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Experimental Details 

K[FSA] (purity > 99%; supplied from Nippon Shokubai Co., Ltd.) and 

[C3C1pyrr][FSA] (> 99.9%; Kanto Chemical Co., Inc.) were dried under vacuum at 333 

K or above. Tin powder (Sigma-Aldrich, Inc.) and acetylene black (Strem Chemicals, 

Inc.) was used as received. The electrochemical measurements were conducted using 

2032-type coin cells and electrochemical measurement apparatuses (HZ-Pro, Hokuto 

Denko Corp., or VSP, Bio-Logic Co.). In the coin cells, Sn/AB/PAI electrodes and 

potassium metal were used as working and counter electrodes, respectively. A two-ply 

glass-fiber filter paper (Whatman, GF/A, 260 mm) was used as a separator. The working 

electrodes and separator were vacuum-impregnated with the K[FSA]–[C3C1pyrr][FSA] 

electrolyte prior to the test. 

Galvanostatic intermittent titration technique (GITT) was employed according to the 

following procedure: 

1. Galvanostatic electrolysis was conducted at a current density of 10 mAh (g-Sn)−1 

for 1 h (i.e., 10 mAh (g-Sn)−1). If the cell voltage reaches −0.1 V (charging) and 

+1.5 V (discharging), move onto step 2 immediately. 

2. The open circuit potential was monitored, and the potential after 3 hours was 

regarded as the equilibrium value. 



3. Steps 1 and 2 were repeated 30 times in total. 

To identify the existing phases of the charged Sn/AB/PAI electrode, X-ray diffraction 

(XRD) analysis was performed using an X-ray diffractometer (Ultima IV, Rigaku Co.; 

Cu-Kα radiation (λ = 0.15418 nm)) equipped with a 1D high-speed detector (D/teX Ultra, 

Rigaku Co.) with a nickel filter. The surface of the Sn/AB/PAI electrodes were observed 

with a field emission scanning electron microscope (FE-SEM; SU-6600, Hitachi). Before 

these analyses, the electrochemical cells were disassembled and the remaining 

electrolytes in Sn/AB/PAI electrodes were removed by soaking the samples in dehydrated 

and deoxidized tetrahydrofuran (water content < 10 ppm, oxygen content < 1 ppm; Wako 

Pure Chemical Industries, Ltd.). All the reagents were handled in the argon-filled 

glovebox. The samples were transferred to the X-ray diffractometer and a field emission 

scanning electron microscope without air exposure. 



 

Table S1 Reported K–Sn alloy phases and the corresponding capacities, compositions, 

and molar volumes. 

Phase 
Capacity 

/ mAh (g-Sn)−1 

Composition x 

(in KxSn) 

Molar volume 

/ cm3 (mol-Sn)−1 
Ref. 

Sn 0 0 16.29 [a] 

K8Sn46 39 0.17 22.79 [b] 

K6Sn25* 54 0.24 25.61 [c] 

K4Sn9* 100 0.44 32.67 [d] 

KSn2** 113 0.50 N.A. [a] 

K2Sn3** 151 0.67 N.A. [a] 

KSn 226 1.00 45.58 [e] 

K2Sn** 452 2.00 N.A. [a] 

* The phase is not shown in the K–Sn phase diagram [a]. 

** Crystal structure is unknown. 

 

 

 

 

 



 

Fig. S1 Rate capability of the Sn/AB/PAI electrode in K[FSA]–[C3C1pyrr][FSA] ionic 

liquid electrolyte at 298 K. Charge–discharge rates: 20, 50, and 100 mA (g-Sn)−1. 

 

The Sn/AB/PAI electrode exhibited the discharge capacities of 187, 162, and 117 mAh 

(g-Sn)−1 at charge–discharge rates of 20, 50, and 100 mA (g-Sn)−1, respectively. 
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Fig. S2 (a) Initial charge–discharge curves of the Sn/AB/PAI electrode in K[FSA]–

[C3C1pyrr][FSA] ionic liquid electrolyte at 298 K. Charge–discharge rate: 20 mA (g-Sn)−1. 

Subsequent GITT plots for (b) charging and (c) discharging processes in the 2nd cycle. 
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Fig. S3 (a) Charge–discharge curves of the Sn/AB/PAI electrode in K[FSA]–

[C3C1pyrr][FSA] ionic liquid electrolyte for 10 cycles at 313 K. (b) A comparison of 

charge–discharge curves in the 2nd cycle at 298 K and 313 K. Charge–discharge rate: 20 

mA (g-Sn)−1. 
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