Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Bismuthanylstibanes

Katherine M. Marczenko^a and Saurabh S. Chitnis*^a

^aDalhousie University, Department of Chemistry, 6274 Coburg Road, Halifax, Nova Scotia, Canada

E-mail: saurabh.chitnis@dal.ca

Electronic Supporting Information

General

Synthetic procedures

All manipulations were performed using standard Schlenk and glovebox techniques under an atmosphere of dry nitrogen. Solvents were dried over Na/benzophenone (pentanes, hexanes, tetrahydrofuran, benzene- d_6) or over calcium hydride (dichloromethane, chloroform-d) and distilled prior to use. Reaction glassware was baked in a 160 °C oven for at least 1 h prior to use and assembled under nitrogen while hot.

Solution NMR spectroscopy

Nuclear magnetic resonance spectra are referenced to tetramethylsilane (¹H, ¹³C) on a Bruker AV-300 spectrometer or a Bruker AV-500 spectrometer with residual solvent used for chemical shift calibration. Samples for NMR spectroscopy were prepared and sealed inside the glovebox with Parafilm before removal into ambient atmosphere.

Vibrational spectroscopy

Infrared spectra were obtained on an Agilent Technologies Cary 630 FTIR instrument equipped with a ZnSe ATR module. Infrared spectra were obtained on a Thermo Scientific Nicolet NXR 9650 FT-Infrared Spectrometer instrument equipped with a 1064 nm Nd:YVO₄ laser and InGaAs detector.

Melting points

Melting points were obtained for samples sealed in glass capillaries and are uncorrected.

Crystallography

Single crystals diffraction experiments were performed on a Bruker D8-Quest Photon II diffractometer. Reflections were integrated using the APEX III software and solved and refined using Olex2 software. Details for individual compounds are given with their characterization data. Crystallographic data has been deposited with the Cambridge Structural Database under numbers: 1975977-1975980

Mass Spectrometry

Atmospheric Pressure Chemical Ionization (APCI) spectra were obtained on a Bruker micrOTOF.

Commercial reagents: Naphthalenediamine was obtained from Oakwood Chemicals. Chlorosilanes were obtained from Alfa. nButylltihium (1.6 M in hexanes) was obtained from Acros. SbCl₃ and BiCl₃ was obtained from Alfa and sublimed prior to use. LiHBEt₃ (1.0 M in THF) and LiNMe₂ were obtained from Alfa.

Starting materials

^{*R*}**SbH** and ^{*R*}**SbCI** were synthesized according to the procedure of Chitnis *et. al.*^[1] ^{*R*}*BiNMe*₂ and ^{*R*}*BiCI* were synthesized according to the procedure of Roesky *et. al.*^[2]

Representative synthetic procedure for ^{*R*}*BiSb***^{***R***}.**

^{*Et*}**SbH** (1.4460 g, 2.85 mmol) was dissolved in hexane (ca. 50 mL) and cooled to -30 °C. To this, ^{*Me*}**BiNMe**₂ (1.5792 g, 2.85 mmol) in a solution of hexane (ca. 50 mL) was slowly added, resulting in the formation of a dark red solution. The solution was warmed to room temperature and stirred for 5 hours. The reaction mixture was concentrated and placed in the freezer for recrystallization at -25 °C which gave the respective diaminostibanes as a red powder.

^{Me}BiSb^{Et}:

Yield: 2.2047 g, 76%

Melting Point: 151.3-155.1 °C, decomp.

¹H NMR (300 MHz, benzene-d₆): δ 7.30-7.08 (m, 12H, Ar-H), 0.89-0.86 (m, 18H, 2 x Et₃Si), 0.70-0.69 (m, 12H, 2 x Et₃Si), 0.15 (s, 18H, 2 x Me₃Si).

¹³C{¹H} NMR (75 MHz, benzene-d₆): δ 154.3 (CAr), 151.4 (CAr), 138.2 (CAr), 137.7 (CAr), 136.9 (CAr), 126.2 (CAr), 124.7 (CAr), 124.4 (CAr), 122.1 (CAr), 120.4 (CAr), 116.8 (CAr), 116.01 (CAr), 7.4 (2 x Et₃Si), 6.7 (2 x Et₃Si), 3.13 (2 x Me₃Si).

