# **Supporting information**

## A Highly Efficient FeP/CeO<sub>2</sub>-NF Hybrid Electrode for the Oxygen Evolution

## Reaction

Jian Liu,<sup>a</sup> Yan Gao, <sup>a,b\*</sup> Yu Wei,<sup>a</sup> Xuyang Chen,<sup>a</sup> Shengjie Hao,<sup>a</sup> Xin Ding,<sup>a,c\*</sup> and Lijun Pand <sup>d\*</sup>

<sup>a</sup>State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, P. R. China.
<sup>b</sup>Ningbo Institute of Dalian University of Technology, Ningbo, 315000, P. R.China
<sup>c</sup>College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.
<sup>d</sup>Department of Environmental Health Protection, National Institute for Environmental Health, Chinese Center for Disease Control and Prevention, No.7 Nanli, Panjiayuan, Beijing, 100021, P. R. China.
\* Corresponding author
E-mail addresses: dr.gaoyan@dlut.edu.cn (Y. Gao\*); dingxin@qdu.edu.cn (X. Ding\*); panlijun@nieh.chinacdc.cn

(L. Pan\*)

### **Experimental section:**

#### Chemicals and materials

The materials in the experiment were used directly without any purification: Cerium (III) nitrate hexahydrate (Ce(NO<sub>3</sub>)·6H<sub>2</sub>O, Sinopharm Chemical Reagent CO., Ltd, 99.0%), Iron(III) nitrate nonahydrate (Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, Sinopharm Chemical Reagent CO., Ltd, 98.5%), Ammonium oxalate ((NH<sub>4</sub>)<sub>2</sub>C<sub>2</sub>O<sub>4</sub>·H<sub>2</sub>O, Tianjing Damao Chemical Reagent CO., Ltd, 99.8%), Sodium chloride (NaCl, Tianjing Damao Chemical Reagent CO., Ltd, 99.5%), Potassium hydroxide (KOH, Aladdin Chemical Reagent CO., Ltd, 95%), Ni foam (1 cm×2 cm, thickness 1.5 mm, bulk density 200 mg/cm<sup>2</sup>) was purchased from Suzhou jiashide metal foam Co., Ltd.

Fabrication of FeP/CeO2-NF, FeP-NF and CeO2-NF electrodes

Firstly, NF (1 cm×2 cm) was washed by dilute HCl, ethanol and deionized water each 30 minutes to get rid of the surface oxide and pollutants, and dried in the air for subsequent use. In a typical procedure, first,  $CeO_2$  was electrodeposited on the NF in a solution containing 2 mM  $Ce(NO_3)_3$ , 10 mM NaCl at 70 °C under the current density of 0.25 mA/cm<sup>2</sup> for 10 min. Second, FeOOH particles were electrodeposited on the  $CeO_2$ -NF electrode in a solution containing 1 mM  $Fe(NO_3)_3$ , 2.5 mM  $(NH_4)_2C_2O_4$ , 2 mM NaCl at 50°C under the current density of 0.2 mA/cm<sup>2</sup> for 10 min. Then the electrodes were washed by deionized water, and dried in the air. After that, the FeOOH/CeO<sub>2</sub>-NF electrodes and NaH<sub>2</sub>PO<sub>2</sub> were put in a porcelain boat and calcinated for 2 h at 350°C in a flowing Ar atmosphere. Finally, the FeP/CeO<sub>2</sub>-NF electrode was obtained. The FeP-NF electrode was prepared in the same way without CeO<sub>2</sub>.

#### **Material characterization**

X-ray diffraction (XRD) measurements were collected by a D/max-2400 diffractometer. The measurement was performed from 10° to 80° and the scanning speed was 10 degrees per minute. The microstructure and morphology of synthesized materials were observed by Nova NanoSEM 450 equipment. The energy-dispersion X-ray (EDX) spectrum analysis and elemental distributions mapping were obtained by using the energy-dispersion X-ray fluorescence analyzer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) was received by using FEI TF30. The X-ray photoelectron spectroscopy (XPS) images were recorded by a Thermo ESCALAB XI+. And the binding energy was calibrated according to C 1s (284.8 eV).

