,4 MHz, C₆D₆): δ [ppm] = 116.5 ppm (s_{sat}, ¹*J*_{W,P} = 283.5 Hz). IR (ATR Diamond, \tilde{v} [cm⁻¹], selected peaks): 2366 (w, v(CO)), 2070 (m, v(CO)), 1986 (m, v(CO)), 1950 (sh, v(CO)), 1940 (sh, v(CO)), 1905 (vs, v(CO)), 1641 (s, v(C=O)), MS (EI, 70 eV, ¹⁸⁴W, selected peaks): m/z (%) = 687.1 (38) [M]⁺⁺, 631.1 (30) [M-2 CO]⁺⁺, 603.1 (86) [M-3 CO]⁺⁺, 575.1 (100) [M-4 CO]⁺⁺, 474.0 (15) [M-3 CO-(^fBuN=SiMe₂)]⁺⁺, 73.1 (58) [SiMe₃]⁺⁺. M.p. 94 °C.

Complex 5: To a solution of complex 3 (412.3 mg, 0.45 mmol) in 6 mL diethyl ether a solution of 80 μ L (69.4 mg, 0.60 mmol, 1.3 eq.) trimethylsilyl azide in 2 mL diethyl ether. After 130 minutes of stirring, all volatiles were removed in *vacuo* (10⁻² mbar). The residue was extracted four times with 2 mL *n*-pentane and filtered to separate from KCI. The crude product was washed eight times with 0.2 mL of acetonitrile at -40°C. Afterwards the crude product was dissolved in 1 mL of *n*-pentane, and cooled down to -40 °C. After 12 hours, 18-crown-6 crystallized from this solution. After separation from 18-crown-6, the solvent was removed in *vacuo* (10⁻² mbar). A white solid was obtained, which was dried in *vacuo* (10⁻² mbar).

Complex **5**: Yield: 52.4 mg (0.078 mmol, 17 %). ¹H NMR (500,1 MHz, C₆D₆): δ [ppm] = 0.19 (s, 9H, O-Si-(CH₃)₃), 0.19 (s, 3H, Si(CH₃)₂), 0.21 (s, 9H, P-CH-Si-CH₃), 0.22 (s, 9H, N-Si(CH₃)₃), 0.32 (s, 3H, Si(CH₃)₂), 1.45 (d, 1H, ²J_{P,H} = 13.8 Hz, P-CH). ¹³C{¹H} NMR 125,8 MHz, C₆D₆): δ [ppm] = 1.4 (d_{sat}, ³J_{P,C} = 3.6 Hz, ¹J_{Si,C} = 52.7 Hz, O-Si(CH₃)₃), 2.1 (d, ³J_{P,C} = 0.6 Hz, N-Si-CH₃), 2.2 (d_{sat}, ³J_{P,C} = 2.2 Hz, ¹J_{Si,C} = 56.7 Hz, P-CH-Si(CH₃)₃), 3.4 (s_{sat}, ¹J_{Si,C} = 56.9 Hz, Si(CH₃)₂), 7.2 (d_{sat}, ³J_{P,C} = 2.3 Hz, ¹J_{Si,C} = 53.4 Hz, Si(CH₃)₂), 38.2 (d_{sat}, ³J_{P,C} = 9.7 Hz, ¹J_{Si,C} = 46.3 Hz, P-CH), 199.5 (d_{sat}, ¹J_{W,C} = 126.1 Hz, ²J_{P,C} = 9.1 Hz, *cis*-CO), 200.0 (d_{sat}, ¹J_{W,C} = 135.7 Hz, ²J_{P,C} = 28.3 Hz, *trans*-CO). ²⁹Si{¹H} NMR (59,6 MHz, C₆D₆): δ [ppm] = -4.3 (d_{sat}, ²J_{P,Si} = 5.6 Hz, ¹J_{Si,C} = 52.8 Hz, CH-SMe₃), 2.5 (s_{sat}, ¹J_{Si,C} = 56.9 Hz, N-SiMe₃), 12.5 (d, ²J_{P,Si} = 25.3 Hz, O-SiMe₃), 14.1 (d, ²J_{P,Si} = 15.3 Hz, CH-SMe₂-N). ³¹P NMR (121,4 MHz, C₆D₆): δ [ppm] = isomer 1 (95 %): 118.4 ppm (d_{sat}, ¹J_{W,P} = 318.3 Hz, ²J_{P,H} = 13.8 Hz); isomer 2 (5 %): 117.1 ppm (d_{sat}, ¹J_{W,P} = 310.7 Hz, ²J_{P,H} = 2.0 Hz). IR (ATR Diamond, $\tilde{\nu}$ [cm⁻¹], selected peaks): 2066 (s, v(CO)), 1973 (w, v(CO)), 1907 (vs, v(CO)). MS (EI, 70 eV, ¹⁸⁴W, selected peaks): m/z (%) = 675.1 (19) [M]⁺⁺, 591.1 (100) [M-3 CO]⁺⁺, 535.1 (64) [M-5 CO]⁺⁺, 351.1 (39) [M-5 CO - W]⁺⁺, 73.0 (32) [SiMe₃]⁺⁻. M.p. 141 °C.

2. Crystallographic data

Complex **2** ($C_{14}H_{26}O_6Si_3PCIW$): $M = 624.89 \text{ g·mol}^{-1}$, monoclinic, $P2_1/c$, a = 9.3757(10) Å, b = 10.4164(9) Å, c = 25.134(3) Å, $\alpha = 90^\circ$, $\beta = 93.912(4)^\circ$, $\gamma = 90^\circ$, V = 2448.9(4) Å³, Z = 4, $d_{calcd.} = 1.695 \text{ g·cm}^{-3}$, $\mu = 5.062 \text{ mm}^{-1}$, T = 100 K. A sum of 28078 reflections (5331 unique; $R_{int} = 0.0773$) were measured by a Bruker X8-KappaApexII diffractometer (monochromated Mo- $K\alpha$ radiation; $\lambda = 0.71073$ Å; empirical absorption correction with $T_{min} = 0.5641$ and $T_{max} = 0.7460$). Patterson methods were applied for the solution of the structure, refinement was performed by full-matrix-least squares fitting against F^2 for all reflections. Hydrogens were refined as rigid groups while other atoms were refined anisotropically. R values [$l > 2\sigma(l)$]: $R_1 = 0.0569$, $wR_2 = 0.0871$. R values (all data): $R_1 = 0.0800$, $wR_2 = 0.0962$, min./max. electron difference 1.33/-1.87 e·Å^3.

Figure S1. ORTEP drawing of the molecular structure of complex 2 in the solid state (ellipsoids are set at 50% probability level and hydrogen atoms except P-H are omitted for clarity). Selected bond lengths (Å) and angles (deg): P-W 2.476(2); P-C3 1.821(7); P-O1 1.623(5); Si1-O1 1.645(5); W-P-O 118.3(2); W-P-C3 117.4(3); O1-P-C3 103.7(3); P-O1-Si1 141.3(3).

Complex **4** (C₁₉H₃₄NO₇Si₃PW): $M = 687.56 \text{ g·mol}^{-1}$, orthorombic, P2₁₂₁₂₁, a = 9.9978(4) Å, b = 13.3597(5) Å, c = 21.3413(9) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2850.5(2) Å³, Z = 4, $d_{calcd.} = 1.602 \text{ g·cm}^{-3}$, $\mu = 4.270 \text{ mm}^{-1}$, T = 100 K. A sum of 25714 reflections (6863 unique; $R_{int} = 0.0325$) were measured by a Bruker X8-KappaApexII diffractometer (monochromated Mo- $K\alpha$ radiation; $\lambda = 0.71073$ Å; empirical absorption correction with $T_{min} = 0.4896$ and $T_{max} = 0.7462$). Patterson methods were applied for the solution of the structure, refinement was performed by full-matrix-least squares fitting against P^2 for all reflections. Hydrogens were refined as rigid groups while other atoms were refined anisotropically. R values [$I > 2\sigma(I)$]: $R_1 = 0.0175$, $wR_2 = 0.0363$. R values (all data): $R_1 = 0.0196$, $wR_2 = 0.0371$, min./max. electron difference 0.68/-0.26 e·Å⁻³.

Complex **5** ($C_{17}H_{34}NO_6S_{14}PW$): $M = 675.63 \text{ g}\cdot\text{mol}^{-1}$, monoclinic, P2₁/c, a = 15.8672(11) Å, b = 16.5104(11) Å, c = 22.0806(15) Å, $\alpha = 90^{\circ}$, $\beta = 91.193(3)^{\circ}$, $\gamma = 90^{\circ}$, V = 5783.3(7) Å³, Z = 8, $d_{calcd.} = 1.552 \text{ g}\cdot\text{cm}^{-3}$, $\mu = 4.244 \text{ mm}^{-1}$, T = 100 K. A sum of 80534 reflections (13954 unique; $R_{int} = 0.0474$) were measured by a Bruker X8-KappaApexII diffractometer (monochromated Mo- $K\alpha$ radiation; $\lambda = 0.71073$ Å; empirical absorption correction with $T_{min} = 0.4169$ and $T_{max} = 0.7461$). Patterson methods were applied for the solution of the structure, refinement was performed by full-matrix-least squares fitting against F^2 for all reflections. Hydrogens were refined as rigid groups while other atoms were refined anisotropically. R values [$I > 2\sigma(I)$]: $R_1 = 0.0237$, $wR_2 = 0.0513$. R values (all data): $R_1 = 0.0316$, $wR_2 = 0.0542$, min./max. electron difference 1.09/-0.76 e ·Å^3.

The primitive cell contains two independent molecules, having split layers (Figure S1).

Figure S2: ORTEP drawing of the molecular structure of both independent molecules of complex **5** (cis) in the solid state (ellipsoids are set at 50% probability level and hydrogen atoms are omitted for clarity). Split layers: O1/O1S (0.76:0.24); O1'/O1'S (0.43:0.57); C1'/N'S and N'/C1'S (0.51:0.49).

ShelxT-2014 and ShelxL-2014-program-package was used for the solution and refinement.

The crystallographic data of complexes **2**, **4** and **5** were deposited at the Cambridge Crystallographic Data Centre and can be obtained free of charge via <u>www.cam.ac.uk/data_request/cif</u>. The CCDC numbers are **2**: 1963999, **4**: 1964000 and **5**: 1964001.

This material is available free of charge via the internet at http://pubs.acs.org.

2. NMR spectra of all new complexes

Figure S4: ¹H NMR spectrum of complex 2 (expansion).

Figure S10: ${}^{31}P{}^{1}H$ NMR spectrum of complex 2.

0

[ppm]

Figure S11: ³¹P{¹H} NMR spectrum of complex 2 (expansion).

Figure S12: ¹H NMR spectrum of complex 3.

Figure S13: ¹H NMR spectrum of complex 3 (expansion).

Figure S14: ¹³C NMR spectrum of complex 3.

Figure S15: ¹³C NMR spectrum of complex 3 (expansion).

Figure S16: ¹³C NMR spectrum of complex 3 (expansion).