FTIR (cm⁻¹ (relative int.)): 3051(7), 2950(25), 2906(2), 2872(5), 1959(13), 1555(55), 1511(1), 1460(1), 1453(6), 1429(2), 1422(19), 1384(4), 1371(34), 1324(33), 1312(3), 1271(100), 1249(33), 1174(7), 1155(1), 1126(3), 1103(1), 1057(81), 1039(14), 1018(4), 1002(29), 958(<1), 887(12), 872(15), 856(72), 838(21), 809(26), 781(22), 763(30), 751(81), 736(1), 720(1), 693(2), 682(<1), 675(9), 658(3), 624(<1), 618(4), 599(2), 589(7), 572(1), 530(14), 521(6), 481(11).

HRMS (APCI, [M]⁺): calculated = 1014.2732 m/z, observed = 1014.2734 m/z, error = 0.24 ppm

Elemental analysis: Calcd. C: 44.92, H: 5.95, N: 5.51; Expt. C: 43.05, H: 6.44, N: 5.47

X-ray: Crystals were grown from a hexane solution. $C_{38}H_{60}BiN_4SbSi_4$ (*M* =1029.93 g/mol): monoclinic, space group C2/c (no. 15), *a* = 20.7764(8) Å, *b* = 9.9748(4) Å, *c* = 42.2992(15) Å, *β* = 100.049(2)°, *V* = 8631.6(6) Å³, *Z* = 8, *T* = 120.0 K, μ (CuK α) = 14.180 mm⁻¹, *Dcalc* = 1.585 g/cm³, 60586 reflections measured (4.242° ≤ 2 Θ ≤ 144.412°), 8363 unique (R_{int} = 0.0536, R_{sigma} = 0.0306) which were used in all calculations. The final R_1 was 0.0334 (I > 2 σ (I)) and wR_2 was 0.0809 (all data).

MeBiSb^{iPr}:

Yield: 0.3975 mg, 69%

Melting Point: 135.0-140.2 °C, decomp.

¹H NMR (300 MHz, benzene-d₆): δ 7.30-7.09 (m, 12H, Ar-H), 1.39-1.33 (m, 6H, 2 x iPr₃Si), 1.15-1.13 (d, 18H, 2 x iPr₃Si), 0.99-0.97 (d, 18H, 2 x iPr₃Si), 0.17 (s, 18H, 2 x Me₃Si).

¹³C{¹H} NMR (75 MHz, benzene-d₆): δ 153.7 (CAr), 151.8 (CAr), 138.2 (CAr), 137.7 (CAr), 136.9 (CAr), 124.8 (CAr), 124.0 (CAr), 122.4 (CAr), 120.5 (CAr), 117.6 (CAr), 116.5 (CAr), 19.2 (2 x iPr₃Si), 19.1 (2 x iPr₃Si), 14.9 (2 x iPr₃Si), 3.27 (2 x Me₃Si).

FTIR (cm⁻¹ (relative int.)): 3053(13), 2945(60), 2927(1), 2924(1), 2889(4), 2865(25), 1959(24), 1598(3), 1578(2), 1556(63), 1465(19), 1425(22), 1384(12), 1370(33), 1325(24), 1313(6), 1270(100), 1248(22), 1173(5), 1165(2), 1124(5), 1098(1), 1059(68), 1049(8), 1039(8), 1016(7), 988(3), 884(15), 868(36), 842(100), 794(33), 780(16), 758(47), 748(6), 734(23), 674(4), 654(19), 557(7), 524(20), 515(3).

HRMS (APCI, [M]⁺): calculated = 1098.3671 m/z, observed = 1098.3634 m/z, error = 3.32 ppm

Elemental analysis: Calcd. C: 48.04, H: 6.60, N: 5.09; Expt. C: 43.67, H: 6.39, N: 5.32

X-ray: Crystals were grown from benzene solutions. $C_{47}H_{75}BiN_4SbSi_4$ (*M* =1139.20 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 11.7148(10) Å, *b* = 24.8374(17) Å, *c* = 17.6977(10) Å, *β* = 98.486(2)°, *V* = 5093.0(6) Å³, *Z* = 4, *T* = 120.0 K, μ (CuK α) = 12.067 mm⁻¹, *Dcalc* = 1.486 g/cm³, 82000 reflections measured (6.178° ≤ 2Θ ≤ 127.002°), 8287 unique (R_{int} = 0.0579, R_{sigma} = 0.0298) which were used in all calculations. The final R_1 was 0.0592 (I > 2 σ (I)) and wR_2 was 0.1426 (all data).

