Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information For:

Ruthenium(II)-Catalyzed Intermolecular Annulation of Alkenyl

Sulfonamides with Alkynes: Access to Azabicyclic Sultams

Lei-Lei Qian,^{a,b} Xiang-Ting Min,^{a,b} Yan-Cheng Hu,^a Bing-Xue Shen,^{a,b} Sa-Na Yang,^{a,b}

Boshun Wan,^a and Qing-An Chen^{*a}

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China ^bUniversity of Chinese Academy of Sciences, 100049, Beijing, China *E-mail: qachen@dicp.ac.cn

Table of Contents

1.	General information	S2
2.	General procedure for the preparation of alkynes	S2
3.	General procedure for the preparation of homoallylic sulfonamides	S2
4.	General procedure for the generation of the fused sultams from homoallylic sulfon	amides
	with alkynes	S2
5.	General procedure for the generation of 4aa	S3
6.	General procedure for the generation of 5aa	S3
7.	Crystal structure of 3aa	S9
8.	References	S10
9.	Copy of NMR Spectra	S11

1. General experimental details: Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ¹H NMR and ¹³C NMR spectra were recorded at room temperature in $CDCl_3$ on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Flash column chromatography was performed on silica gel (200-300 mesh). All reactions were monitored by TLC or NMR analysis. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

2. General procedure for the preparation of alkynes¹

Pd(PPh₃)₄ (2 mol%), CuI (4 mol%), Et₃N (2.0 equiv.) and iodobenzene (1.1 equiv.) were dissolved in 10.0 mL DMF and heated to 80 °C. Subsequently, phenylacetylene (1.0 equiv.) was added to the resulting mixture by syringe, and the reaction was stirred under argon atmosphere for 10 h. After cooling to room temperature, the solvent was removed and extracted with CH₂Cl₂ (4×50 mL). The combined organic layer was washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give crude alkyne. The residue was purified by silica gel flash chromatography using petroleum ether to afford the desired product.

3. General procedure for the preparation of homoallylic sulfonamides²

Homoallylic sulfonamides was prepared by a slightly modified procedure. 4-Bromobutene was refluxed with sodium sulfite (1.1 equiv.) for 12 h in water. After complete evaporation of solvent, POCl₃ (10 equiv.) was added and reaction mixture was refluxed at 135 $\,^{\circ}$ C for 6 h. Then excess POCl₃ was removed under vacuum. Residue was dissolved in acetonitrile and aq. NH₃ was added at 0 $\,^{\circ}$ C after one hour of stirring at same temperature, water was added and reaction mixture was extracted with ethyl acetate. Organic layer was separated, washed with water and brine. After drying over Na₂SO₄, solvent was concentrated and purified using silica gel flash chromatography (30% ethyl acetate/ petroleum ether). Product was obtained as yellow oil (70%).

4. General procedure for the generation of the fused sultams from homoallylic sulfonamides with alkynes

Under an argon atmosphere, $[Ru(p-cymene)Cl_2]_2$ (0.03 mmol), AgSbF₆ (0.12 mmol), Cu(OAc)₂ H₂O (0.6 mmol) and AcOH (0.3 mmol) were added to a Schlenk tube in DCE (8.0 ml).

After stirring for 15 min, alkyne **1** (0.30 mmol) and homoallylic sulfonamides **2** (0.60 mmol) was added. The mixture was stirred at 80 $^{\circ}$ C for 16 h. The solvent was evaporated and the crude product was directly purified by flash column chromatography on silica gel (30% ethyl acetate/ petroleum ether) to give the desired product.

5. General procedure for the generation of 4aa

Under an argon atmosphere, $[Ru(p-cymene)Cl_2]_2$ (0.03 mmol), AgSbF₆ (0.12 mmol) and Cu(OAc)₂ H₂O (0.6 mmol) was added to a Schlenk tube in AcOH (2.0 ml). After stirring for 15 min, alkyne **2a** (0.60 mmol) and homoallylic sulfonamides **1a** (0.30 mmol) was added. The mixture was stirred at 80 °C for 16 h. The solvent was evaporated and the crude product was directly purified by flash column chromatography on silica gel (30% ethyl acetate/ petroleum ether) to give the desired product **3aa** (26% yield) and **6aa** (15% yield).