Figure S17: ²⁹Si NMR spectrum of complex 3.

Figure S18: ²⁹Si NMR spectrum of complex 3 (expansion).

Figure S19: ³¹P NMR spectrum of complex 3.

Figure S20: ³¹P NMR spectrum of complex 3 (expansion).

Figure S21: ¹H NMR spectrum of complex 4.

Figure S23: ¹³C NMR spectrum of complex 4.

Figure S24: ¹³C NMR spectrum of complex 4 (expansion).

Figure S25: ¹³C NMR spectrum of complex 4 (expansion).

Figure S27: ¹³C NMR spectrum of complex 4 (expansion).

Figure S28: ²⁹Si NMR spectrum of complex 4.

Figure S29: ²⁹Si NMR spectrum of complex 4 (expansion).

Figure S30: ³¹P NMR spectrum of complex 4.

Figure S31: ³¹P NMR spectrum of complex 4 (expansion).

Figure S32: ¹H NMR spectrum of complex 5.

Figure S33: ¹H NMR spectrum of complex 5 (expansion).

Figure S34: ¹³C NMR spectrum of complex 5.

Figure S35: ¹³C NMR spectrum of complex 5 (expansion).

Figure S36: ¹³C NMR spectrum of complex 5 (expansion).

Figure S37: ¹³C NMR spectrum of complex 5 (expansion).

Figure S38: ²⁹Si NMR spectrum of complex 5.

Figure S39: ²⁹Si NMR spectrum of complex 5 (expansion).

Figure S41: ³¹P NMR spectrum of complex 5 (expansion).

4. Computational part

4.1 Computational details.

Quantum chemical calculations were performed with the ORCA electronic structure program package.^[2] All geometry optimizations were run in redundant internal coordinates with tight convergence criteria, using the B3LYP^[3] functional together with the powerful speeding up RIJCOSX algorithm^[4] and the Ahlrichs' segmented def2-TZVP basis set.^[5] For W atoms the [SD(60,MWB)]^[6] effective core potencial was used. In all optimizations and energy evaluations, the latest Grimme's semiempirical atom-pair-wise correction (DFT-D3 methods), taking into account the major part of the contribution of dispersion forces to the energy, was included.^[7] Harmonic frequency calculations verified the nature of the computed species as minima or TS (transition state) structures, featuring none or only one negative eigenvalues, respectively. Moreover, all TS structures were confirmed by intrinsic reaction coordinate (IRC) calculations. From these geometries, all reported electronic data were obtained by means of single-point (SP) calculations using the same functional as well as the more polarized def2-TZVP^[5,8] basis set. Reported energies were corrected for the Gibbs energy term at the optimization level and obtained by means of the recently developed near linear scaling domain-based local pair natural orbital (DLPNO) method^[9] to achieve coupled cluster theory with single-double and perturbative triple excitations (CCSD(T)).^[10] Due to convergence problems at higher computational levels for **7a** and its formation and decomposition TSs, the conversion **3a** \rightarrow **10a** was quoted using energies at the optimization level. Solvent effects (tetrahydrofurane) were taken into account via the COSMO solvation model^[11] for both geometry optimizations and energy SP calculations.

4.2 Stability of oxaphosphasiliranes.

Theoretical investigations revealed that conversion of (model) complex **3'** into the hypothetical oxaphosphasilirane complex is significantly endergonic ($\Delta E_{ZPE} = 29.24$ kcal/mol), in agreement with the experimental non observation of the cyclic species. Furthermore, the six-membered cyclic dimer turned out to be 32.72 kcal/mol more stable than oxaphosphasilirane (non ZPE-corrected at the B3LYP-D3/def2-TZVPecp level).

The ring strain energy (RSE) of phosphasilirane and its 2,3,3-trimethyl-derivative was computed by evaluating the energetics of appropriate homodesmotic reactions (Scheme 5), similar to those used for other three-^[12] or four-membered^[13] saturated phosphorus heterocycles. In such reactions, for the cleavage of every endocyclic X–Y (or X=Y) bond, a H_nX-YH_m (or $H_nX=YH_m$) reagent is used, the valences of X and Y being completed with H atoms. In reactants and products, the number of every type of bonds (single/double) between X and Y, with the same hybridization states in X and Y, must be conserved, as well as the number of sp³, sp², and sp-hybridized (and non-hybridized, in case) atoms of every element with 0, 1, 2, or 3 H atoms attached. By averaging the opposites of the zero point-corrected energies for the three homodesmotic endocyclic bond cleavage reactions RSE values of 34.22 (R = H) and 35.18 kcal/mol (R = Me) were obtained.

Figure S42: Homodesmotic reactions used for the estimation of RSE for oxaphosphasiliranes.

4.3 Computed optical transitions in 3a'.

TD-DFT studies (COSMO_{THF}/B3LYP-D3/def2-TZVPecp) on the model species **3'** predict a lowest-energy absorption at 450.1 nm (f = 0.0627) corresponding mainly to a HOMO \rightarrow LUMO+2 transition from a phosphorus p-type orbital to a carbonyl ligand-based empty MO (Figure S42).

Figure S43: Calculated (COSMO_{THF}/B3LYP-D3/def2-TZVPecp) electron difference isosurfaces (isovalues, in au: +0.005 green and - 0.005 red) for the predicted optical transition of **3'** at 450 nm.

According to these calculations two less intense bands are expected at 355.9 nm (f = 0.0353) and 326.5 nm (f = 0.0251), corresponding to HOMO-2 \rightarrow LUMO+1 and HOMO-1 \rightarrow LIMO+3 transitions, respectively.

4.4 Computed structures.

Cartesian coordinates (in Å) and energies (in hartrees) for all computed species. Geometries, zero-point energy correction (ZPE) and Gibbs energy correction (G_{corr}) at the COSMO(THF)/B3LYP-D3/def2-TZVP level, whereas electronic energies are computed at the COSMO(THF)/CCSD(T)/def2-TZVPP level unless otherwise stated.

E = -4415.16175925371 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

	•	
٠	-	

Ρ

W

С

0

С

0

С

0

С

		$G_{corr} = 0.0$)3393916 au	J		
-0.010167	-0.025147	0.020268	0	2.252294	-2.399894	2.297169
0.052945	-0.101628	2.672300	С	1.497252	1.352633	2.618678
0.143776	-0.136892	4.676647	0	2.304790	2.175801	2.614643
0.177362	-0.155854	5.836231	0	-1.019770	1.271332	-0.437354
-1.371513	1.380538	2.619044	Si	-0.773119	2.773196	-0.990700
-2.143578	2.226932	2.542314	CI	-2.698074	3.615073	-1.107800
-1.394213	-1.558153	2.666164	С	0.198944	3.834854	0.184279
-2.190593	-2.388205	2.648954	Н	0.276780	4.854719	-0.197788
1.465042	-1.571947	2.450707	н	-0.283270	3.867458	1.161713

ZPE = 0.81443986

н	1.207247	3.440950	0.320155	Н	3.144874	-0.234030	0.759604
С	-0.091885	2.792808	-2.719327	Н	4.426018	0.786253	1.441529
Н	0.057312	3.817659	-3.065479	С	5.122271	-1.059909	0.634466
Н	0.863372	2.267627	-2.754108	Н	5.157645	-1.479787	1.646672
Н	-0.775562	2.291293	-3.405964	Н	6.131126	-0.727456	0.360549
С	-1.093159	-1.421935	-0.613021	0	4.670676	-2.045028	-0.282389
Н	-1.094800	-2.202188	0.154288	С	5.559587	-3.144473	-0.391435
Si	-2.926634	-1.056805	-0.891408	Н	5.738758	-3.586852	0.596219
С	-3.746097	-0.029870	0.450186	Н	6.520197	-2.807306	-0.799951
Н	-3.636786	-0.482075	1.435936	С	4.953215	-4.192586	-1.287051
Н	-3.344920	0.979642	0.485571	Н	3.961653	-4.475834	-0.917248
Н	-4.816568	0.029397	0.230274	Н	5.593357	-5.082967	-1.280520
С	-3.847898	-2.705657	-0.903262	0	4.853402	-3.675481	-2.608585
Н	-4.922516	-2.525409	-1.000613	С	4.294756	-4.594221	-3.534443
Н	-3.542138	-3.360426	-1.718819	Н	3.244165	-4.791327	-3.289536
Н	-3.684417	-3.238718	0.037097	Н	4.834201	-5.548371	-3.498755
С	-3.219020	-0.203520	-2.543641	С	4.416496	-4.025423	-4.923650
Н	-2.713282	0.761297	-2.576397	Н	4.037103	-4.758363	-5.646054
Н	-2.866205	-0.805295	-3.383761	Н	5.470327	-3.832954	-5.155847
Н	-4.288651	-0.027611	-2.686696	0	3.675893	-2.815643	-5.017414
Si	-0.153831	-2.186258	-2.054280	С	3.843304	-2.181617	-6.278209
С	-1.103259	-3.535271	-2.968317	Н	3.525997	-2.853960	-7.084628
Н	-1.974094	-3.140945	-3.495045	Н	4.901219	-1.936726	-6.433633
Н	-0.447961	-4.000991	-3.710353	С	3.008543	-0.931300	-6.334094
Н	-1.445765	-4.316579	-2.286519	Н	1.956851	-1.169464	-6.137145
С	0.358856	-0.911208	-3.340835	Н	3.076961	-0.505512	-7.342466
Н	0.932525	-0.097294	-2.898359	0	3.486296	0.002898	-5.375544
Н	0.966275	-1.393085	-4.111569	С	2.761443	1.226390	-5.403504
Н	-0.508636	-0.470521	-3.834126	Н	1.705424	1.039432	-5.179503
С	1.383787	-3.011634	-1.347240	Н	2.827966	1.681051	-6.399209
Н	1.991093	-2.336733	-0.742744	С	3.342705	2.179309	-4.393760
Н	1.092874	-3.842612	-0.699359	Н	4.408006	2.346783	-4.592791
Н	2.008576	-3.425404	-2.141348	Н	2.822975	3.140983	-4.479873
Κ	3.773108	-1.061187	-2.730321	0	6.491828	-0.645212	-2.955342
0	3.171716	1.643883	-3.089909	С	6.869780	0.720871	-2.982133
С	3.555410	2.546767	-2.060513	Н	7.951921	0.829989	-2.849087
Н	2.931899	3.447953	-2.099824	Н	6.583896	1.189507	-3.931563
Н	4.599223	2.850935	-2.197773	Н	6.350124	1.209659	-2.161384
С	3.372020	1.873944	-0.728205	С	7.155396	-1.418737	-3.940109
Н	2.347657	1.494444	-0.627375	н	6.829724	-2.447822	-3.807537
Н	3.555974	2.601068	0.071073	н	6.896822	-1.077520	-4.949854
0	4.285109	0.788656	-0.626526	н	8.242836	-1.360272	-3.817839
С	4.174366	0.107189	0.619649				