EtBiSbEt:

Yield: 0.2609 g, 58%

Melting Point: 193.8-197.1 °C, decomp.

¹H NMR (300 MHz, benzene-d₆): δ 7.31-7.08 (m, 12H, Ar-H), 0.91-0.80 (m, 36H, 4 x Et₃Si), 0.77-0.70 (m, 24H, 4 x Et₃Si).

¹³C{¹H} NMR (75 MHz, benzene-d₆): δ 154.9 (CAr), 151.5 (CAr), 138.0 (CAr), 137.7 (CAr), 136.5 (CAr), 126.5 (CAr), 124.5 (CAr), 124.3 (CAr), 122.2 (CAr), 120.3 (CAr), 117.4 (CAr), 115.5 (CAr), 7.5 (1 x Et₃Si), 7.1 (1 x Et₃Si), 6.9 (2 x Et₃Si).

FTIR (cm⁻¹ (relative int.)): 2950(20), 2932(2), 2920(3), 2906(1), 2870(8), 2851(1), 1959(23), 1556(17), 1463(2), 1454(7), 1434(2), 1413(8), 1384(17), 1370(6), 1322(1), 1311(11), 1271(4), 1235(100), 1205(2), 1182(3), 1153(8), 1127(17), 1062(16), 1039(13), 1019(4), 999(29), 984(8), 879(23), 860(13), 845(27), 804(47), 788(17), 779(8), 763(8), 747(36), 719(11), 691(14), 652(2), 588(5), 530(4), 521(8).

HRMS (APCI, [M]⁺): calculated = 1098.3671 m/z, observed = 1098.3680 m/z, error = 0.89 ppm

Elemental analysis: Calcd. C: 48.04, H: 6.60, N: 5.09; Expt. C: 45.30, H: 6.24, N: 4.53

X-ray: Crystals were grown from hexane solutions. $C_{44}H_{72}BiN_4SbSi_4$ (*M* =1100.14 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 10.5482(4) Å, *b* = 12.2644(5) Å, *c* = 19.2011(8) Å, *β* = 101.6560(10)°, *V* = 2432.77(17) Å³, *Z* = 2, *T* = 115.0 K, μ (CuK α) = 12.609 mm⁻¹, *Dcalc* = 1.502 g/cm³, 130846 reflections measured (8.608° ≤ 2Θ ≤ 144.474°), 4778 unique (R_{int} = 0.1761, R_{sigma} = 0.0378) which were used in all calculations. The final R_1 was 0.0350 (I > 2 σ (I)) and wR_2 was 0.0959 (all data).

 ${}^{Me}BiSSb^{Et}$: ${}^{Et}SbBi^{Me}$ (0.2561 g, 0.252 mmol) was dissolved in toluene (ca. 5 mL) and added to a pressure vessel containing S₈ (0.0081 g, 0.031 mmol). The solution was heated to 100 °C and stirred for 1 hour. The solvent was removed and the residual solid was dissolved in pentane and placed in the freezer for recrystallization at –25 °C which gave the respective thiobismuthanylstibane as a brown solid.

Yield: 46%

Melting Point: 72.6-74.5 °C, melt.

¹H NMR (300 MHz, benzene-d₆): δ 7.43-7.09 (m, 12H, Ar-H), 0.87-0.80 (m, 18H, 2 x Et₃Si), 0.79-0.71 (m, 12H, 2 x Et₃Si), 0.21 (s, 18H, 2 x Me₃Si).

¹³C{¹H} NMR (75 MHz, benzene-d₆): δ 148.1 (CAr), 145.6 (CAr), 137.9 (CAr), 137.7 (CAr), 132.1 (CAr), 127.1 (CAr), 126.4 (CAr), 123.6 (CAr), 121.8 (CAr), 119.7 (CAr), 118.0 (CAr), 116.2 (CAr), 7.2 (2 x Et₃Si), 6.0 (2 x Et₃Si), 2.6 (2 x Me₃Si).

FTIR (cm⁻¹ (relative int.)): 3223(10), 3054(17), 3027(6), 2955(108), 2933(3), 2874(21), 2029(11), 1959(43), 1598(5), 1579(10), 1562(78), 1512(14), 1494(21), 1460(33), 1453(5), 1420(51), 1416(2), 1384(14), 1375(40), 1332(11), 1313(17), 1293(6), 1274(100), 1263(5), 1251(37), 1175(6), 1162(2), 1154(6), 1092(2), 1080(6), 1059(111), 1043(17), 1031(8), 1017(6), 1002(27), 870(32), 859(2), 842(92), 815(40), 783(13), 767(30), 755(127), 730(16), 698(60), 659(3), 648(2), 627(2), 621(10), 605(32), 588(8), 532(13).