6. General procedure for the generation of 5aa

Under an argon atmosphere, $[Ru(p-cymene)Cl_2]_2$ (0.15 mmol), AgSbF₆ (0.75 mmol) and Cu(OAc)₂ H₂O (1.2 mmol) was added to a Schlenk tube in DCE (8.0 ml). After stirring for 15 min, alkyne **2a** (0.60 mmol) and homoallylic sulfonamides **1a** (0.30 mmol) was added. The mixture was stirred at 80 °C for 0.5 h. The solvent was evaporated and the crude product was directly purified by flash column chromatography on silica gel (5% methanol/ dichloromethane) to give the desired product **5aa** (10% yield).

4,5-Diphenyl-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothiazole 2,2-dioxide (**3aa**): white solid, 61.2 mg, 66% yield, m.p.164 – 165 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 4H), 7.17 – 7.14 (m, 4H), 7.09 (d, *J* = 7.1 Hz, 2H), 6.25 (s, 1H), 4.82 (dd, *J* = 7.6, 6.0 Hz, 1H), 4.52 (d, *J* = 5.9 Hz, 1H), 4.29 (s, 1H), 3.38 (dd, *J* = 12.4, 8.6 Hz, 1H), 3.29 – 3.24 (m,

1H), 3.09 (dd, J = 12.4, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 142.2, 133.8, 129.3, 128.6, 128.5, 127.34, 127.25, 127.1, 125.6, 63.2, 57.9, 52.6, 49.5; HRMS calculated for C₁₈H₁₈NO₂S⁺ [M+H]⁺ 312.1053, found 312.1053.

4,5-Di-p-tolyl-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothiazole 2,2-dioxide (**3ba**): black solid, 59.2 mg, 58% yield, m.p.87 – 88 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (d, J = 7.9 Hz, 2H), 7.09 – 7.02 (m, 6H), 6.24 (s, 1H), 4.85 (t, J = 6.6 Hz, 1H), 4.75 (d, J = 5.8 Hz, 1H), 4.28 (s, 1H), 3.42 (dd, J = 12.4, 8.6 Hz, 1H), 3.27 (qd, J = 7.8, 2.8 Hz, 1H), 3.11 (dd, J = 12.4, 7.5 Hz, 1H), 2.29 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 139.4, 138.4, 136.8, 131.0, 129.8, 129.2, 127.1, 127.0, 124.5, 63.2, 57.4, 52.5, 49.4, 21.3, 21.1; **HRMS** calculated for C₂₀H₂₂NO₂S⁺ [M+H]⁺ 340.1366, found 340.1375.

4,5-Bis(4-fluorophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isoth iazole 2,2-dioxide (3ca): white solid, 84.1 mg, 81% yield, m.p. 166 – 167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.16 (m, 2H), 7.04 – 7.01 (m, 2H), 6.92 – 6.81 (m, 4H), 6.17 (s, 1H), 4.80 (d, J = 4.4 Hz, 1H), 4.61 (s, 1H), 4.27 (s, 1H), 3.36 (dd, J = 12.3, 8.7 Hz, 1H), 3.22 (qd, J = 7.5, 3.4 Hz, 1H), 3.11 (dd, J = 12.4, 6.6 Hz, 1H); ¹³C NMR (100

MHz, CDCl₃) δ 162.8 (d, J = 249.2 Hz), 162.1 (d, J = 246.3 Hz), 146.8, 137.8 (d, J = 3.3 Hz), 129.8 (d, J = 3.4 Hz), 128.9 (d, J = 5.7 Hz), 128.8 (d, J = 5.5 Hz), 125.6, 116.3 (d, J = 21.5 Hz), 115.7 (d, J = 21.6 Hz), 63.1, 57.3, 52.6, 49.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.38, -115.00; **HRMS** calculated for C₁₈H₁₆F₂NO₂S⁺ [M+H]⁺ 348.0864, found 348.0866.

4,5-Bis(4-clorophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothi azole 2,2-dioxide (3da): white solid, 92.4 mg, 81% yield, m.p.161 – 162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.12 (m, 6H), 7.05 (d, *J* = 7.9 Hz, 2H), 6.27 (s, 1H), 4.84 (s, 2H), 4.32 (s, 1H), 3.40 (dd, *J* = 11.7, 9.0 Hz, 1H), 3.25 (s, 1H), 3.17 (dd, *J* = 12.1, 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 140.6, 134.5, 133.3, 132.1, 129.5,

128.8, 128.6, 128.3, 126.7, 63.1, 57.3, 52.5, 49.2; **HRMS** calculated for $C_{18}H_{16}Cl_2NO_2S^+$ [M+H]⁺ 380.0273, found 380.0285.