[K(18c6)(OMe ₂)] ⁺

К О С

E = -1677 E = -1675	.782155157 .364102429	72 au (COSMO⊤⊦ 61 au	⊧/B3LYP-D3-def2-TZ	VPecp)
$G_{corr} = 0.3$	9465928 au	I		
-0.028964	С	2.291318	-0.936145	2.708058
2.795311	0	2.493082	-0.482644	1.376303

-1.279512

0.651210

3.421737

0.112813	0.065833	-0.028964	С
0.099703	0.009660	2.795311	0
1.376364	0.023181	3.421322	С

С	3.551687	-0.740156	-0.748072	Н	0.769958	-1.770557	-3.353730
0	2.330851	-0.946555	-1.448908	Н	1.143868	-0.487165	-4.524778
С	2.383581	-0.473828	-2.789570	Н	-1.571927	-1.079574	-3.242430
С	1.056588	-0.716802	-3.456330	Н	-1.191866	0.117105	-4.499455
0	0.073993	0.117636	-2.856321	Н	-3.143123	0.857832	-3.278815
С	-1.220565	-0.055173	-3.417126	Н	-1.791614	1.955679	-2.930537
С	-2.165064	0.935057	-2.789576	Н	-4.133260	1.572177	-1.204384
0	-2.287323	0.648883	-1.402099	Н	-2.731558	2.566983	-0.757333
С	-3.148750	1.553506	-0.722568	Н	-3.675081	0.068891	0.731805
С	-3.315864	1.104918	0.703973	Н	-4.064653	1.739800	1.192231
0	-2.071296	1.203780	1.385789	Н	-2.496113	-0.278717	2.767830
С	-2.164246	0.766298	2.736514	Н	-2.896617	1.374375	3.280480
С	-0.824260	0.901132	3.406700	Н	-0.459816	1.931978	3.326469
Н	1.286275	-0.279815	4.471046	Н	-0.935282	0.659065	4.470170
Н	1.796440	1.035524	3.393140	0	1.131974	2.585385	-0.291462
Н	1.856706	-1.943276	2.700857	С	1.282523	3.273087	0.940616
Н	3.246964	-0.978850	3.243785	Н	1.867754	4.189329	0.809927
Н	3.082947	-2.322254	0.623066	Н	0.306483	3.532253	1.366374
Н	4.403184	-1.250620	1.139007	Н	1.810543	2.605635	1.619339
Н	4.370519	-1.261665	-1.257422	С	0.506493	3.378970	-1.288599
Н	3.788772	0.330152	-0.719674	Н	0.438376	2.768784	-2.187136
Н	3.166671	-1.003333	-3.344814	Н	-0.499213	3.682923	-0.975269
Н	2.618493	0.597308	-2.799737	Н	1.095334	4.278066	-1.498674

[K(18c6)(OMe₂)]Cl

• `	/(-/1		E2135	26850000	20 อน	-	17
			E = -2133	0000160 00	29 au		
ĸ	0.000507	0.440960	$G_{corr} = 0.3$	923109 au	4 200500	4 400000	4 4 4 0 0 0 7
n O	-0.008527	-0.140862	-0.011867		4.390380	-1.122023	1.140097
0	0.075553	0.106918	2.797586	н	4.375420	-1.056915	-1.236577
С	1.334512	0.095568	3.447484	Н	3.712256	0.503842	-0.694305
С	2.252980	-0.846886	2.712836	н	3.165427	-0.870038	-3.339212
0	2.500912	-0.334450	1.411269	Н	2.564371	0.714390	-2.795678
С	3.408514	-1.131013	0.663008	н	0.770075	-1.701477	-3.295705
С	3.527121	-0.576411	-0.732989	Н	1.134646	-0.470768	-4.526341
0	2.327923	-0.836704	-1.446469	Н	-1.559280	-1.069050	-3.165082
С	2.365711	-0.364202	-2.783505	Н	-1.252548	0.068827	-4.498894
С	1.044661	-0.650525	-3.447710	Н	-3.190417	0.827654	-3.278617
0	0.052714	0.200514	-2.892562	Н	-1.861177	1.967885	-2.978933
С	-1.247142	-0.045982	-3.407758	Н	-4.182195	1.547090	-1.220301
С	-2.208953	0.942683	-2.801887	Н	-2.817926	2.587307	-0.755932
0	-2.306812	0.689237	-1.410808	Н	-3.645911	0.029825	0.697534
С	-3.199011	1.558198	-0.733675	Н	-4.152118	1.668779	1.172454
С	-3.357284	1.087546	0.688162	Н	-2.473794	-0.286356	2.719025
0	-2.132303	1.259050	1.387593	Н	-2.974749	1.327429	3.280072
С	-2.206253	0.776876	2.723025	Н	-0.550725	2.007677	3.332729
С	-0.876705	0.962141	3.405659	Н	-0.988285	0.712316	4.468187
н	1.224599	-0.247619	4.483887	0	1.317083	2.366653	-0.398566
н	1.762685	1.105336	3.467225	С	1.586392	2.955530	0.861590
н	1.792289	-1.839652	2.642866	Н	2.136818	3.896816	0.746940
н	3.192938	-0.938692	3.271283	Н	0.656717	3.155911	1.408102
н	3.055904	-2.168711	0.621773	н	2.189652	2.244080	1.420256

С	0.559231	3.210960	-1.247016	Н	1.087990	4.151924	-1.439700
Н	0.411650	2.672397	-2.180363	CI	-1.153999	-2.897630	0.317493
Н	-0.416706	3.442120	-0.802648				

E = -3597.88687158147 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp) E = -3592.62284062254 au

 $G_{corr} = 0.52871640 \text{ au}$

Ρ	0.583931	-0.596461	0.136337	н	4.186933	-3.198771	2.576574
W	-0.020584	-0.448218	2.712704	н	5.266772	-3.276923	1.164078
С	-0.475120	-0.265067	4.660335	0	3.242423	-3.397303	0.748592
0	-0.752228	-0.158064	5.781247	С	3.188600	-4.813002	0.743185
С	-1.139104	1.215413	2.242401	Н	3.115308	-5.193285	1.769150
0	-1.769236	2.132623	1.961720	Н	4.097912	-5.219372	0.283759
С	-1.656723	-1.618566	2.295793	С	1.972720	-5.258139	-0.025848
0	-2.560612	-2.275275	2.023168	н	1.071731	-4.806324	0.404354
С	1.045590	-2.157261	3.110601	н	1.877227	-6.348128	0.048681
0	1.608535	-3.127533	3.371413	0	2.116132	-4.872826	-1.386041
С	1.655516	0.716939	2.897865	С	0.998323	-5.206662	-2.193985
0	2.599683	1.373510	2.971926	н	0.128668	-4.606333	-1.904972
0	-0.334792	0.638420	-0.621679	Н	0.739384	-6.265257	-2.071041
Si	0.268149	2.019996	-1.242099	С	1.355379	-4.966570	-3.636977
CI	-1.429746	3.129133	-1.795345	Н	0.516053	-5.274599	-4.272184
С	1.198273	3.033597	0.006407	н	2.228496	-5.571563	-3.908393
Н	1.561780	3.959167	-0.444758	0	1.646103	-3.589372	-3.842638
Н	0.563616	3.287875	0.855620	С	2.104743	-3.335231	-5.163058
Н	2.058376	2.474809	0.380893	Н	1.341913	-3.634349	-5.892173
С	1.256899	1.708763	-2.781402	н	3.012779	-3.918606	-5.358757
Н	1.560261	2.644643	-3.254844	С	2.390183	-1.868592	-5.334689
Н	2.156631	1.146243	-2.524436	Н	1.503827	-1.275445	-5.077674
Н	0.675744	1.127440	-3.500031	Н	2.631195	-1.681237	-6.388050
С	-0.361819	-2.017587	-0.583709	0	3.482262	-1.492578	-4.505953
Н	-0.018377	-2.931175	-0.095708	С	3.878286	-0.143584	-4.720808
Н	-0.177008	-2.102973	-1.657925	Н	3.009601	0.516402	-4.632594
Н	-1.437498	-1.927691	-0.426379	Н	4.294892	-0.028300	-5.728977
Κ	3.011201	-2.206694	-1.745879	С	4.923403	0.249104	-3.709216
0	4.374540	0.143025	-2.404538	Н	5.807656	-0.393427	-3.795280
С	5.164869	0.763022	-1.399353	Н	5.230452	1.281677	-3.913422
Н	5.154297	1.851395	-1.533164	0	5.316196	-3.727431	-1.946188
Н	6.202816	0.417312	-1.469482	С	6.505357	-2.966920	-2.069361
С	4.597445	0.420272	-0.047086	Н	7.388590	-3.584711	-1.869992
Н	3.535096	0.685929	-0.000401	Н	6.596214	-2.539769	-3.075149
Н	5.131482	0.990857	0.722108	Н	6.447263	-2.165386	-1.336187
0	4.747418	-0.975161	0.172591	С	5.261039	-4.814685	-2.852442
С	4.295603	-1.384995	1.459645	Н	4.333014	-5.345905	-2.653305
Н	3.278461	-1.021798	1.627440	Н	5.266784	-4.461409	-3.890778
Н	4.949055	-0.969273	2.235690	Н	6.110381	-5.491903	-2.705801
С	4.310037	-2.887830	1.533266				

3a

TS(3	a +MeNCO→6a)		E = -2124	.88054640	556 au		
			$G_{corr} = 0.1$	5152822 a	u		
			v = -86.40) cm ⁻¹			
Р	0.202961	0.140831	-0.258511	Н	-1.951324	4.013372	-0.247750
W	0.700718	0.208948	2.308538	Н	-0.408803	4.025178	-1.108007
С	0.990507	0.270172	4.298465	С	-0.940877	1.574789	-3.302267
0	1.125801	0.294381	5.450487	Н	-1.319767	2.230144	-4.089109
С	-0.017503	2.132265	2.222521	Н	0.144565	1.681283	-3.253004
0	-0.422031	3.204576	2.126762	Н	-1.167950	0.541799	-3.571443
С	-1.223940	-0.500323	2.449774	С	-0.444851	-1.530081	-0.702388
0	-2.299995	-0.903401	2.462684	Н	0.352018	-2.259881	-0.553652
С	1.401189	-1.714033	2.147053	Н	-0.732879	-1.549005	-1.755786
0	1.791494	-2.789518	2.018999	Н	-1.304894	-1.810527	-0.091805
С	2.587834	0.905864	1.902546	Ν	2.862533	1.295045	-1.950190
0	3.640833	1.295610	1.646494	С	2.486060	0.139253	-1.909542
0	-1.237149	1.022516	-0.461847	0	2.491453	-1.029858	-2.107108
Si	-1.703319	2.013761	-1.665413	С	2.370384	2.518617	-1.382197
CI	-3.782700	1.714991	-1.861361	Н	2.163285	3.239995	-2.174315
С	-1.473226	3.798257	-1.204415	Н	1.457044	2.330304	-0.812125
н	-1.898119	4.454932	-1.966152	Н	3.119818	2.946388	-0.715541