HRMS (APCI): decomposed in spectrometer.

Elemental analysis: Calcd. C: 43.55, H: 5.77, N: 5.35; Expt. C: 39.55, H: 5.56, N: 4.73

X-ray: Crystals were grown from a saturated hexane solution. $C_{38}H_{60}BiN_4SSbSi_4$ (*M* =917.87 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 16.5940(6) Å, *b* = 12.7708(4) Å, *c* = 21.9816(8) Å, *β* = 108.2140(10)°, *V* = 4424.9(3) Å³, *Z* = 4, *T* = 116 K, µ(CuKα) = 14.183 mm⁻¹, *Dcalc* = 1.378 g/cm³, 106069 reflections measured (5.606° ≤ 2Θ ≤ 144.504°), 8717 unique (*R*_{int} = 0.0309, R_{sigma} = 0.0126) which were used in all calculations. The final *R*₁ was 0.0178 (I > 2σ(I)) and *wR*₂ was 0.0440 (all data).

(^{Et}Sb)₄Sb₈:

Spectroscopic data could not be obtained for this product due to poor solubility and a mixture of solids precipitating out of solution. Note that this compound was formed as a byproduct and is not of immediate interest to the findings of this study.

Xray: Crystals were grown from a solution of ether. $C_{30}H_{40}N_2Sb_3Si_2$ (*M* =850.07 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 18.3686(6) Å, *b* = 11.8349(4) Å, *c* = 25.5125(8) Å, *β* = 92.574(2)°, *V* = 5540.6(3) Å³, *Z* = 8, *T* = 125.0 K, µ(MoKα) = 3.016 mm⁻¹, *Dcalc* = 2.038 g/cm³, 147121 reflections measured (3.972° ≤ 2Θ ≤ 53.406°), 22856 unique (R_{int} = 0.0470, R_{sigma} = 0.0261) which were used in all calculations. The final R_1 was 0.0200 (I > 2σ(I)) and wR_2 was 0.0411 (all data).

Figure S1. X-ray crystal structure of bismuthanylstibanes ^{*Me*}**BiSb**^{*iPr*} and ^{*Et*}**BiSb**^{*Et*}. The latter is for connectivity only.

NMR Spectra

Figure S2. Crude ¹H NMR spectrum of ^{Et}SbNMe₂ obtained from the combination of LiNMe₂ and ^{Et}SbCI.

Figure S3. ¹H NMR spectrum of ^{Me}BiSb^{Et}.

Figure S4. ¹³C NMR spectrum of ^{Me}BiSb^{Et}.

Figure S5. ¹H NMR spectrum of ^{*Et*}BiSb^{*Et*}.

Figure S6. ¹³C NMR spectrum of ^{*Et*}BiSb^{*Et*}.

Figure S7. ¹H NMR spectrum of ^{Me}BiSb^{iPr}.

153.66	138.20 137.77 136.86	124.83 174.07 172.53 117.55 117.55	(19.17) 19.14 - 14.89	3.27
--------	----------------------------	--	-----------------------------	------

9

Figure S9. ¹H NMR spectrum of ^{Me}BiSSb^{Et}.

Figure S10. ¹³C NMR spectrum of ^{Me}BiSSb^{Et}.

HRMS

Figure S13. HRMS spectrum of ^{Et}BiSb^{Et}:

Figure S14. QTAIM molecular graph for MeBiSbEt:

Computational details

All calculations were performed using the 2017 Amsterdam Density Functional (ADF) suite.

EDA calculations: The BP86 functional was used with Grimme's D3 correction and Becke-Johnson dampening. The TZ2P basis set was employed with a small frozen core approximation and scalar relativistic correction. Homolytic dissociation of the Sb-Bi bond into two doublet fragments was assumed due to their similar electronegativities. All optimized species were confirmed as minima by frequency analysis.

NBO calculations: The BP86 functional was used with Grimme's D3 correction and Becke-Johnson dampening. The TZ2P basis set was employed without any frozen core approximation. Scalar relativistic correction was employed. NBO analysis Homolytic dissociation of the Sb-Bi bond into two doublet fragments was assumed due to their similar electronegativities.