4,5-Bis(4-bromophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isot hiazole 2,2-dioxide (3ea): white solid, 97.6 mg, 69% yield, m.p.186 – 187 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.31 (s, 1H), 4.86 (d, *J* = 6.5 Hz, 1H), 4.56 (d, *J* = 5.8 Hz, 1H), 4.33 (s, 1H), 3.42 (dd, *J* = 12.2, 8.7 Hz, 1H), 3.34 – 3.24 (m, 1H), 3.18 (dd, *J* = 12.3, 6.2 Hz, 1H); ¹³**C**

NMR (100 MHz, CDCl₃) δ 146.7, 141.0, 132.5, 132.4, 131.9, 129.0, 128.6, 126.7, 122.9, 121.4, 63.1, 57.3, 52.6, 49.3; **HRMS** calculated for C₁₈H₁₆Br₂NO₂S⁺ [M+H]⁺467.9263, found 467.9278.

4,5-Bis(4-(trifluoromethoxy)phenyl)-3,3a,4,6a-tetrahydro-1H-cyc lopenta[c]isothiazole 2,2-dioxide (3fa): white solid, 81.2 mg, 57% yield, m.p. 61 – 62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.8 Hz, 2H), 7.09 – 7.03 (m, 4H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.22 (s, 1H), 4.94 (s, 1H), 4.79 (d, *J* = 6.2 Hz, 1H), 4.30 (s, 1H), 3.32 (dd, *J* = 12.3, 8.6 Hz, 1H), 3.28 – 3.16 (m, 1H), 3.11 (dd, *J* = 12.3, 6.1 Hz,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2 (q, J = 1.8 Hz), 148.5 (q, J = 1.8 Hz), 146.0, 140.7, 132.3, 128.6, 128.5, 127.2, 121.8, 120.9, 120.5 (q, J = 257.6 Hz), 120.4 (q, J = 257.6 Hz), 63.1, 57.2, 52.5, 49.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.83, -57.91; HRMS calculated for C₂₀H₁₆F₆NO₄S⁺ [M+H]⁺ 480.0699, found 480.0684.

Diethyl 4,4'-2,2-dioxido-3,3a,4,6a-tetrahydro-1H-cyclopenta[c] isothiazole-4,5-diyl)dibenzoate(3ga): white solid; 44.0 mg, 32% yield, m.p. 120 – 121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.84 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.41 (s, 1H), 5.10 (d, *J* = 6.2 Hz, 1H), 4.90 (t, *J* = 6.9 Hz, 1H), 4.47 (s, 1H), 4.34 – 4.29 (m, 4H), 3.40 (dd, *J* =

12.0, 8.6 Hz, 1H), 3.36 - 3.27 (m, 1H), 3.23 (dd, J = 12.1, 5.6 Hz, 1H), 1.35 - 1.30 (m, 6H); ¹³C **NMR** (100 MHz, CDCl₃) δ 166.2, 166.1, 147.2, 146.6, 137.9, 130.5, 130.2, 129.7, 129.6, 128.6, 127.3, 126.9, 63.2, 61.13, 61.10, 57.8, 52.5, 49.0, 14.34, 14.31; **HRMS** calculated for C₂₄H₂₆NO₆S⁺ [M+H]⁺ 456.1475, found 456.1475.

4,5-Bis(4-(trifluoromethyl)phenyl)-3,3a,4,6a-tetrahydro-1H-cycl openta[c]isothiazole 2,2-dioxide (3ha): white solid, 24.1 mg, 26% yield, m.p. 182 – 183 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.9 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 6.5 Hz, 2H), 6.44 (s, 1H), 4.93 (s, 1H), 4.73 (s, 1H), 4.51 (s, 1H), 3.43 (dd, *J* = 11.8, 8.7 Hz, 1H), 3.36 – 3.31 (m, 1H), 3.26 (dd, *J* = 12.0, 5.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ

146.3, 145.9, 136.9, 130.6 (q, J = 32.6 Hz), 130.0 (q, J = 32.5 Hz), 128.8, 127.7, 127.3, 126.5 (q, J = 3.7 Hz), 125.7 (q, J = 3.7 Hz), 124.0 (q, J = 271.85 Hz), 123.9 (q, J = 271.85 Hz), 63.1, 57.7, 52.6, 49.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.61, -62.83; HRMS calculated for C₂₀H₁₆F₆NO₂S⁺ [M+H]⁺ 448.0800, found 448.0806.