#### **Electrochemical characterization**

All the electrochemical characterization was performed by a computer-controlled electrochemical workstation (CHI 660E Shanghai Chenhua Instrument Co.,Ltd) at room temperature. In a three-electrode system: A previously prepared electrode was used as the working electrode, a Pt net (1×1 cm) was used as the counter electrode and a HgO/Hg electrode was used as the reference electrode. The reference electrode was calibrated with Ru(bpy)<sub>3</sub> before using. 1M Potassium hydroxide (KOH) solution was used as the electrolyte solution. The potential obtained by the test was converted to reversible hydrogen electrode (RHE):  $E_{RHE}=E_{HgO/Hg}+0.0591$  pH+0.098 V. The working electrode was activated by performing an electrochemical test of 40 CV scans, which voltage was between 1.1 V and 1.6 V and the scan rate was 20 mv/s. Linear sweep voltammetry (LSV) measurements were performed at a scanning speed at 5 mv/s in 1 M

KOH solution with 90% iR compensation. Long-term stability measurements were obtained by chronopotentiometry experiments at a constant current density of 10 mA/cm<sup>2</sup> without iR compensation. Tafel curves were derived from Linear sweep voltammetry (with 90% iR compensation) by plotting overpotential  $\eta$  against log(J). Electrochemical impedance spectroscopy experiments were tested in 1.0 M KOH solution at 1.5 V vs. RHE with the frequency ranged from 10<sup>-2</sup> to 10<sup>5</sup> Hz. Double-layer capacitance (C<sub>dl</sub>) was obtained by measuring CV curves at different scanning speeds (10-100 mV/s) in the non-faraday region (1.03-1.13 V vs. RHE). Electrochemical active surface area (ECSA) was determined based on the double-layer capacitance (C<sub>dl</sub>) by measuring the CV curves of the electrode at different scan rates in a non-Faradic region (1.03~1.13 V vs. RHE). Cdl was determined as the linear slope by plotting anodic current density at 1.08 V against the scan rate (10-100 mV/s)

$$C_{dl} = i_c/v$$
 ECSA =  $C_{dl}/C_{S}$ 

 $i_c$  is the charging current, v is the scan rate, Cs is the specific capacitance (0.040 mF/cm<sup>2</sup>), S is the area of the electrode (1 cm<sup>2</sup>).



Figure S1. SEM image of the bare NF (a), CeO<sub>2</sub>-NF (b), FeP-NF (c) and FeP/CeO<sub>2</sub>-NF(d).



**Figure S2.** SAED pattern of the FeP/CeO<sub>2</sub>-NF electrode.



Figure S3. EDX spectra and EDX mapping of the FeP/CeO<sub>2</sub>-NF electrode.



**Figure S4**. (a and b) TEM and HRTEM images of FeP-NF electrode. Inset in panel b shows the corresponding SAED pattern.

| Solution          | Ce(mg/L) |
|-------------------|----------|
| Before deposition | -        |
| After deposition  | 1.135    |

Table S1. Inductively coupled plasma (ICP) analysis of the deposition solution



Figure S5. XPS survey spectrum of the FeP/CeO<sub>2</sub>-NF electrode before OER.



**Figure S6.** CV curves of CeO<sub>2</sub>-NF (a), FeP-NF (c) and FeP/CeO<sub>2</sub>-NF(e) at various scan rates(10 mV/s,20 mV/s,30 mV/s,40 mV/s,50 mV/s,60 mV/s,70 mV/s,80 mV/s,90 mV/s and 100mV/s) in the potential of 1.03-1.13 V and the anodic charging current measured at 1.08 V plotted as a function of scan rate for CeO<sub>2</sub>-NF (b), FeP-NF (d) and FeP/CeO<sub>2</sub>-NF(f).



Figure S7. EIS spectra of FeP/CeO<sub>2</sub>-NF, FeP-NF and CeO<sub>2</sub>.



Figure S8. LSV curves before and after 1000 continuous CV cycles.



**Figure S9.** Determination of the Faradicefficiency of the FeP/CeO<sub>2</sub>-NF on electrolysis of water at 20 mA/cm<sup>2</sup> in 1.0 M KOH solution.

Table 2. TOF calculated from current density at 20 mA/cm<sup>2</sup>

| Catalyst                 | I (mA/cm <sup>2</sup> ) | Loading (mg) | <b>TOF</b> (s <sup>-1</sup> ) |
|--------------------------|-------------------------|--------------|-------------------------------|
| FeP/CeO <sub>2</sub> -NF | 20                      | 0.28         | 0.01                          |



Figure S10. XRD pattern of FeP/CeO<sub>2</sub>-NF electrode after OER.



