Supporting Information

Synthesis of Perovskite CsPbBr₃ Quantum Dot Superlattice in Borosilicate Glass

Enhao Cao^{a,b}, Jianbei Qiu^{a,b,*}, Dacheng Zhou^{a,b}, Yong Yang^{a,b,*}, Qi Wang^{a,b}, Yugeng Wen^{a,b}

a School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

b Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China * Authors to whom correspondence should be addressed: qiu@kust.edu.cn and yang@kust.edu.cn

Experimental Section

Materials and chemicals

Silicon dioxide (SiO₂, 99.99%), boron oxide (B₂O₃, 98%), zinc oxide (ZnO, 99%), caesium carbonate (Cs₂CO₃, 99%), lead bromide (PbBr₂, 99%) and sodium bromide (NaBr, 99%) were purchased from Aladdin. All chemicals were used without further purification.

Preparation of CsPbBr₃ QDs glass

The samples of pristine glass (PG) were prepared via classical melt-quenching method with nominal composition of $(35.7-3.5x)SiO_2-(24.5+3.5x)B_2O_3-9.8ZnO-6Cs_2CO_3-12PbBr_2-12NaBr (mol.%) (x = 1, 2, 3, denoted PG1, PG2, PG3, respectively). The raw materials were well mixed and melted at 1150°C for 20 min under ambient atmosphere. Then the melt of mixture was poured onto a preheated brass plate and pressed by another plate. The glasses of PG1, PG2 and PG3 were annealed at 360°C for 2 h, and were then heated at 475°C for 2 h to obtain CsPbBr_3 QDs and/or CsPbBr_3 QD superlattices embedded glasses (denoted QG1, QG2, QG3, respectively).$

Characterizations

The CsPbBr₃ QDs and/or CsPbBr₃ QD superlattices embedded glasses were optical polished or ground into powders for subsequent characterization and usage. X-ray diffraction (XRD) analysis was carried out to identify the crystallized phase structure using a Bruker D8 powder diffractometer with a Cu K α incident radiation source. Microstructural observation of samples was conducted on a JEOL JEM-2100 transmission electron microscope (TEM). Absorption spectra were recorded using a Hitachi U4100 spectrophotometer. Photoluminescence (PL) and photoluminescence excitation (PLE), excitation-emission mapping, and PL decay were recorded using an Edinburgh FLS980 spectrophotometer. Raman spectra were determined by a LabRAM HR Evolution Raman spectrometer operated with a 532 nm excitation source.

As shown in Fig. S1, we obtain a primrose transparent CsPbBr₃ QD embedded glass at 475°C while other glasses are either colorless at 435°C or devitrificated at 515°C, 555°C and 595°C.

Fig. S1 The photograph of PG1 glass heated under different temperatures (435°C, 475°C, 515°C, 555°C and 595°C) for 2 h.

Table S1 The quantitative change of topological organization from Raman spectra

glass	[BO ₃]/[BO ₄]	[BO ₃]/[SiO ₄]	[BO ₄]/[SiO ₄]
PG1	1.22	0.81	0.66
PG2	1.25	0.85	0.68
PG3	1.64	1.13	0.68

Fig. S2 Schematic illustration. (a) CsPbBr₃ lattice. (b) (200) plane of CsPbBr₃ lattice. (c) lattice fringes of CsPbBr₃ QD. (d) fringes of CsPbBr₃ QD superlattice.

Fig. S3 TEM images of CsPbBr₃ morphology. (a)-(c) distribution of CsPbBr₃ QDs in QG1, QG2, QG3. (d) CsPbBr₃ QD superlattice lattice. (e)-(f) aggregation of CsPbBr₃ QDs.

	_		-
glass	QG1	QG2	QG3
average size (nm)	5.2	5.3	5.1

Table S2 The average size of CsPbBr₃ QD

We measured their corresponding radiation lifetimes under different power density excitation as shown in Fig. S4. And the average decay lifetime are calculated based on the following equation S(1)

$$\tau_{ave} = \int I(t) dt / I_0 \,\mathrm{S}(1)$$

where I_0 is the peak intensity and I(t) is the recording-time related PL intensity.

Fig. S4 Two-dimensional excitation-emission mappings of (a) QG1, (b) QG2, (c) QG3, and the inset shows the photograph of CsPbBr₃ QDs embedded glasses under daylight and 365 nm UV lamp.

Fig. S5 Time-resolved PL decays curves under (a) low power density excitation and (b) high power density excitation.

	QG1	QG2	QG3	QG2	QG3
PL decays curves	@520nm	@520nm	@520nm	@540nm	@540nm
τ_{ave} (ns) under low power density excitation	15.87	18.93	19.78	25.74	27.84
τ_{ave} (ns) under high power density excitation	19.29	21.57	21.99	14.65	16.37

Table S3 The lifetimes under different power density excitation