6a⁻

E = -2124.90602346989 au $G_{corr} = 0.15283834$ au

			$G_{corr} = 0.1$	J203034 a	u i i i i i i i i i i i i i i i i i i i		
Р	0.299588	0.162426	-0.186920	н	-2.105748	4.068509	-0.660269
W	0.861370	0.110592	2.294463	Н	-0.649250	4.324327	-1.635555
С	1.275001	0.064448	4.274618	С	-0.677113	1.517080	-3.461260
0	1.501304	0.039569	5.406281	Н	-1.210488	1.971080	-4.298856
С	0.177088	2.049987	2.407596	Н	0.365791	1.838788	-3.486840
0	-0.217220	3.125886	2.441755	Н	-0.697108	0.433981	-3.588283
С	-1.054527	-0.561282	2.622226	С	-0.681592	-1.262818	-0.754994
0	-2.128499	-0.930968	2.790233	Н	-0.143883	-2.177874	-0.518623
С	1.511448	-1.828992	2.036173	Н	-0.846523	-1.222585	-1.830680
0	1.863863	-2.909429	1.881829	Н	-1.638846	-1.256163	-0.233260
С	2.766662	0.796728	1.882269	Ν	2.439859	1.228812	-1.700294
0	3.822614	1.180306	1.660109	С	1.774026	0.161179	-1.395965
0	-0.677880	1.425779	-0.550275	0	2.003323	-1.018364	-1.775076
Si	-1.461502	2.027564	-1.863381	С	2.137811	2.516895	-1.115885
CI	-3.393048	1.199798	-1.822439	Н	1.577134	3.156531	-1.810947
С	-1.634622	3.853399	-1.620781	Н	1.569076	2.487254	-0.180495
Н	-2.241958	4.292353	-2.414323	Н	3.073018	3.041851	-0.901755

E = -2124.94128271413 au

4a.Cl⁻

4a

Ρ

-0.050074

			$G_{corr} = 0.1$	5620252 a	u		
Ρ	-0.043618	0.396899	0.406709	Н	-0.654234	-1.112905	-3.077613
W	2.369848	0.130263	-0.210268	Н	-2.338059	-1.566740	-3.387783
С	4.318805	-0.109449	-0.733866	С	-3.900875	0.445573	-1.206799
0	5.423362	-0.247227	-1.025597	Н	-4.071202	1.281412	-1.886473
С	1.990456	1.247871	-1.914939	Н	-4.597209	-0.360853	-1.452727
0	1.766585	1.860263	-2.852591	Н	-4.089560	0.763097	-0.179177
С	2.830793	1.849786	0.831694	С	-0.492795	1.379691	1.863478
0	3.080499	2.801007	1.420134	Н	-0.009023	0.938644	2.736122
С	2.662018	-0.980501	1.500926	Н	-1.573588	1.390211	2.004102
0	2.837865	-1.595956	2.451058	Н	-0.127478	2.398121	1.732317
С	1.840390	-1.590770	-1.212912	Ν	-1.861455	-1.437533	-0.199435
0	1.530312	-2.549989	-1.758571	С	-0.914994	-1.225059	0.736396
0	-1.031622	0.931428	-0.762883	0	-0.606430	-1.974301	1.656304
Si	-2.158924	-0.136147	-1.399350	С	-2.615922	-2.688725	-0.154029
CI	-2.490734	2.695018	-3.578017	Н	-1.934701	-3.535868	-0.071441
С	-1.683284	-0.749085	-3.075370	Н	-3.292380	-2.704302	0.702430
Н	-1.780228	0.074387	-3.784160	Н	-3.201341	-2.792038	-1.065893

	$G_{corr} = 0.1$	_{orr} = 0.15659634 au			
0.391514	0.451359	Н	-2.248906		
0.121003	-0.220251	С	-3.879339		
-0.113713	-0.796637	Н	-4.006602		
-0 244043	-1 121953	н	-4 584118		

-1.495698

-3.423408

W	2.340677	0.121003	-0.220251	С	-3.879339	0.469945	-1.275666
С	4.280637	-0.113713	-0.796637	Н	-4.006602	1.322136	-1.947094
0	5.374429	-0.244043	-1.121953	Н	-4.584118	-0.306088	-1.584857
С	1.906401	1.186963	-1.934663	Н	-4.132418	0.782244	-0.261090
0	1.636720	1.771995	-2.880711	С	-0.489527	1.358288	1.919339
С	2.813228	1.870980	0.769208	Н	-0.001180	0.903804	2.782641
0	3.063976	2.838796	1.327352	Н	-1.569017	1.370004	2.069018
С	2.691649	-0.954847	1.509300	Н	-0.119677	2.376495	1.799744
0	2.893567	-1.553662	2.462782	N	-1.871501	-1.455282	-0.176342
С	1.796566	-1.632132	-1.155020	С	-0.924103	-1.235323	0.766999
0	1.468639	-2.607832	-1.659154	0	-0.616282	-1.989070	1.677995
0	-1.063193	0.937967	-0.707009	С	-2.607469	-2.720470	-0.142302
Si	-2.145685	-0.162125	-1.359077	Н	-1.911357	-3.558813	-0.117621
С	-1.617115	-0.685144	-3.052162	Н	-3.245206	-2.771848	0.740997
Н	-1.699296	0.150091	-3.751270	Н	-3.229399	-2.802127	-1.031974
Н	-0.583017	-1.032800	-3.048680				

TS(3a +H₃SiN₃→ 7a)		E = -2375	E = -2375.5397046262 au (COSMO _{THF} /B3LYP-D3-def2-TZVPecp)					
			$G_{corr} = 0.1$	3513757 a	u			
			v = -233.4	I4 cm ⁻¹				
Р	0.380747	0.388138	-0.605810	Н	-2.432961	3.946138	-0.317761	
W	0.509109	0.390035	2.013637	Н	-2.010012	4.227369	-2.016270	
С	0.610078	0.357824	4.017367	С	-2.590806	1.195001	-3.266983	
0	0.643761	0.331220	5.176930	Н	-3.624240	1.405564	-3.550539	
С	-0.914026	1.870627	2.032918	Н	-1.927636	1.682537	-3.985970	
0	-1.694699	2.713545	2.019910	Н	-2.430263	0.117591	-3.324197	
С	-0.961507	-1.045521	1.993265	С	-0.473824	-1.135987	-1.199053	
0	-1.786025	-1.845905	1.961974	Н	0.129042	-1.987123	-0.878965	
С	1.963144	-1.053847	1.824475	Н	-0.521508	-1.142583	-2.290288	
0	2.785348	-1.850663	1.714435	Н	-1.478597	-1.245823	-0.792565	
С	1.953587	1.852504	1.901667	Ν	3.498996	1.526767	-1.050507	
0	2.750088	2.679387	1.855460	Ν	3.301496	0.321046	-1.352666	
0	-0.690534	1.579776	-1.124802	Ν	2.500821	-0.498940	-1.523871	
Si	-2.238480	1.830185	-1.556522	Si	5.098799	2.107937	-0.687190	
CI	-3.500610	0.746253	-0.259327	Н	5.649039	1.513830	0.558118	
С	-2.630948	3.631072	-1.342937	Н	6.067599	1.840595	-1.784038	
н	-3.679747	3.828935	-1.572934	н	4.951118	3.566796	-0.508553	

E = -2375.57521406692 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

E = -2375.57048032988 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

			$G_{corr} = 0.1$	4030522 at	1		
Ρ	0.819457	0.042282	-0.354958	Н	-1.480198	4.127336	-0.139141
W	0.761962	0.107328	2.233594	Н	-0.732203	4.343537	-1.729128
С	0.712691	0.190216	4.241508	С	-1.703105	1.533804	-3.214789
0	0.680414	0.240231	5.398488	Н	-2.608349	1.974816	-3.637543
С	-0.042029	1.999421	2.145653	Н	-0.844991	1.884113	-3.794224
0	-0.494543	3.053898	2.129722	Н	-1.767503	0.450251	-3.319068
С	-1.114797	-0.721938	2.101619	С	-0.221895	-1.157178	-1.264693
0	-2.150903	-1.205769	1.996673	Н	0.000998	-2.157513	-0.897417
С	1.555734	-1.794192	2.346540	Н	0.012467	-1.112132	-2.329782
0	1.981383	-2.853757	2.461445	Н	-1.278341	-0.939212	-1.116826
С	2.652947	0.904640	2.089934	Ν	2.107726	0.798738	-1.272357
0	3.703043	1.346687	1.946614	Ν	3.032706	-0.251881	-1.088506
0	-0.161071	1.453830	-0.751305	Ν	2.382019	-1.133812	-0.508796
Si	-1.496543	2.033511	-1.432668	Si	2.442121	2.466595	-1.649500
CI	-3.170470	1.229372	-0.412102	Н	3.850171	2.515086	-2.107224
С	-1.563782	3.874913	-1.196788	Н	1.562885	2.957468	-2.735441
Н	-2.498029	4.286393	-1.583864	Н	2.276376	3.357201	-0.477263

TS(7a→8a^t+N₂)

7a

$G_{corr} = 0.13849365 \ au$ v = -478.21 cm⁻¹ Ρ 0.779246 0.122522 -0.368833 0 -2.161105 2.024059 -1.139241 W 0.774556 0.128655 2.218239 С 1.529712 -1.790051 2.316470 С 0.742247 4.227549 0 1.930051 2.420538 0.206810 -2.859795 0 0.259441 С 0.717506 5.384213 2.682608 0.893026 2.079134 С 2.030587 2.151347 0 3.741807 1.949835 -0.005300 1.314807 0 -0.449901 3.088709 2.144980 0 -0.204721 1.471536 -0.730173 С -1.115570 -0.671941 2.109812 Si -1.537537 -1.446227 2.036372

CI	-3.206441	1,186419	-0.468681	н	0.043223	-2.126404	-0.866617
C	-1.623609	3.869697	-1.179519	Н	0.052981	-1.115606	-2.326325
Н	-2.553544	4.279503	-1.578184	н	-1.259744	-0.947444	-1.133914
Н	-1.563703	4.103660	-0.115986	Ν	2.055576	0.780721	-1.312426
н	-0.785228	4.353556	-1.686532	Ν	3.102490	-0.414069	-1.057692
С	-1.673783	1.544167	-3.233584	Ν	2.465360	-1.240252	-0.481784
Н	-2.570872	1.975188	-3.682995	Si	2.396862	2.442633	-1.633377
Н	-0.801711	1.910364	-3.780910	Н	3.802314	2.478994	-2.109267
Н	-1.719568	0.460505	-3.345193	Н	1.536889	3.023526	-2.698655
С	-0.195236	-1.142860	-1.264286	н	2.280496	3.330544	-0.446606