4,5-Di(naphthalen-2-yl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isot hiazole 2,2-dioxide (3ia): light yellow solid, 74.5 mg, 60% yield, m.p. 115 – 120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.50 (m, 9H), 7.41 – 7.29 (m, 4H), 7.16 (d, J = 8.4 Hz, 1H), 6.37 (s, 1H), 4.96 (d, J = 4.7 Hz, 1H), 4.86 – 4.85 (m, 1H), 4.51 (s, 1H), 3.36 (dd, J = 11.7, 8.8 Hz, 1H), 3.31 – 3.23 (m, 1H), 3.15 (dd, J = 12.0, 6.4 Hz, 1H); ¹³C NMR

(100 MHz, CDCl₃) δ 147.1, 139.8, 133.6, 133.03, 132.99, 132.5, 131.2, 129.2, 128.4, 128.1, 127.72, 127.70, 127.6, 126.7, 126.6, 126.5, 126.4, 126.3, 126.0, 125.9, 125.1, 124.7, 63.3, 57.7, 52.5, 49.2; **HRMS** calculated for C₂₆H₂₂NO₂S⁺ [M+H]⁺ 412.1366, found 412.1360.

4,5-Di-m-tolyl-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothiazole 2,2-dioxide (**3ja**): white solid, 49.0 mg, 43% yield, m.p. 105 – 106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.08 (m, 4H), 7.03 (t, J = 6.4 Hz, 2H), 6.99 – 6.90 (m, 1H), 6.28 (t, J = 1.5 Hz, 1H), 4.89 – 4.85 (m, 1H), 4.73 (d, J = 5.9 Hz, 1H), 4.28 (s, 1H), 3.43 (dd, J = 12.4, 8.6 Hz, 1H), 3.38 – 3.23 (m, 1H), 3.12 (dd, J = 12.4, 7.4 Hz, 1H), 2.31 (s, 3H), 2.28 (s,

3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 142.3, 138.8, 138.0, 133.8, 129.3, 129.0, 128.4, 128.0, 127.9, 127.7, 125.4, 124.23, 124.21, 63.2, 57.8, 52.5, 49.4, 21.54, 21.49; **HRMS** calculated for C₂₀H₂₂NO₂S⁺ [M+H]⁺ 340.1366, found 340.1368.

4,5-Bis(3-fluorophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothiaz ole 2,2-dioxide (3ka): white solid, 50.0 mg, 48% yield, m.p. 131 – 132 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.15 (m, 2H), 7.05 (d, *J* = 7.9 Hz, 1H), 6.99 – 6.88 (m, 4H), 6.82 (d, *J* = 9.6 Hz, 1H), 6.32 (s, 1H), 4.94 (d, *J* = 6.0 Hz, 1H), 4.87 (t, *J* = 6.8 Hz, 1H), 4.34 (s, 1H), 3.41 (dd, *J* = 12.3, 8.7 Hz, 1H), 3.33 – 3.26 (m, 1H), 3.19 (dd, *J* = 12.4, 6.2 Hz, 1H); ¹³**C**

NMR (100 MHz, CDCl₃) δ 163.3(d, J = 247.2 Hz), 162.7(d, J = 245.9 Hz), 146.2 (d, J = 2.4 Hz), 144.6 (d, J = 6.8 Hz), 135.9 (d, J = 7.7 Hz), 130.9 (d, J = 8.4 Hz), 130.1 (d, J = 8.4 Hz), 127.6, 123.0 (d, J = 2.8 Hz), 122.8 (d, J = 2.8 Hz), 115.5 (d, J = 21.3 Hz), 114.5 (d, J = 21.1 Hz), 114.0 (d, J = 21.6 Hz), 113.9 (d, J = 22.2 Hz), 63.0, 57.5 (d, J = 1.4 Hz), 52.5, 49.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.71, -112.60; **HRMS** calculated for C₁₈H₁₆F₂NO₂S⁺ [M+H]⁺ 348.0864, found 348.0864.