**Figure S11.** (a and b) The TEM and HRTEM images of FeP/CeO<sub>2</sub>-NF electrode after OER; (c) HAADF-STEM image and STEM-EDS element mappings of FeP/CeO<sub>2</sub>-NF electrode. Ce pink, Fe green, P yellow, O red.



Figure S12. The SEM images of FeP/CeO<sub>2</sub>-NF electrode after OER.



Figure S13. EDX spectra and EDX mapping of the FeP/CeO<sub>2</sub>-NF electrode after OER



**Figure S14.** XPS survey spectrum of the FeP/CeO<sub>2</sub>-NF electrode after OER.



**Figure S15.** (a) XPS survey spectrum of the FeP/CeO<sub>2</sub>-NF electrode and high-resolution XPS spectra of (b) Ce 3d, (c) Fe

2p, (d) P 2p and (e) O 1s after OER.

|--|

| Electrocatalyst                              | Electrolyte | I/mA/cm <sup>2</sup> | Overpotential<br>η/mV | Tafel slope<br>mV/dec | Refs         |
|----------------------------------------------|-------------|----------------------|-----------------------|-----------------------|--------------|
| FeP/CeO <sub>2</sub> -NF                     | 1М КОН      | 100                  | 245                   | 39.1                  | This<br>work |
| NiFeP-NF                                     | 1M KOH      | 100                  | 290                   | 57                    | 1            |
| NiFe(3:1)-P                                  | 1M KOH      | 100                  | 290                   | 42.5                  | 2            |
| FeP-rGO                                      | 1M KOH      | 100                  | 330                   | 49.6                  | 3            |
| FeP NRs@CP                                   | 1M KOH      | 100                  | 413.6                 | 63.6                  | 4            |
| FeP/CoP-CC                                   | 1M KOH      | 100                  | 317                   | 67                    | 5            |
| FeP/NF                                       | 1M KOH      | 100                  | 292                   | 54                    | 6            |
| FeP/Ni <sub>2</sub> P NSs                    | 1M KOH      | 100                  | 285                   | 50.3                  | 7            |
| Ni <sub>4</sub> Ce <sub>1</sub> @CP          | 1M KOH      | 100                  | 330                   | 81.9                  | 8            |
| CeO <sub>2</sub> /FeOOH-NF                   | 1M NaOH     | 100                  | 320                   | 92.3                  | 9            |
| CeO <sub>2</sub> /Ni(OH) <sub>2</sub> /NOSCF | 1M KOH      | 100                  | 450                   | 57                    | 10           |

(Overpotentials were estimated from the LSV curves presented in the reference literature)

- 1. J. Yu, G. Cheng and W. Luo, J. Mater. Chem. A, 2017, 5, 11229-11235.
- 2. P. Li and H. C. Zeng, J. Mater. Chem. A, 2018, 6, 2231-2238.
- 3. J. Masud, S. Umapathi, N. Ashokaan and M. Nath, J. Mater. Chem. A, 2016, 4, 9750-9754.
- 4. D. Xiong, X. Wang, W. Li and L. Liu, Chem. Commun., 2016, 52, 8711-8714.
- 5. Z. Niu, C. Qiu, J. Jiang and L. Ai, ACS Sustainable Chem. Eng., 2018, 7, 2335-2342.
- 6. S. Yao, V. Forstner, P. W. Menezes, C. Panda, S. Mebs, E. M. Zolnhofer, M. E. Miehlich, T. Szilvasi, N. Ashok Kumar, M. Haumann, K. Meyer, H. Grutzmacher and M. Driess, *Chem. Sci.*, 2018, 9, 8590-8597.
- 7. Y. Feng, C. Xu, E. Hu, B. Xia, J. Ning, C. Zheng, Y. Zhong, Z. Zhang and Y. Hu, J. Mater. Chem. A, 2018, 6, 14103-14111.
- 8. D. Zhao, Y. Pi, Q. Shao, Y. Feng, Y. Zhang and X. Huang, ACS Nano, 2018, 12, 6245-6251.
- 9. J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong and G. R. Li, Adv. Mater., 2016, 28, 4698-4703.
- 10. Z. Liu, N. Li, H. Zhao, Y. Zhang, Y. Huang, Z. Yin and Y. Du, Chem. Sci., 2017, 8, 3211-3217.