Reference for ADF: G.te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders and T. Ziegler, *Chemistry with ADF*, Journal of Computational Chemistry 22, 931 (2001)

C.Fonseca Guerra, J.G. Snijders, G. te Velde and E.J. Baerends, *Towards an order-N DFT method*, Theoretical Chemistry Accounts 99, 391 (1998)

ADF2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. Optionally, you may add the following list of authors and contributors: E.J. Baerends, T. Ziegler, A.J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev

E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic regular two-component Hamiltonians, Journal of Chemical Physics 99, 4597 (1993)

E. van Lenthe, E.J. Baerends and J.G. Snijders, Relativistic total energy using regular approximations, Journal of Chemical Physics 101, 9783 (1994)

E. van Lenthe, A.E. Ehlers and E.J. Baerends, Geometry optimization in the Zero Order Regular Approximation for relativistic effects, Journal of Chemical Physics 110, 8943 (1999)

V.P. Osinga, S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, *Density functional results for isotropic and anisotropic multipole polarizabilities and C6*, *C7*, *and C8 Van der Waals dispersion coefficients for molecules*, Journal of Chemical Physics 106, 5091 (1997)

T. Ziegler and A. Rauk, A theoretical study of the ethylene-metal bond in complexes between Cu+ , Ag+ , Au+ , Pt0 or Pt2+ and ethylene, based on the Hartree-Fock-Slater transition-state method, Inorganic Chemistry 18, 1558 (1979)

T. Ziegler and A. Rauk, *Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as sigma donors and pi acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method*, Inorganic Chemistry 18, 1755 (1979)

F.M. Bickelhaupt and E.J. Baerends, In: Rev. Comput. Chem.; K.B. Lipkowitz and D.B. Boyd, Eds.; Wiley, New York, 2000, Vol. 15, p.1-86

Optimized geometry for ^{*Et*}Sb

1 C	15.231937	4.350333	22.383142
2 Sb	11.428188	5.789843	3 24.510863
3 Si	14.466444	4.643137	24.092901
4 Si	9.138195	5.029135	22.200799
5 H	14.528910	3.744687	21.793015
6 H	15.272397	5.326726	21.874694
7 N	9.871560	4.689285	23.766668
8 N	12.736221	4.231558	24.067151
9 H	11.891391	3.914317	21.556512

10	Н	11.497154	4.926658	20.159845
11	С	9.801267	3.362641	24.271229
12	С	12.301308	2.903922	23.988073
13	С	15.324200	3.702697	25.489669
14	н	15.590704	2.683204	25,181435
15	н	16 279026	4 212530	25 694127
16	C	11 292719	3 958517	20.637591
17	č	10 037465	2 484908	24 251029
18	ĉ	14 600463	6 / 87233	24.201023
10	ц	13 081122	7 072/07	23,801640
20		14 202420	6 6 9 5 7 1 0	25.001040
20		14.203429	2 172570	20.007040
21		11.002700	3.173372	19.904303
22		14.460604	3.050291	20.759800
23	C	13.244631	1.905397	23.712808
24	Н	14.253962	2.192550	23.429996
25	C	11./1/564	0.127719	24.266260
26	Н	11.496914	-0.926755	24.428630
27	С	9.796965	3.789380	20.943781
28	Н	9.606586	2.782097	21.347118
29	Н	9.200604	3.860839	20.020165
30	Н	14.170019	4.663874	27.089712
31	С	10.687502	1.079526	24.466486
32	Н	14.991747	3.177820	27.593515
33	С	9.625774	6.790797	21.727149
34	Н	9.342287	7.476490	22.541429
35	Н	10.722703	6.856439	21.649877
36	н	13.535484	3.093321	26.582024
37	С	8.980558	7.244878	20.407591
38	Ĥ	9.257323	6.580510	19.577335
39	Н	9 292094	8 261665	20 132267
40	н	7 884258	7 243898	20 474672
41	C	16 057513	6 978539	24 414787
42	C C	16 623127	3 699476	22 384279
12	ц	17 016318	3 582081	22.004270
40	Ц	16 500365	2 700050	21.303323
44		17 240951	2.700950	22.042000
40	\hat{c}	7 257696	4.294990	22.900124
40		7.237000	4.910202	22.20/010
41		0.004900	D. 104407	21.274709
40		0.976021	3.882048	22.526009
49		9.392032	0.030319	24.042390
50	н	9.239770	-0.427389	25.011921
51	H	16.477132	6.818055	23.412619
52	C	12.960207	0.539708	23.843977
53	Н	13.746432	-0.18/342	23.641953
54	С	8.354065	1.529848	24.978876
55	Н	7.365298	1.187842	25.284243
56	Н	16.703244	6.452742	25.130805
57	Н	16.132363	8.051787	24.633786
58	С	6.629159	5.895618	23.290875
59	Н	5.539962	5.771100	23.362842
60	Н	6.821895	6.939151	23.005898
61	Н	7.049088	5.757414	24.297148
62	С	8.560414	2.887505	24.681651