4,5-Bis(3-chlorophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothia zole 2,2-dioxide (3la): white solid, 51.6 mg, 45% yield, m.p. 72 – 73 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.23 – 7.09 (m, 6H), 7.02 (d, J = 6.8 Hz, 1H), 6.30 (s, 1H), 4.96 (d, J = 6.1 Hz, 1H), 4.87 (t, J = 6.9 Hz, 1H), 4.32 (s, 1H), 3.40 (dd, J = 12.3, 8.7 Hz, 1H), 3.31 – 3.24 (m, 1H), 3.18 (dd, J = 12.3, 6.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.9,

144.1, 135.4, 135.1, 134.5, 130.6, 129.9, 128.7, 127.8, 127.7, 127.2, 127.0, 125.5, 125.2, 63.0, 57.4, 52.5, 49.0; **HRMS** calculated for $C_{18}H_{16}Cl_2NO_2S^+$ [M+H]⁺ 380.0273, found 380.0283.

4,5-Bis(3-bromophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothi azole 2,2-dioxide (3ma): white solid, 66.0 mg, 47% yield, m.p. 80 – 81 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.35 – 7.32 (m, 2H), 7.27 (s, 1H), 7.16 – 7.12 (m, 2H), 7.07 (t, *J* = 7.9 Hz, 2H), 6.29 (s, 1H), 4.93 (d, *J* = 6.1 Hz, 1H), 4.87 (t, *J* = 6.9 Hz, 1H), 4.30 (s, 1H), 3.39 (dd, *J* = 12.3, 8.7 Hz, 1H), 3.31 – 3.24 (m, 1H), 3.17 (dd, *J* = 12.4, 6.1 Hz, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 145.8, 144.3, 135.7, 131.6, 130.9, 130.7, 130.2, 129.9, 127.9, 126.0, 125.6, 123.4, 122.7, 63.0, 57.4, 52.5, 49.0; **HRMS** calculated for $C_{18}H_{16}Br_2NO_2S^+$ [M+H]⁺ 467.9263, found 467.9258.

4,5-Bis(2-fluorophenyl)-3,3a,4,6a-tetrahydro-1H-cyclopenta[c]isothiaz ole 2,2-dioxide (3na): white solid, 21.1 mg, 20% yield, m.p. 138 – 139 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 – 7.12 (m, 3H), 7.06 – 6.94 (m, 5H), 6.48 (s, 1H), 4.91 (t, *J* = 6.8 Hz, 1H), 4.79 (s, 1H), 4.57 (d, *J* = 6.0 Hz, 1H), 3.49 (dd, *J* = 11.5, 7.6 Hz, 1H), 3.34 – 3.23 (m, 2H); ¹³**C NMR** (100 MHz,

CDCl₃) δ 160.9 (d, J = 251.5 Hz), 160.6 (d, J = 245.5 Hz), 141.5 (d, J = 2.4 Hz), 130.74 (d, J = 9.6 Hz), 130.1 (d, J = 8.8 Hz), 129.5 (d, J = 3.6 Hz), 129.0 (d, J = 8.5 Hz), 128.8, 128.3 (d, J = 4.0 Hz), 124.7 (d, J = 3.6 Hz), 124.3 (d, J = 3.5 Hz), 121.8 (d, J = 12.5 Hz), 116.3 (d, J = 22.8 Hz), 115.8 (d, J = 21.9 Hz), 63.6, 52.7, 51.5, 47.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.09, -118.23; **HRMS** calculated for C₁₈H₁₆F₂NO₂S⁺ [M+H]⁺ 348.0864, found 348.0861.

5,6-Diphenyl-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]thiazine 2,2-dioxide (**3ab**): white solid, 52 mg, 53% yield, m.p. 228 – 229 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.18 (m, 8H), 7.08 (d, *J* = 7.1 Hz, 2H), 6.33 (s, 1H), 4.72 – 4.72 (m, 1H), 4.19 (d, *J* = 6.8 Hz, 1H), 4.05 (d, *J* = 8.0 Hz, 1H), 3.30 – 3.23 (m, 1H), 3.13 – 3.07 (m, 1H), 2.49 – 2.43 (m, 1H),

2.27 – 2.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 141.4, 134.4, 129.0, 128.5, 128.4, 128.0, 127.1, 126.9, 126.6, 62.2, 53.7, 46.1, 45.5, 24.1; **HRMS** calculated for C₁₉H₂₀NO₂S⁺ [M+H]⁺ 326.1209, found 326.1217.