8a^t

Ρ

W

С

0

С

0

С

0

С

0

С

0

0

Si

CI

С

 $G_{corr} = 0.13285871$ au -0.016071 -0.007256 0.124995 н -1.139949 4.784874 2.322280 2.570084 -0.040512 0.064559 н 0.222659 4.373601 1.264185 4.585141 -0.094369 -0.020072 Н -1.423786 4.426006 0.609286 5.741463 -0.124732 -0.064440 С -2.789305 1.918567 2.359605 2.592613 1.880641 0.790558 Н -3.133387 2.550061 3.181440 2.595607 2.958048 1.187531 Н -3.456324 2.064194 1.506307 2.586152 -0.753918 1.988307 Н -2.855456 0.876312 2.674074 2.592754 -1.146924 3.068472 С -0.689203 -1.047316 1.476985 2.408008 -1.968929 -0.638437 Н -0.378933 -2.076806 1.291120 2.306146 -3.052761 -1.005940 Н -1.779652 -0.999929 1.461407 2.446986 0.749912 -1.836607 Н -0.313940 2.452118 -0.737004 Ν -0.855803 -0.322229 -1.176925Si -0.642958 -1.208172 -2.572995

2.379630	1.227202	-2.877816	N
-0.531131	1.490233	0.608064	Si
-1.052941	2.364131	1.876571	н
0.155591	1.928174	3.548210	н
-0.824296	4.161012	1.483844	Н

TS(8a^t→9a⁰)

E = -2266.14736241221 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

-0.643975

-1.293855

-2.636288

-3.693484

-3.091933

-2.460727

-1.454824

0.756908

-1.086013

E = -2266.15736803255 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

			$G_{corr} = 0.1$	3348181 at	u		
P	0 078614	0 380535	0 612222	H	-0 644907	4 350176	2 969776
w	2 577741	0.261965	0.084208	н	0.758184	3 530297	2 274673
c	4.557183	0.207017	-0.335714	н	-0.531007	4.101110	1.211052
0	5.687254	0.172426	-0.574772	C	-3.004079	1.924067	2.071783
С	2.531340	2.308769	-0.160501	Н	-3.552734	2.439962	2.861408
0	2.505318	3.449836	-0.269785	Н	-3.251761	2.361929	1.105698
С	2.913962	0.558356	2.096463	Н	-3.323824	0.879324	2.062563
0	3.073222	0.732585	3.217942	С	-0.805929	-1.191765	0.324864
С	2.542601	-1.768324	0.400039	Н	-0.721474	-1.456514	-0.730875
0	2.517305	-2.901500	0.589805	Н	-1.858441	-1.067358	0.585057
С	2.056717	-0.023069	-1.884408	Н	-0.367780	-1.991209	0.923991
0	1.742075	-0.192334	-2.976814	Ν	-0.815850	1.595983	0.059223
0	-0.226933	0.624035	2.207457	Si	-1.000512	2.413282	-1.394573
Si	-1.164996	2.012061	2.377150	Н	-1.959507	1.764861	-2.342167
CI	-1.181076	1.889998	4.576957	Н	-1.546889	3.775026	-1.134250
С	-0.322254	3.663322	2.185799	Н	0.257913	2.591994	-2.176713

E = -2266.16928483815 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

			$G_{corr} = 0.1$	3470769 a	u		
Ρ	0.584223	0.244643	1.118478	Н	-2.923890	3.110344	2.485388
W	2.595410	-0.159184	-0.375095	Н	-2.523706	1.484963	3.040186
С	4.221000	-0.404095	-1.563088	Н	-1.381302	2.805893	3.328249
0	5.152035	-0.539752	-2.230922	С	-0.781876	3.443969	-0.115158
С	2.996579	1.853677	-0.147972	Н	-1.601419	4.151016	-0.238832
0	3.202426	2.972358	-0.016297	Н	0.091799	3.958985	0.289377
С	3.707263	-0.580118	1.301879	Н	-0.521301	3.058734	-1.104166
0	4.319305	-0.815384	2.244908	С	0.439439	-0.892832	2.535205
С	2.105344	-2.150530	-0.539498	Н	0.323096	-1.914446	2.168270
0	1.838967	-3.264235	-0.622927	Н	-0.426115	-0.619460	3.140276
С	1.382780	0.296857	-1.980366	Н	1.345642	-0.841883	3.140760
0	0.690132	0.565491	-2.852584	Ν	-0.962475	0.342222	0.441281
0	0.423860	1.714695	1.709203	Si	-1.834992	-0.820222	-0.487399
Si	-1.255470	2.013388	0.994879	Н	-2.138330	-0.390253	-1.868196
CI	-3.443362	1.856428	-0.101828	Н	-0.928562	-1.998194	-0.584127
С	-2.106326	2.402670	2.617904	н	-3.074409	-1.287752	0.172756

8a^g

Р

W

С

0

С

0

С

0

С

0

С

0

0

Si

CI

С

9a^o

E = -2266.1596493885 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp) $G_{corr} = 0.13322733$ au 0.381813 0.050534 0.360695 -1.279798 4.301989 3.733056 н 0.208840 -0.146414 2.575391 н 0.368624 3.653386 3.641148 4.558633 0.154952 -0.521005 н -0.360839 4.418382 2.220444 -0.726296 С 0.132447 1.653007 5.697787 -2.863295 2.268917 -0.335707 н 2.501339 2.259189 -3.607994 2.315846 2.715423 3.403122 -0.409311 н 0.760810 2.438380 -2.763112 2.889181 2.866509 Н 0.432076 1.876117 -3.210472 1.284760 1.339231 С 3.004023 0.549679 3.010001 -0.642963 -1.140026 1.095253 Н 2.498259 -1.825809 0.110890 -0.592414 -1.942395 0.358540 Н 2.442295 -2.964445 0.264371 -1.685862 -0.974547 1.372095 2.108695 -0.062629 -2.134092 н -0.070572 -1.426568 1.978001 -0.245186 Ν 1.834679 -3.233911 -0.986173 0.838231 -0.747207 Si -0.057851 1.396658 1.674999 -0.968213 2.103877 -1.842842 Н -1.228779 2.152371 2.521305 -1.975699 1.874833 -2.919961

TS(8a^g→9a^N)

-1.570552

-0.563536

0.989911

3.787556

E = -2266.15771809032 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

-1.327706 0.330156 3.433338

2.347520

-1.248608

-2.545242

 $G_{corr} = 0.13321991$ au

Н

н

4.252601

3.089745

	$v = -109.92 \text{ cm}^{-1}$									
Р	0.078614	0.380535	0.612222	Н	-0.644907	4.350176	2.969776			
W	2.577741	0.261965	0.084208	н	0.758184	3.530297	2.274673			
С	4.557183	0.207017	-0.335714	н	-0.531007	4.101110	1.211052			
0	5.687254	0.172426	-0.574772	С	-3.004079	1.924067	2.071783			
С	2.531340	2.308769	-0.160501	н	-3.552734	2.439962	2.861408			
0	2.505318	3.449836	-0.269785	н	-3.251761	2.361929	1.105698			
С	2.913962	0.558356	2.096463	н	-3.323824	0.879324	2.062563			
0	3.073222	0.732585	3.217942	С	-0.805929	-1.191765	0.324864			
С	2.542601	-1.768324	0.400039	н	-0.721474	-1.456514	-0.730875			
0	2.517305	-2.901500	0.589805	н	-1.858441	-1.067358	0.585057			
С	2.056717	-0.023069	-1.884408	н	-0.367780	-1.991209	0.923991			
0	1.742075	-0.192334	-2.976814	N	-0.815850	1.595983	0.059223			
0	-0.226933	0.624035	2.207457	Si	-1.000512	2.413282	-1.394573			
Si	-1.164996	2.012061	2.377150	н	-1.959507	1.764861	-2.342167			
CI	-1.181076	1.889998	4.576957	н	-1.546889	3.775026	-1.134250			
С	-0.322254	3.663322	2.185799	Н	0.257913	2.591994	-2.176713			

9a ^N			E = -2266.16149333733 au (COSMO _{THF} /B3LYP-D3-def2-TZVPecp)				
P	0 155515	0 3/0769	0 687997	н Н	-0 77/779	1 3/1133	2 075/36
1	2 612061	0.231602	0.001931	н Ц	0.728007	3 577868	2.575450
C C	4 590101	0.231002	0.091021		0.720037	1 000510	2.40004
C	4.569101	0.165136	-0.300304		-0.375572	4.232310	1.241002
0	5.712309	0.157286	-0.629352	С	-3.017148	1.965851	1.947908
С	2.545877	2.277517	-0.164961	Н	-3.518459	2.492949	2.758155
0	2.496655	3.415070	-0.291402	Н	-3.332984	2.383267	0.988901
С	3.005304	0.530953	2.097993	Н	-3.337426	0.920584	1.975069
0	3.199664	0.705524	3.212219	С	-0.800582	-1.154191	0.274453
С	2.586244	-1.801154	0.402818	н	-0.743809	-1.329570	-0.801765
0	2.560596	-2.934644	0.584538	Н	-1.842266	-1.020798	0.569274
С	2.074887	-0.052929	-1.872447	н	-0.376878	-2.017591	0.789569
0	1.755252	-0.217824	-2.963679	N	-0.735300	1.659553	0.248965
0	-0.194541	0.605827	2.253615	Si	-1.080495	2.375037	-1.256016
Si	-1.149985	2.039961	2.102217	н	-2.071934	1.604062	-2.058797
CI	-1.302265	1.929986	4.496110	н	-1.651419	3.723959	-1.021249
С	-0.326510	3.718005	2.202684	Н	0.129368	2.511126	-2.108740

TS(**9a^N→9a⁰**)

E = -2266.15685584363 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

			$G_{corr} = 0.1$	3282652 a	u		
			v = -8.48	cm⁻¹			
Р	0.161080	0.373746	0.530095	0	1.936300	-0.870810	-2.862766
W	2.619191	0.249309	0.059634	0	-0.284823	0.628389	2.084256
С	4.621515	0.139855	-0.297252	Si	-1.175627	2.051596	1.770295
0	5.751975	0.073855	-0.500666	CI	-1.655125	1.837372	5.335384
С	2.546378	2.178944	-0.654676	С	-0.375287	3.562697	2.463997
0	2.479552	3.256484	-1.038830	Н	-0.411706	3.495508	3.551316
С	2.927355	1.006920	1.963261	Н	0.661715	3.634857	2.131195
0	3.076018	1.433983	3.012785	Н	-0.908029	4.463073	2.148201
С	2.595823	-1.666771	0.819201	С	-2.997985	1.906284	2.036192
0	2.567570	-2.728624	1.249631	Н	-3.194812	1.813446	3.106768
С	2.194615	-0.469892	-1.818763	Н	-3.495977	2.803529	1.657451

н	-3.403040	1.039554	1.510448	Ν	-0.714480	1.752738	0.072630
С	-0.821047	-1.062498	0.012262	Si	-0.981561	2.480614	-1.463696
Н	-0.746524	-1.168994	-1.071903	Н	-2.359102	2.231876	-1.957469
Н	-1.865025	-0.932236	0.298013	Н	-0.785549	3.945882	-1.372158
Н	-0.418545	-1.963824	0.476919	Н	-0.025365	1.899982	-2.434194