Optimized geometry for ^{Me}Bi

1 Bi	9.999079	3.348686	27.271983
2 C	6.946403	2.523504	28.645217
3 H	7.123240	1.937358	27.732598
4 H	5.959406	2.225243	29.029237
5 Si	6.929379	4.384004	28.343846
6 Si	11.978795	3.303674	30.066549
7 H	7.695954	2.227052	29.390631
8 C	6.468711	5.259946	29.938891
9 N	8.560122	4.856130	27.887259
10 N	11.268625	4.258897	28.776655
11 C	11.445155	5 5.64859	7 28.649657
12 H	7.171994	4.985145	30.736273
13 H	5.456559	4.976381	30.259706
14 H	6.499101	6.350287	7 29.826568
15 C	5.627970	4.686697	27.010964
16 C	9.024120	6.183103	3 27.920635
17 C	11.999459	8.42712	7 28.596673
18 H	12.189412	9.50001	2 28.582731
19 C	10.915795	1.761857	7 30.273981
20 H	9.869355	2.020249	30.483201
21 C	8.432246	8.551983	3 27.634889
22 H	7.671227	9.291379	27.385628
23 H	11.293605	1.178059	31.126183
24 H	10.933934	1.099729	9 29.397505
25 H	5.356828	5.743858	3 26.898225
26 H	4.708280	4.134840	27.253828
27 H	5.985661	4.327430	26.035755
28 C	12.991451	1 7.53587	6 28.927005
29 H	13.995676	5 7.88321	4 29.169644
30 C	10.700281	1 7.97025	7 28.259505
31 C	11.933001	4.293978	3 31.661209
32 C	10.383261	6.55716	4 28.265285
33 H	12.566423	5.187317	7 31.611339
34 H	12.277289	3.676437	7 32.502583
35 H	10.906982	4.622710) 31.873310
36 C	9.712136	8.938292	2 27.950448
37 H	9.994785	9.990518	3 27.967726
38 C	8.109234	7.189158	3 27.602252
39 H	7.111162	6.891346	5 27.288671
40 C	12.711344	6.16286	8 28.933209
41 H	13.509341	5.45670	5 29.153967
42 C	13./32458	2./14939	9 29.699330
43 H	13.767269	2.179824	28.739825
44 H	14.076238	2.022197	30.481152
45 H	14.455236	3.539081	1 29.646155

Optimized geometry for ^{Me}BiSb^{Et}

1 Bi	10.423608 3.297479 27.343490
2 Sb	11.277435 5.362379 25.343804
3 Si	14.142333 4.301718 24.050673
4 Si	9.297447 5.782624 22.695612
5 Si	7 136319 3 706239 28 055698
6 Si	11 918503 3 793689 30 397936
7 N	0 783007 <i>/</i> 7/0203 2/ 03812/
	10 471647 2 907570 24 402469
	0 CC0455 4 C040C0 07 770400
9 IN 10 N	0.002400 4.024002 27.770120
110	9.500178 3.372123 24.057837
12 C	11.935682 2.608561 24.438895
13 C	15.250054 4.018008 25.560558
14 H	15.463838 2.946433 25.690584
15 H	16.226316 4.492141 25.372095
16 C	8.858712 5.909283 27.781962
17 C	10.510748 2.353608 24.280508
18 C	14.159809 6.149922 23.657218
19 H	13.381502 6.334287 22.899967
20 H	13 861742 6 734091 24 541066
21 C	7 881524 8 114526 27 293569
22 H	7 008371 8 687079 26 980909
22 11	12 700115 1 521086 24 651006
23 C 24 L	12.790113 1.321900 24.031090
24 11	10.002214 0.072065 24.013019
23 0	
20 H	10.619058 -1.096273 24.602268
27 0	9.856752 4.942340 21.104963
28 H	9.342727 3.969498 21.050842
29 H	9.496806 5.521351 20.239953
30 C	10.206168 7.990680 27.957724
31 C	10.065865 0.976521 24.344190
32 C	10.120385 6.554472 28.129285
33 C	10.178257 7.435620 22.941175
34 H	9.906810 7.850986 23.924855
35 H	11.265346 7.267172 22.983950
36 C	9.082524 8.740255 27.531427
37 H	9.189036 9.818746 27.418073
38 C	7.784471 6.723216 27.407769
39 H	6 848310 6 241407 27 140275
40 C	12 440312 6 633193 28 941660
40 О /1 Н	13 317/5/ 6 005026 20 207370
42 0	
42 U 12 U	16,479050 2,422420 21,600262
43 П	
44 H	10.458440 2.302057 23.300403
45 H	16.847674 3.841950 22.593293
46 C	7.439804 6.115571 22.638463
47 H	7.263786 6.870385 21.854732
48 H	6.910011 5.214511 22.294915
49 C	8.696056 0.653001 24.170499
50 H	8.400215 -0.394149 24.227418
51 C	11.292019 5.887264 28.669779
52 C	12.333831 0.197747 24.701196