5,6-Bis(4-bromophenyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2] thiazine 2,2-dioxide (3bb): white solid, 95 mg, 63% yield, m.p. 258 – 259 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.43 (d, J = 8.0 Hz, 4H), 7.22 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.74 (d, J = 7.8 Hz, 1H), 6.42 (s, 1H), 4.49 (d, J = 7.1 Hz, 1H), 4.32 (d, J = 6.5 Hz, 1H), 3.29 – 3.22 (m, 1H), 3.05 – 2.99 (m, 1H), 2.28 – 2.22 (m, 1H), 2.09 –

1.97 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.0, 141.6, 134.1, 131.5, 131.2, 130.2, 128.6, 120.9, 119.6, 61.6, 52.3, 45.4, 44.7, 23.9; **HRMS** calculated for C₁₉H₁₈Br₂NO₂S⁺ [M+H]⁺ 481.9420, found 481.9392.

5,6-Bis(4-clorophenyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]thi azine 2,2-dioxide 2,2-dioxide(3cb): white solid, 75 mg, 61% yield, m.p. 255 – 256 °C; ¹H NMR(400 MHz, DMSO-d₆) δ 7.30 (d, J = 5.9Hz, 6H), 7.16 (d, J = 8.2 Hz, 2H), 6.74 (d, J = 7.8 Hz, 1H), 6.41 (t, J =2.1 Hz,1H), 4.49 (t, J = 6.9 Hz, 1H), 4.33 (d, J = 6.5 Hz, 1H), 3.29 – 3.22 (m, 1H), 3.05 – 2.99 (m, 1H), 2.29 – 2.22 (m, 1H), 2.09 – 1.98 (m,

2H); ¹³C NMR(100 MHz, DMSO-d₆) δ 147.0, 141.2, 133.7, 132.2, 131.1, 129.7, 128.6, 128.5, 128.3, 128.3, 61.5, 52.3, 45.4, 44.7, 23.9; HRMS calculated for C₁₉H₁₈Cl₂NO₂S⁺ [M+H]⁺ 394.0430, found 394.0430.

5,6-Bis(4-methyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]thiazi ne 2,2-dioxide 2,2-dioxide (3db): light yellow solid, 51 mg, 46% yield, m.p. 258 – 259 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 6.28 (t, *J* = 2.3 Hz, 1H), 4.71 (s, 1H), 4.11 (d, *J* = 7.0 Hz, 1H), 3.87 (d, *J* = 8.1 Hz, 1H), 3.25 (ddd, *J* = 13.6, 10.8, 3.9

Hz, 1H), 3.11 (ddd, J = 13.7, 6.2, 4.2 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 2.23 – 2.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 138.6, 138.3, 136.7, 131.6, 129.7, 129.2, 127.9, 126.8, 125.4, 62.2, 53.3, 46.2, 45.6, 24.1, 21.4, 21.2; HRMS calculated for C₂₁H₂₄NO₂S⁺ [M+H]⁺ 354.1522, found 354.1500.

Diethyl 4,4'-(2,2-dioxido-1,3,4,4a,5,7a-hexahydrocyclopenta [c][1,2]thiazine-5,6-diyl)dibenzoate (3eb): light yellow solid, 53 mg, 38% yield, m.p. 232 – 233 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.42 (t, J = 2.2 Hz, 1H), 4.77 – 4.63 (m, 1H), 4.56 (t, J = 7.1 Hz, 1H), 4.35 – 4.28 (m, 5H), 3.30 (ddd, J = 14.0, 10.6, 3.7 Hz, 1H), 3.09 (ddd, J = 13.8, 6.3, 4.2 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.28 – 2.18 (m, 2H), 1.36 – 1.32 (m, 6H); ¹³C NMR(100 MHz, CDCl₃) δ 166.3, 166.2, 149.5, 146.3, 138.6, 130.3, 130.1, 129.7, 129.5, 129.1, 128.0, 126.7, 62.2, 61.2, 61.1, 53.5, 45.7, 45.3, 24.0, 14.39, 14.36; **HRMS** calculated for C₂₅H₃₁N₂O₆S⁺ [M+NH₄]⁺ 487.1897, found 487.1880.