10a

E = -1805.83281367963 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

					,		• /
			$G_{corr} = 0.1$	3431119 a	u		
Р	0.053435	0.067087	0.031985	Н	-3.647316	0.874423	0.234575
W	2.545630	-0.041649	-0.010196	Н	-3.660391	2.384064	1.168279
С	4.586162	-0.086450	-0.056121	С	-0.830106	3.748691	0.217648
0	5.733947	-0.106489	-0.083359	Н	-1.194915	4.327833	-0.634896
С	2.558005	0.794696	1.882082	Н	-1.176511	4.241823	1.128902
0	2.543876	1.261007	2.926143	Н	0.260186	3.765565	0.202343
С	2.482512	-1.925988	0.825690	С	-0.847777	-1.504834	0.074201
0	2.437019	-2.972492	1.289314	Н	-0.576651	-2.090367	-0.806318
С	2.448714	-0.886993	-1.886163	Н	-0.553760	-2.062384	0.964447
0	2.383381	-1.367531	-2.925027	Н	-1.923385	-1.328754	0.083142
С	2.537019	1.848897	-0.831814	Ν	-0.736867	1.031291	-1.135079
0	2.514627	2.902336	-1.280907	Si	-0.653622	1.042772	-2.861116
0	-0.665848	0.967224	1.208559	Н	-1.628068	2.051791	-3.330490
Si	-1.466877	2.015786	0.127684	Н	0.702489	1.395637	-3.338705
С	-3.308740	1.911363	0.247966	Н	-0.999015	-0.292738	-3.401851
н	-3.767846	2.436292	-0.593889				

10b

10b			E = -2093	8.17149927	917 au		
			$G_{corr} = 0.1$	462388 au			
Р	0.856839	0.373031	1.285194	0	0.707103	1.935024	1.781197
W	2.637614	-0.135025	-0.395821	Si	-0.849091	2.156551	1.115132
С	4.073256	-0.518417	-1.794038	С	-2.146651	2.663654	2.328502
0	4.882497	-0.729421	-2.581278	Н	-3.125672	2.633145	1.842285
С	3.336747	1.794221	-0.127904	Н	-2.176914	2.018722	3.204932
0	3.698330	2.867027	0.033764	Н	-1.969469	3.691738	2.654135
С	3.892471	-0.810110	1.095128	С	-0.807828	3.276601	-0.355774
0	4.588021	-1.193328	1.920762	Н	-1.749414	3.210777	-0.907018
С	1.858332	-2.032661	-0.573923	Н	-0.676367	4.314614	-0.041039
0	1.411103	-3.085886	-0.648851	Н	0.003806	3.013327	-1.033554
С	1.358434	0.536084	-1.864930	С	0.878788	-0.627123	2.798593
0	0.640808	0.913298	-2.674074	н	0.846106	-1.671211	2.469454

н	1.865471	-0.484431	3.249911	Н	-1.843989	-1.959342	0.843947
Ν	-0.759615	0.438209	0.738153	Si	-0.445269	-0.355827	4.112904
Si	-1.756822	-0.756343	-0.016105	Н	-0.206300	-1.311183	5.218955
Н	-3.094949	-0.152379	-0.191912	Н	-0.373390	1.023847	4.640607
Н	-1.211968	-1.168525	-1.329368	н	-1.794421	-0.591154	3.553785

TS(**10b**→**11b**)

0.803136

2.587421

Ρ

W

11b

	E = -2093	.108784839)68 au	
	$G_{corr} = 0.1$	4672107 au	J	
	v = -326.0)1 cm ⁻¹		
-0.341662	0.869961	Н	-3.038715	2.407957
-0.910825	-0.672003	С	-0.269088	2.884646
-1.271532	-1.913669	Н	-0.783169	2.694944
-1.465346	-2.591957	Н	-0.473297	3.908141
0.885533	-0.119544	Н	0.805485	2.803241
1.886149	0.189545	С	0.878418	0.208310
-1.871030	0.887513	Н	0.113305	-0.175850
-2.395448	1.757929	Н	1.820350	0.454803
-2.703112	-1.251575	Ν	-0.717100	0.105046
-3.684090	-1.574767	Si	-1.819759	-0.479909
0.069816	-2 166942	н	-1 095387	-1 376804

2.515674

0.388313

4 4 9 9 9 7 9	4 074500	4 9 4 9 9 9 9		0 700400	0 00 10 11	0 55 4505
4.186379	-1.271532	-1.913669	н	-0.783169	2.694944	-0.554505
5.085918	-1.465346	-2.591957	н	-0.473297	3.908141	0.706519
3.453255	0.885533	-0.119544	Н	0.805485	2.803241	0.207318
3.909346	1.886149	0.189545	С	0.878418	0.208310	2.464931
3.550231	-1.871030	0.887513	Н	0.113305	-0.175850	3.136217
4.071915	-2.395448	1.757929	Н	1.820350	0.454803	2.938398
1.706037	-2.703112	-1.251575	Ν	-0.717100	0.105046	0.549146
1.221593	-3.684090	-1.574767	Si	-1.819759	-0.479909	-0.663473
1.553393	0.069816	-2.166942	Н	-1.095387	-1.376804	-1.590528
0.960283	0.626932	-2.969391	Н	-2.932554	-1.222459	-0.031694
-0.371547	2.575100	3.100299	Н	-2.370552	0.676526	-1.403644
-0.803093	1.686565	1.722901	Si	-0.240042	2.482029	4.721278
-2.638213	1.497884	2.065954	Н	1.181184	2.336380	5.121982
-3.208630	1.274488	1.162088	Н	-0.782708	3.719942	5.328237
-2.804462	0.675926	2.768144	Н	-0.991737	1.315215	5.253100
	4.186379 5.085918 3.453255 3.909346 3.550231 4.071915 1.706037 1.221593 1.553393 0.960283 -0.371547 -0.803093 -2.638213 -3.208630 -2.804462	4.186379-1.2715325.085918-1.4653463.4532550.8855333.9093461.8861493.550231-1.8710304.071915-2.3954481.706037-2.7031121.221593-3.6840901.5533930.0698160.9602830.626932-0.3715472.575100-0.8030931.686565-2.6382131.497884-3.2086301.274488-2.8044620.675926	4.186379-1.271532-1.9136695.085918-1.465346-2.5919573.4532550.885533-0.1195443.9093461.8861490.1895453.550231-1.8710300.8875134.071915-2.3954481.7579291.706037-2.703112-1.2515751.221593-3.684090-1.5747671.5533930.069816-2.1669420.9602830.626932-2.969391-0.3715472.5751003.100299-0.8030931.6865651.722901-2.6382131.4978842.065954-3.2086301.2744881.162088-2.8044620.6759262.768144	4.186379-1.271532-1.913669H5.085918-1.465346-2.591957H3.4532550.885533-0.119544H3.9093461.8861490.189545C3.550231-1.8710300.887513H4.071915-2.3954481.757929H1.706037-2.703112-1.251575N1.221593-3.684090-1.574767Si1.5533930.069816-2.166942H0.9602830.626932-2.969391H-0.3715472.5751003.100299H-0.8030931.6865651.722901Si-2.6382131.4978842.065954H-3.2086301.2744881.162088H-2.8044620.6759262.768144H	4.186379-1.271532-1.913669H-0.7831695.085918-1.465346-2.591957H-0.4732973.4532550.885533-0.119544H0.8054853.9093461.8861490.189545C0.8784183.550231-1.8710300.887513H0.1133054.071915-2.3954481.757929H1.8203501.706037-2.703112-1.251575N-0.7171001.221593-3.684090-1.574767Si-1.8197591.5533930.069816-2.166942H-1.0953870.9602830.626932-2.969391H-2.9370552-0.8030931.6865651.722901Si-0.240042-2.6382131.4978842.065954H1.181184-3.2086301.2744881.162088H-0.782708-2.8044620.6759262.768144H-0.991737	4.186379-1.271532-1.913669H-0.7831692.6949445.085918-1.465346-2.591957H-0.4732973.9081413.4532550.885533-0.119544H0.8054852.8032413.9093461.8861490.189545C0.8784180.2083103.550231-1.8710300.887513H0.113305-0.1758504.071915-2.3954481.757929H1.8203500.4548031.706037-2.703112-1.251575N-0.7171000.1050461.221593-3.684090-1.574767Si-1.819759-0.4799091.5533930.069816-2.166942H-1.095387-1.3768040.9602830.626932-2.969391H-2.3705520.676526-0.8030931.6865651.722901Si-0.2400422.482029-2.6382131.4978842.065954H1.1811842.336380-3.2086301.2744881.162088H-0.7827083.719942-2.8044620.6759262.768144H-0.9917371.315215

E = -2093.15162908909 au G_{corr} = 0.14784220 au

			- 0011				
Ρ	0.132314	-0.424288	0.442200	Н	-3.185543	2.644724	2.324394
W	2.368880	-0.701190	-0.511845	С	-0.212050	2.996437	0.961037
С	4.258398	-0.950270	-1.278344	Н	-0.439044	2.615445	-0.037684
0	5.311609	-1.086629	-1.703514	Н	-0.689015	3.974630	1.058368
С	2.942790	1.116489	0.278333	Н	0.866613	3.140724	1.037449
0	3.270092	2.116545	0.727242	С	-0.047013	0.129430	2.140046
С	2.942954	-1.598212	1.257892	Н	-0.694429	-0.571239	2.674425
0	3.250512	-2.072904	2.251716	Н	0.937558	0.129790	2.610042
С	1.786113	-2.533941	-1.293114	Ν	-1.280103	-0.594674	-0.165643
0	1.456077	-3.541816	-1.715206	Si	-1.863826	-1.048112	-1.717447
С	1.755789	0.233350	-2.256370	Н	-2.626768	0.090235	-2.281958
0	1.414134	0.759147	-3.210888	Н	-0.788401	-1.415270	-2.674303
0	-0.400883	2.445676	3.763710	Н	-2.771694	-2.208578	-1.564088
Si	-0.848078	1.855477	2.289646	Si	0.829355	2.459941	4.848349
С	-2.694293	1.673278	2.234929	Н	2.103333	2.100037	4.178086
Н	-2.989294	1.218012	1.287230	Н	0.937743	3.815850	5.427811
Н	-3.045596	1.031330	3.045691	Н	0.559366	1.478083	5.923562