53 H	13.047150	-0.608105	24.873282
54 C	7.769018	1.639043	23.927337
55 H	6.715794	1.390884	23.797454
56 C	11.407392	8.686065	28.252286
57 H	11,430355	9.764117	28.094929
58 C	11 034622	2 140490	30 589688
59 H	9 944323	2 274419	30 598509
60 H	11 322325	1 673600	31 542468
61 H	11 285328	1 426466	20 702778
62 C	8 172675	2 080601	23.881700
62 U	7 430380	3 762263	23.001700
64 C	1/ 712176	2 220606	23.143330
	14.7 13170	3.329000	22.002047
	14.090001	2.423372	22.440/00
	14.400020	3.930049	21.040000
67 C	11.480724	4.915242	31.837505
68 H	11.963249	5.896178	31.745455
69 H	11.795282	4.468216	32.790674
70 H	10.395578	5.079472	31.874839
/1 C	14.623993	4.586982	26.841431
72 H	14.399953	5.658727	26.746717
73 H	15.282039	4.470187	27.712659
74 H	13.676886	4.083833	27.086310
75 C	9.856982	8.452293	21.833811
76 H	10.129716	8.065657	20.841962
77 H	10.402253	9.394272	21.981185
78 H	8.786269	8.694428	21.807265
79 C	15.519840	6.648258	23.143308
80 H	15.820111	6.124132	22.225851
81 H	16.313828	6.491185	23.886266
82 H	15.495804	7.722135	22.914629
83 C	6.884555	6.598980	23.983743
84 H	5.798490	6.761764	23.952546
85 H	7.353568	7.541958	24.294584
86 H	7.095644	5.873837	24.780065
87 C	12.506077	8.018533	28.738680
88 H	13.429332	8.553894	28.960591
89 C	13.770675	3.444282	30.383093
90 H	14.043021	2.836673	29.509214
91 H	14.069914	2.890733	31.284830
92 H	14.365998	4.366066	30.346258
93 C	11 376931	4 738773	21 035810
94 H	11 677660	4 173427	20 143389
95 H	11 739475	4 194296	21 917734
96 H	11 907274	5 701354	21.017998
97 C	6 446335	4 204020	20 700380
08 H	7 130833	4.045571	20.700000
	5 475060	3 820650	20 010375
33 П 100 Ц	6 200712	5 292271	29.919010
100 17	5 811001	3 001660	29.100200
101 し 102 U	5.041001	J. JU 1000	20.090419
102 FI	5.555102	4.004090	20.011302
100 H	0.002494	J. 140404	20.042100
104 H	0.290//9	3.122899	20.7 10002
105 C	1.509386	1.801024	28.118139

106 H	7.846161	1.471986	27.145963
107 H	6.577681	1.331782	28.367043
108 H	8.253081	1.588359	28.878509

References

- [1] K. M. Marczenko, J. A. Zurakowski, K. L. Bamford, J. W. M. MacMillan, S. S. Chitnis, *Angewandte Chemie International Edition* **2019**, *58*, 18096-18101.
- [2] B. Nekoueishahraki, P. P. Samuel, H. W. Roesky, D. Stern, J. Matussek, D. Stalke, *Organometallics* **2012**, *31*, 6697-6703.