5,6-Bis(4-fluorophenyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]t hiazine 2,2-dioxide (3fb): light yellow solid, 58 mg, 53% yield, m.p. 248 – 249 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 7.31 (dd, J = 8.6, 5.6 Hz, 2H), 7.17 (dd, J = 8.4, 5.6 Hz, 2H), 7.06 (t, J = 8.8 Hz, 4H), 6.71 (d, J = 7.8 Hz, 1H), 6.33 (s, 1H), 4.48 (t, J = 5.6 Hz, 1H), 4.31 (d, J = 6.4 Hz, 1H), 3.25 (ddd, J = 13.0, 9.4, 3.1 Hz, 1H), 3.01 (ddd, J = 13.1,

6.5, 4.0 Hz, 1H), 2.28 – 2.22 (m, 1H), 2.09 – 1.97 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 161.6 (d, J = 245.1 Hz), 160.9 (d, J = 242.2 Hz), 147.2, 138.4, 131.5 (d, J = 3.2 Hz), 129.8 (d, J = 8.0 Hz), 128.7 (d, J = 8.1 Hz), 127.4, 115.4 (d, J = 21.2 Hz), 115.2 (d, J = 21.2 Hz), 61.6, 52.4, 45.5, 44.8, 24.1; ¹⁹F NMR (376 MHz, DMSO-d₆) δ -113.81, -116.24; HRMS calculated for C₁₉H₂₁F₂N₂O₂S⁺ [M+NH₄]⁺ 379.1286, found 379.1309.

5,6-Bis(3-bromophenyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]th iazine 2,2-dioxide (3gb): light yellow solid, 75 mg, 52% yield, m.p. 197 – 198 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (q, *J* = 1.3 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.24 (t, *J* = 1.8 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 7.10 – 7.05 (m, 2H), 7.00 (dt, *J* = 7.7, 1.3 Hz, 1H), 6.35 (t, *J* = 2.2 Hz, 1H),

4.72 (t, J = 6.6 Hz, 1H), 4.19 (d, J = 7.9 Hz, 1H), 4.12 (dt, J = 6.2, 1.7 Hz, 1H), 3.25 (ddd, J = 13.7, 10.0, 3.8 Hz, 1H), 3.10 (ddd, J = 13.8, 6.9, 4.1 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.28 – 2.17 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.3, 143.4, 136.3, 131.5, 130.9, 130.8, 130.6, 130.2, 129.8, 128.4, 126.5, 125.4, 123.2, 122.8, 62.0, 53.7, 46.2, 45.4, 24.4; **HRMS** calculated for C₁₉H₁₈Br₂NO₂S⁺ [M+H]⁺ 481.9420, found 481.9420.

5,6-Bis(2-fluorophenyl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2]thia zine 2,2-dioxide (3hb): yellow solid, 52 mg, 48% yield, m.p. 232 – 233 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 3H), 7.04 – 6.87 (m, 5H), 6.43 (s, 1H), 4.71 – 4.73 (m, 2H), 4.14 (d, *J* = 7.9 Hz, 1H), 3.36 – 3.29 (m, 1H), 3.13 (dt, *J* = 13.5, 4.8 Hz, 1H), 2.56 – 2.46 (m, 1H), 2.29

- 2.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, J = 244.7 Hz), 160.3 (d, J = 250.6 Hz), 145.7, 130.8 (d, J = 6.5 Hz), 129.9 (d, J = 8.7 Hz), 129.3 (d, J = 3.8 Hz), 129.1 (d, J = 4.0 Hz), 128.7 (d, J = 8.3 Hz), 127.8 (d, J = 14.2 Hz), 124.7 (d, J = 3.5 Hz), 124.2 (d, J = 3.5 Hz), 122.6 (d, J = 13.2 Hz), 116.1 (d, J = 22.4 Hz), 115.6 (d, J = 22.3 Hz), 62.3, 46.4, 45.7, 44.4, 24.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.20, -119.83; **HRMS** calculated for C₁₉H₁₈F₂NO₂S⁺ [M+H]⁺ 362.1021, found 362.1049.