E = -2093.15372257683 au

11b^{conf}

			$G_{corr} = 0.1$	4456259 au	J		
Ρ	-0.033412	0.150381	0.034797	Н	-1.715574	5.141340	1.115107
W	2.409073	0.046440	-0.114641	С	-3.196811	2.476464	-0.197593
С	4.459299	0.001970	-0.178567	Н	-3.872341	2.300068	0.642799
0	5.603326	-0.017148	-0.206805	Н	-3.573727	3.331659	-0.763730
С	2.465788	2.078494	0.259306	Н	-3.216798	1.594458	-0.841381
0	2.497867	3.198334	0.485707	С	-0.794923	1.225232	1.254753
С	2.467432	-0.309616	1.920800	Н	-1.632309	0.709206	1.729358
0	2.497582	-0.503781	3.047173	Н	-0.054668	1.492458	2.009745
С	2.312510	-1.989850	-0.480165	Ν	-1.155750	-0.506650	-0.804413
0	2.250551	-3.112588	-0.681246	Si	-1.133394	-1.530855	-2.185120
С	2.353264	0.377753	-2.158392	Н	-1.961542	-0.909653	-3.244804
0	2.333316	0.553483	-3.286814	Н	0.228662	-1.762939	-2.730957
0	-0.471367	3.077647	-0.884561	Н	-1.722384	-2.840967	-1.819952
Si	-1.465474	2.794875	0.402557	Si	-0.313385	3.109929	-2.514094
С	-1.336290	4.228045	1.579599	Н	-1.274735	4.068837	-3.105980
Н	-1.917890	4.038935	2.485059	Н	1.070808	3.524676	-2.826135
Н	-0.296667	4.396740	1.869035	Н	-0.561055	1.762949	-3.076304

TS(11b^{conf}→5b)

$E = -2093.09613232758 \text{ au} \\ G_{corr} = 0.14672819 \text{ au} \\ v = -247.83 \text{ cm}^{-1}$

			v = -2 + 1.0	00011			
Р	-0.011646	-0.028196	-0.002136	н	-3.754488	-1.670585	-1.965280
W	2.477944	-0.000204	0.002768	С	-3.820533	0.154248	0.642387
С	4.513973	0.105986	0.032084	Н	-4.737848	0.486009	0.148981
0	5.660267	0.166112	0.045827	Н	-4.024710	-0.810112	1.114810
С	2.508327	-0.735336	-1.922224	Н	-3.533556	0.858114	1.421380
0	2.515856	-1.130656	-2.996978	С	-1.070923	1.188538	-0.864561
С	2.365850	1.912907	-0.763426	Н	-1.138465	2.115104	-0.299319
0	2.285645	2.969749	-1.195533	Н	-0.803044	1.369515	-1.904491
С	2.360669	0.761077	1.920210	Ν	-0.996771	-0.262769	1.232550
0	2.273498	1.190539	2.976966	Si	-0.910942	-1.095128	2.714468
С	2.558988	-1.916822	0.765000	Н	-1.773474	-2.306776	2.691294
0	2.617798	-2.980192	1.185393	Н	0.472779	-1.528608	3.042655
0	-0.791249	-1.245892	-1.030633	Н	-1.397119	-0.240018	3.827881
Si	-2.458221	-0.050751	-0.611569	Si	-0.507522	-2.905623	-1.060060
С	-3.285458	-0.701442	-2.152998	Н	-1.662939	-3.493778	-1.759965
Н	-4.083335	-0.004307	-2.426853	Н	0.751307	-3.147300	-1.785002
н	-2.595996	-0.802189	-2.990057	н	-0.412554	-3.403330	0.326190

		1	
Y	\prec		
0	J		

5b

E = -2093.17465640066 au

			$G_{corr} = 0.1$	4785031 a	u		
Ρ	-0.002165	0.225258	-0.102278	Н	-3.877559	1.292332	-2.617793
W	2.481069	-0.023168	0.143591	С	-0.925924	0.580385	-3.864286
С	4.491116	-0.240934	0.374687	Н	-1.228014	-0.301014	-4.435739
0	5.624902	-0.370471	0.511526	Н	-1.305445	1.463247	-4.384388
С	2.735294	1.882213	-0.598300	Н	0.164821	0.624902	-3.857016
0	2.854586	2.940532	-1.021572	С	-0.775035	1.684747	-0.907930
С	2.283341	0.751811	2.049782	Ν	-0.832067	-0.790427	-1.180570
0	2.154945	1.190506	3.098769	Si	-0.777111	-2.518597	-1.338941
С	2.166080	-1.924711	0.883319	Н	-1.784325	-2.879627	-2.360705
0	1.987556	-2.977356	1.298666	Н	0.559442	-2.984979	-1.768084
С	2.578090	-0.744687	-1.781513	Н	-1.104347	-3.164770	-0.048525
0	2.615372	-1.123329	-2.862511	Si	-2.301557	-0.170018	1.849317
0	-0.735778	0.060161	1.330020	Н	-2.236191	-0.197942	3.321240
Si	-1.596655	0.499197	-2.132037	Н	-3.148236	0.948875	1.380537
С	-3.454922	0.423107	-2.107637	Н	-2.824600	-1.443515	1.315397
Н	-3.806140	-0.473413	-2.624812	Н	-1.440245	2.221133	-0.232495
Н	-3.840459	0.402643	-1.087121	Н	-0.044448	2.381051	-1.313506

TS(10b→12b)

E = -2093.11407014306 au
G _{corr} = 0.14567283 au
$v = -319.13 \text{ cm}^{-1}$

Ρ	-0.012743	-0.019946	0.037362	Н	-3.573932	-1.702215	-2.518035
W	2.464932	-0.035182	-0.003666	С	-0.604659	-3.119014	-2.152754
С	4.507169	-0.037646	-0.032910	Н	-0.883054	-4.085362	-1.725933
0	5.654234	-0.039747	-0.051721	Н	-0.881519	-3.122752	-3.209177
С	2.402140	-0.319798	-2.049049	Н	0.477916	-3.010029	-2.076123
0	2.342233	-0.489284	-3.178317	С	-0.962568	1.379253	0.299188
С	2.419728	2.010619	-0.290894	Н	-1.940724	1.228649	0.746368
0	2.382779	3.142250	-0.454325	Н	-0.441835	2.260968	0.654849
С	2.466667	0.244452	2.044691	Ν	-0.874240	-1.462865	0.356912
0	2.462234	0.400700	3.178159	Si	-0.967730	-2.323292	1.862154
С	2.422527	-2.078084	0.253576	Н	-1.301146	-3.726438	1.536361
0	2.366370	-3.214826	0.380719	Н	0.336380	-2.235382	2.552933
0	-0.742197	-0.237359	-1.665946	Н	-2.014073	-1.754782	2.741664
Si	-1.463513	-1.752992	-1.260125	Si	-1.419059	1.423556	-1.954484
С	-3.296700	-1.707498	-1.461767	Н	-2.711298	2.029840	-1.541001
Н	-3.739385	-2.595299	-1.003106	Н	-0.327788	2.378210	-2.230013
Н	-3.726120	-0.827258	-0.979875	н	-1.826422	0.952290	-3.327039

ALC .
T

E = -2093.16537941816 au

12b

			$G_{corr} = 0.1$	4720991 a	u		
Ρ	0.459595	-0.697076	1.029834	Н	-2.539162	3.335390	2.444086
W	2.584582	-0.402862	-0.215427	С	-0.515660	3.086831	-0.159741
С	4.294864	-0.256107	-1.308462	Н	-1.254608	2.957635	-0.953838
0	5.255853	-0.185058	-1.931925	Н	-0.540687	4.130255	0.162203
С	2.880580	1.527229	0.469020	Н	0.469848	2.882761	-0.579344
0	3.091662	2.589468	0.835232	С	0.056765	-1.891096	2.086207
С	3.605535	-1.098573	1.440792	Н	-0.915593	-1.959346	2.555554
0	4.147982	-1.480485	2.372286	Н	0.792047	-2.646520	2.332369
С	2.358591	-2.343936	-0.893476	Ν	-0.886305	0.268361	0.734510
0	2.238124	-3.418748	-1.263888	Si	-2.259310	-0.470877	-0.064500
С	1.456199	0.305935	-1.790307	Н	-3.021355	0.612380	-0.721957
0	0.803823	0.700897	-2.643338	Н	-1.748497	-1.432760	-1.064432
0	0.322802	2.072078	2.359449	Н	-3.140435	-1.179579	0.890860
Si	-0.889149	1.954920	1.260036	Si	0.880592	1.633386	3.840343
С	-2.529858	2.313977	2.055943	Н	2.144370	0.884821	3.671346
Н	-3.354915	2.219886	1.346637	Н	1.125322	2.855922	4.636233
Н	-2.714402	1.629741	2.887288	Н	-0.111604	0.778655	4.532156

12b^{conf}

E = -2093.1652141456 au $G_{corr} = 0.14747751$ au

			$O_{corr} = 0.1$	4141101 0	u		
Р	0.089420	0.181732	0.016405	С	-1.621440	1.066023	3.972423
W	2.556331	-0.190553	-0.024027	Н	-1.931581	0.121737	4.423355
С	4.584599	-0.308092	-0.050529	Н	-0.568289	1.230853	4.211561
0	5.731193	-0.359433	-0.062708	Н	-2.204876	1.863665	4.438743
С	2.520092	-2.116231	0.720780	С	-3.654000	0.751015	1.652498
0	2.568606	-3.187088	1.121400	Н	-3.952106	-0.248209	1.977852
С	2.390027	-0.959698	-1.937199	Н	-4.329743	1.474749	2.114119
0	2.274210	-1.386821	-2.991295	Н	-3.781030	0.806263	0.569396
С	2.711653	1.714535	-0.813018	С	-0.811286	0.924466	-1.140003
0	2.808948	2.761928	-1.260040	Н	-1.864247	1.146272	-1.040636
С	2.579611	0.555845	1.898317	Н	-0.316835	1.226240	-2.053802
0	2.557182	0.964288	2.966821	Ν	-0.806049	-0.097796	1.405260
0	-1.490240	2.574604	1.547830	Si	-0.608964	-1.657044	2.199872
Si	-1.897037	1.102721	2.132556	Н	-1.861542	-1.923580	2.935847

н	-0.396611	-2.690735	1.168656	Н	-0.515446	4.119854	-0.222573
н	0.528818	-1.647214	3.143734	Н	-0.445037	4.818852	2.093485
Si	-0.327179	3.666924	1.171281	Н	1.014385	3.061583	1.318755

TS(1	2b ^{conf} →5b)		E = -2093	.081669575	589 au		
			$G_{corr} = 0.1$	4757222 au	u		
			v = -232.3	85 cm ⁻¹			
Р	-0.004925	0.002368	0.002535	н	-2.025582	2.205676	-3.534074
W	-0.000229	-0.009888	2.434157	С	0.257407	0.221025	-3.960350
С	0.120598	-0.062108	4.484383	н	-0.440423	0.235855	-4.799471
0	0.190467	-0.092668	5.625130	н	1.041527	0.962315	-4.148903
С	-0.781955	-1.926127	2.496825	н	0.751198	-0.751862	-3.911985
0	-1.190116	-2.989927	2.571772	С	1.210864	0.165112	-1.236904
С	1.901218	-0.810304	2.289271	н	1.608790	-0.800075	-1.547862
0	2.949244	-1.254306	2.193860	н	1.983340	0.907965	-1.060325
С	0.846541	1.881030	2.461995	Ν	-1.121648	-0.611427	-1.036772
0	1.343373	2.908097	2.499179	Si	-2.701246	-1.284816	-0.739040
С	-1.912436	0.776292	2.547995	Н	-3.258327	-1.680488	-2.047795
0	-2.967570	1.206175	2.628695	н	-2.578634	-2.466308	0.138420
0	-0.473671	1.892914	-0.909951	Н	-3.601899	-0.301768	-0.093349
Si	-0.539123	0.631970	-2.289716	Si	-1.415661	3.162589	-0.402185
С	-2.197182	1.296585	-2.948460	Н	-2.759499	2.697230	0.006872
н	-2.629054	0.561213	-3.633012	н	-0.748532	3.784545	0.759626
н	-2.942158	1.524836	-2.183124	н	-1.540022	4.141408	-1.503205