5,6-Di(naphthalen-2-yl)-1,3,4,4a,5,7a-hexahydrocyclopenta[c][1,2] thiazine 2,2-dioxide (3ib): light yellow solid, 65 mg, 51% yield, m.p.

226 – 227 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.78 – 7.64 (m, 7H), 7.59 – 7.57 (m, 1H), 7.51 (dd, J = 8.6, 1.8 Hz, 1H), 7.48 – 7.33 (m, 4H), 7.19 (dd, J = 8.5, 1.8 Hz, 1H), 6.52 (t, J = 2.3 Hz, 1H), 4.82 (ddt, J = 8.0, 5.7, 2.0 Hz, 1H), 4.47 (dt, J = 7.3, 1.7 Hz, 1H), 4.05 (d, J = 8.1 Hz, 1H), 3.34 (ddd, J = 13.6, 10.4, 4.0 Hz, 1H), 3.15 (ddd, J = 13.6, 6.6, 4.1 Hz, 1H), 2.56 – 2.47 (m, 1H), 2.42 – 2.36 (m, 1H), 2.34 – 2.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 139.0, 133.6, 133.11, 133.10, 132.6, 131.8, 129.1, 128.4, 128.2, 127.8, 127.7, 127.3, 126.9, 126.52, 126.47, 126.42, 126.39, 126.0, 125.6, 124.5, 62.3, 54.1, 46.3, 45.4, 24.3; HRMS calculated for C₂₇H₂₄NO₂S⁺ [M+H]⁺ 426.1522, found 426.1493.

5,6-Di(naphthalen-2-yl)-1,3,4,4a,5,7a-hexahydrocyclopenta[**c][1,2]thiazine 2,2-dioxide (4aa)**: light yellow solid, 14% yield, m.p. 115 – 116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.21 (m, 3H), 7.16 – 7.05 (m, 5H), 6.97 – 6.92 (m, 2H), 6.51 (s, 1H),

5.83 (dt, J = 14.7, 7.0 Hz, 1H), 5.57 (dt, J = 14.9, 7.3 Hz, 1H), 4.22 (s, 2H), 3.68 (d, J = 7.4 Hz, 2H), 3.32 (d, J = 7.0 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃) δ 140.5, 140.0, 138.2, 136.9, 129.2, 128.9, 128.8, 128.2, 128.0, 127.4, 126.7, 120.1, 58.5, 43.5; HRMS calculated for C₁₈H₂₃N₂O₂S⁺ [M+NH₄]⁺ 331.1475, found 331.1464.

(((2,3-diphenylcyclopenta-3,5-dien-2-ide-1-yl)methyl)sulfonyl)amide(*p*-cy mene)ruthenium(II) (5aa): light yellow solid, 10% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 7.25 (d, 1H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 6.41 - 6.39 (m, 2H), 6.32 (d, *J* = 6.1 Hz, 1H), 6.02 (d, *J* = 6.0

Hz, 1H), 5.87 (d, J = 6.1 Hz, 1H), 5.73 (d, J = 2.3 Hz, 1H), 4.74 (d, J = 14.3 Hz, 1H), 4.04 (d, J = 14.3 Hz, 1H), 2.57 (qq, J = 6.9, 6.9 Hz, 1H), 2.23 (s, 3H), 1.07 (d, J = 6.8 Hz, 6H); ¹³C NMR (176 MHz, CDCl₃) δ 131.8, 130.9, 129.4, 129.3, 129.2, 129.1, 128.7, 112.8, 103.3, 102.8, 101.3, 91.4, 89.7, 89.5, 86.9, 85.9, 81.3, 79.8, 51.4, 31.6, 23.3, 22.8, 18.8; **HRMS** calculated for C₂₉H₃₃NO₂RuS⁺ [M+H]⁺ 546.1035, found 546.1039.

7. Crystal structure of 3aa

3aa

CCDC1854428

8. References

- 1. H. Yan, H. Wang, X. Li, X. Xin, C. Wang and B. Wan, *Angew. Chem. Int. Ed.* 2015, 54, 10613.
- 2. A. Padwa, A. C. Flick, C. A. Leverett and T. Stengel, J. Org. Chem. 2004, 69, 6377.

9. Copy of NMR Spectra

f1 (ppm)