Oxaphosphasilirane complex

Oxaj	phosphasilirane c	E = -2276 ZPE = 0.3	.98214126 36147866	538 au (COSMO _{TH}	_F /B3LYP-D3-def2-TZ	VPecp)	
			$G_{corr} = 0.2$	29386259 ai	u		
Р	-0.307508	0.080004	0.216011	н	-2.018993	-1.477016	0.380888
W	-0.050348	0.074156	2.732042	Si	-2.952088	-0.301999	-1.452558
С	0.209012	0.075712	4.743556	С	-3.771789	0.958654	-0.333459
0	0.357479	0.078884	5.884623	Н	-4.125586	0.498506	0.590973
С	0.309153	2.106457	2.633305	Н	-3.081325	1.762604	-0.074532
0	0.500512	3.232520	2.561685	Н	-4.634690	1.399684	-0.839672
С	-2.062617	0.460436	2.970371	С	-4.186406	-1.672092	-1.811830
0	-3.178938	0.664899	3.123807	Н	-5.095812	-1.233883	-2.231963
С	-0.467474	-1.938848	2.757081	Н	-3.805239	-2.398740	-2.531424
0	-0.717735	-3.058247	2.759921	Н	-4.462782	-2.207651	-0.901079
С	1.950555	-0.328811	2.438079	С	-2.480794	0.528869	-3.065019
0	3.057345	-0.555073	2.247644	Н	-1.860916	1.407784	-2.891158
0	-0.521161	1.619024	-0.524054	Н	-1.960796	-0.139905	-3.751134
Si	0.988863	1.153131	-1.141375	Н	-3.399579	0.858553	-3.558429
С	1.101906	0.908772	-2.972575	Si	-0.676028	-2.653014	-1.234099
н	2.010885	0.352721	-3.211863	С	-1.721776	-4.121059	-0.715291
н	0.244715	0.382434	-3.381110	Н	-2.730100	-4.069244	-1.127729
н	1.169486	1.887972	-3.455443	Н	-1.261268	-5.048469	-1.065526
С	2.433867	2.079896	-0.442398	Н	-1.801980	-4.175672	0.372642
н	3.370068	1.605522	-0.743638	С	-0.555447	-2.602202	-3.105256
н	2.430475	3.101556	-0.833129	Н	0.073954	-1.784569	-3.457166
н	2.399747	2.127316	0.644634	н	-0.104151	-3.535997	-3.451433
С	-1.496761	-1.089706	-0.502477	н	-1.533071	-2.509831	-3.580454

С	1.057748	-2.882585	-0.544981	н	1.062957	-2.937792	0.544568
Н	1.731778	-2.078908	-0.844899	Н	1.468158	-3.821547	-0.926135

Oxaphosphasilirane complex cyclic dimer

E = -4554.06858009 au (COSMO_{THF}/B3LYP-D3-def2-TZVPecp)

Р	5.162117	-4.219248	-0.470855	С	8.627610	-2.813358	-1.268714
С	6.278700	-4.619986	0.925394	Н	9.452343	-2.382389	-1.837221
н	7.283123	-4.619437	0.484114	Н	8.771109	-2.539850	-0.223220
Si	6.457155	-3.315580	2.328292	Н	8.702969	-3.895395	-1.347478
С	6.717534	-1.560475	1.719822	Р	6.706263	-3.022521	-4.014395
Н	7.634140	-1.440752	1.144830	С	5.361945	-2.103743	-4.841663
Н	5.882078	-1.195856	1.127623	Н	4.617139	-1.955738	-4.050846
Н	6.804343	-0.923165	2.604513	Si	5.744144	-0.288638	-5.374012
С	8.029194	-3.781511	3.250662	С	7.493213	0.281510	-4.987457
Н	8.236249	-3.018680	4.005883	Н	8.166487	0.014313	-5.801679
н	7.974214	-4.743696	3.758551	Н	7.483585	1.372630	-4.916979
н	8.881086	-3.810835	2.566516	Н	7.918547	-0.098588	-4.065766
С	5.009868	-3.204823	3.515064	С	4.468412	0.751841	-4.467430
H	4.130109	-2.773263	3.039949	H	4.654151	1.815295	-4.635814
н	4.722364	-4.147846	3.969815	Н	3.468018	0.522314	-4.841445
н	5.309639	-2.522863	4.316306	н	4.459657	0.577351	-3.390816
Si	6.170970	-6.417294	1.627751	С	5.564056	0.104281	-7.203737
C	7.909867	-7.118185	1.541500	H	6.323008	-0.385413	-7.810701
н	8.594812	-6.540045	2.164917	Н	4.586417	-0.115352	-7.626899
н	7.909284	-8.146743	1.911428	н	5.724256	1.183672	-7.291510
Н	8.307543	-7.126927	0.526816	Si	4.314356	-3.033154	-6.158694
С	5.611351	-6.557665	3.414919	C	2.757469	-2.009556	-6.424958
Ĥ	4.560359	-6.307382	3.547132	Ĥ	2.932884	-1.023705	-6.851054
н	5,734906	-7.610050	3.687764	Н	2.102217	-2.554251	-7.110438
н	6,199613	-5.967673	4,115481	н	2.219903	-1.881615	-5.484204
С	4,996436	-7.524986	0.668796	C	5,190797	-3.311926	-7,791907
Ĥ	3.995738	-7.101845	0.586163	Ĥ	6.038668	-3.988722	-7.689723
н	5 349045	-7 775824	-0.328652	н	4 474551	-3 788719	-8 467448
н	4 908760	-8 463513	1 222411	н	5 539196	-2 397952	-8 265978
w	2 642514	-3 899609	-0.086256	C	3 719952	-4 711474	-5 582563
c	0.685725	-3.442187	0.144092	н	4.530586	-5.429141	-5.482297
õ	-0 422790	-3 163157	0 274349	н	3 195680	-4 645318	-4 631278
c	2 037711	-5 733489	-0.805399	н	3 016172	-5 092775	-6 327998
õ	1 616844	-6 737709	-1 163084	W	8 821492	-3 652521	-5 341992
č	2 590664	-4 757727	1 785974	C C	10 404622	-4 262409	-6 442885
õ	2 468094	-5 266815	2 804781	Õ	11 293563	-4 617033	-7 081035
c	3 100749	-2 030492	0.655719	C C	7 710381	-5 295303	-5 917442
õ	3 304223	-0 974090	1 048123	0	7 089074	-6 219029	-6 185319
c	2 578077	-3 082544	-1 969465	C C	9 679937	-4 741331	-3 827307
õ	2 503299	-2 601366	-3 007364	0	10 283280	-5 339544	-3.056011
õ	5 722172	-2 774297	-1 034152	C C	9 867328	-2 044077	-4 604384
Si	7.001512	-2.174237	-1.8026//	0	10 /68817	-2.044017	-4 161833
C	6 922207	-0 301051	-1 682207	C C	8 345763	-2 530532	-7 000170
й	7 848010	0.301331	-2 010150	0	8 220216	-2.009002	-7 0718/0
н	6 002232	0.170304	-2.010130	0	5 932100	-1.323100	-3 507170
н	6 80001/	-0 000067	-2.210000	Qi	5 766652	-5 512822	-2 207254
	0.00001	0.000001	0.013003	0	0.100002	0.010020	<u></u>

С	4.441450	-6.687773	-2.861199	С	7.354415	-6.458419	-2.065045
Н	4.236486	-7.444371	-2.106245	Н	7.166493	-7.363639	-1.488685
Н	4.796125	-7.196199	-3.761027	Н	7.723023	-6.767017	-3.045637
Н	3.510948	-6.183276	-3.104677	н	8.144770	-5.901250	-1.568848

5. References

- [1] G. M. Sheldrick, Acta Crystallogr. Sect. A 2014, 71, 3-8; G. M. Sheldrick, Acta Crystallogr. Sect. C 2014, 71, 3-8.
- [2] ORCA -An ab initio, DFT and semiempirical SCF-MO package. Written by F. Neese, Max Planck Institute for Bioinorganic Chemistry, D-45470 Mülheim/Ruhr, 2012. Version 3.0.3. Web page: <u>http://www.cec.mpg.de/forum/portal.php</u>. F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- [3] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- [4] F. Neese, F. Wennmohs, A. Hansen. U. Becker, Chem. Phys. 2009, 356, 98-109.
- [5] a) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835; b) F. Weigend, R. Ahlrichs, Chem. Phys., 2005, 7, 3297-3305.
- [6] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim.Acta*, **1990**, 77, 123-141. ECP parameters for W [SD(60,MWB)] have been obtained from Turbomole basis set library at <u>ftp://ftp.chemie.uni-karlsruhe.de/pub/basen/</u>. [7]
 a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.*, **2010**, *132*, 154104-19. b) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.*, **2011**, *32*, 1456-1465.
- [8] Basis sets may be obtained from the Basis Set Exchange (BSE) software and the EMSL Basis Set Library: https://bse.pnl.gov/bse/portal. D. Feller, J. Comp. Chem. **1996**, *17*, 1571-1586.
- [9] C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139, 134101-134113.
- [10] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968–5975.
- [11] a) A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 220, 799-805; b) A. Klamt, J. Phys. Chem. 1995, 99, 2224-2235.
- [12] a) O. Krahe, F. Neese, R. Streubel, *Chem. Eur. J.* 2009, *15*, 2594–2601. b) A. Espinosa, R. Streubel, *Chem. Eur. J.* 2011, *17*, 3166–3178. c) A. Espinosa Ferao, R. Streubel, *Inorg. Chem.* 2016, *55*, 9611–9619. d) A. Espinosa, C. Gómez, R. Streubel, *Inorg. Chem.* 2012, *51*, 7250–7256. e) C. Albrecht, E. Schneider, M. Engeser, G. Schnakenburg, A. Espinosa, R. Streubel, *Dalton Trans.* 2013, *42*, 8897–8906. f) A. Espinosa, É. de las Heras, R. Streubel, *Inorg. Chem.* 2014, *53*, 6132–6140. g) J. M. Villalba Franco, G. Schnakenburg, T. Sasamori, A. Espinosa Ferao, R. Streubel, Complex. *Chem. Eur. J.* 2015, *21*, 9650–9655. h) A. Espinosa Ferao, *Tetrahedron Lett.* 2016, *57*, 5616–5619.
- [13] A. W. Kyri, F. Gleim, A. García Alcaraz, G. Schnakenburg, A. Espinosa Ferao, R. Streubel, Chem Commun. 2018, 54, 7123–7126.