Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

# Supporting Information

## for

Synthesis of tetrasubstituted thiophenes via [3 + 2] cascade cyclization

reaction of pyridinium 1,4-zwitterionic thiolates and activated allenes

Shengxian Zhai,<sup>a</sup><sup>+</sup> Xinping Zhang,<sup>bc</sup><sup>+</sup> Bin Cheng,<sup>\*abc</sup> Hui Li,<sup>bc</sup> Yuntong Li,<sup>c</sup> Yixuan He,<sup>bc</sup> Yun Li,<sup>c</sup> Taimin Wang,<sup>\*b</sup> and Hongbin Zhai<sup>\*abcd</sup>

<sup>+</sup> These authors contributed equally to this work

## **Table of Contents**

| 1. General information ······S2                          |
|----------------------------------------------------------|
| 2. General experimental procedure ······\$2              |
| 3. Procedures for the synthesis of 24 and 27 ······S2-S3 |
| 4. Tables of substrates ······S3-S5                      |
| 5. Optimization of the reaction conditions               |
| 6. Characterization data of substratesS5-S10             |
| 7. Characterization data of products ······S11-S21       |
| 8. Copies of NMR spectra ······S22-S66                   |

<sup>&</sup>lt;sup>a.</sup> College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China

<sup>&</sup>lt;sup>b.</sup> Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; e-mail: chengbin@szpt.edu.cn

<sup>&</sup>lt;sup>c.</sup> State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

<sup>&</sup>lt;sup>d.</sup> State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China; e-mail: zhaihb@pkusz.edu.cn

### **1.** General information

All isolated compounds were characterized on Varian 300, Bruker 400 and JEOL 400 MHz spectrometers in the CDCl<sub>3</sub> or  $(CD_3)_2CO$ . Chemical shifts are reported as  $\delta$  values relative to internal chloroform ( $\delta$  7.26 for <sup>1</sup>H NMR and 77.00 for <sup>13</sup>C NMR) and acetone ( $\delta$  2.05 for <sup>1</sup>H NMR and 29.84 for <sup>13</sup>C NMR). High resolution mass spectra (HRMS) were obtained on a 4G mass spectrometer by using electrospray ionization (ESI) analyzed by quadrupole time-of-flight (QTof). All melting points were measured with the samples after column chromatography and uncorrected. Column chromatography was performed on silica gel. Anhydrous THF, PhMe were distilled over sodium benzophenone ketyl under Ar. All other solvents and reagents were used as obtained from commercial sources without further purification.

#### 2. General experimental procedure (for 3-23 and 25)



To a solution of allene (0.3 mmol, 1.0 equiv) in dioxane (3 mL) was added pyridinium 1,4-zwitterionic thiolate (0.45 mmol, 1.5 equiv), then the reaction mixture was stirred at 85 °C. After completion as monitored by TLC, the mixture was concentrated and the residue was directly subjected to silica gel column chromatography to afford the desired thiophene.

#### 3. Procedures for the synthesis of 24 and 27



To a solution of allene **2e** (426 mg, 3.00 mmol, 1.0 equiv) in 1,4-dioxane (30 mL) was added pyridinium 1,4-zwitterionic thiolate **1b** (4.50 mmol, 1.27 g, 1.5 equiv), then the reaction mixture was stirred at 85 °C. After completion as monitored by TLC, dilute hydrochloric acid (2 M) was added to adjust the pH value less than 7. The mixture was concentrated to remove 1,4-dioxane and

the aqueous phase was extracted with DCM. The organic phases were combined and concentrated to afford a crude product of **16**, which could be used directly for the next step.

To a solution of crude **16** above-mentioned in PhMe (30 mL) was added TFA (0.22 mL, 1.0 equiv), then the mixture was heated at 85 °C. After completion as monitored by TLC, the mixture was concentrated and the residue was directly subjected to silica gel column chromatography to afford the desired thiophene product **24** (483 mg, 59% yield).



To a solution of alkyne **26** (46 mg, 0.21 mmol, 1.0 equiv) in 1,4-dioxane (2 mL) were added pyridinium 1,4-zwitterionic thiolate **1b** (90 mg, 0.32 mmol, 1.5 equiv) and TEA (6  $\mu$ L,0.2 equiv), then the reaction mixture was stirred at 85 °C. After completion as monitored by TLC, the mixture was concentrated and the residue was directly subjected to silica gel column chromatography to afford the desired product **27** (72 mg, 88% yield).

#### **4.** Tables of substrates

All allenoates and allenones were prepared according to the literature.<sup>[1]</sup> **16s**, **17s** and **26** was prepared according to the literature.<sup>[2]</sup>

(a) Rout, L.; Harned, A. M. *Chem. Eur. J.* 2009, *15*, 12926.2. (b) Pashikanti, S.; Calderone, J. A.;
 Nguyen, M. K.; Sibley, C. D.; Santos, W. L. *Org. Lett.* 2016, *18* 2443. (c) Yao, C.; Bao, Y.; Lu, T.;
 Zhou, Q. *Org. Lett.* 2018, *20*, 2152.

2. Hu, J.; Dong, W.; Wu, Xin-Y.; Tong, X. Org. Lett. 2012, 14, 5530.

Pyridinium 1,4-zwitterionic thiolates were prepared according to the literature.<sup>[3]</sup> **1a** was known compound, **1b–1e** were new compounds as shown below.

3. Moafi, L.; Ahadi, S.; Khavasi, H. R.; Bazgir, A. Synthesis 2011, 1399.

 Table S1. Substrates listed below are new compounds.

| MeO <sub>2</sub> CF                 | MeO <sub>2</sub> C | BnO <sub>2</sub> C   | <sup>1</sup> BuO <sub>2</sub> C |
|-------------------------------------|--------------------|----------------------|---------------------------------|
| 3s                                  | 4s                 | 6s                   | 7s                              |
| BnO <sub>2</sub> C() <sub>7</sub> - | MeO <sub>2</sub> C | EtO <sub>2</sub> COH | EtO <sub>2</sub> COH            |
| 11s                                 | 12s                | 13s ( i.e., 2e)      | 14s                             |
| MeOC                                | EIO2C OH           |                      |                                 |
| 2c                                  | 26                 |                      |                                 |

**Table S2.** Substrates listed below are *known compounds*, <sup>1</sup>H NMR data correspond to the reported values.

| Substrate          | Data Refs                             |  |  |
|--------------------|---------------------------------------|--|--|
| MeO <sub>2</sub> C | Org. Lett. 2012, 14, 1398             |  |  |
| 5s                 |                                       |  |  |
| PhOC               | Angew. Chem. <b>1980</b> , 92, 555    |  |  |
| 8s                 |                                       |  |  |
| MeOC               | Org. Lett. <b>2011</b> , 13, 5024     |  |  |
| 9s                 |                                       |  |  |
| BnO <sub>2</sub> C | Chem. Eur. J. <b>2009</b> , 15, 12926 |  |  |
| 10s                |                                       |  |  |
| BnO <sub>2</sub> C | Org. Lett. 2012, 14, 2034             |  |  |
| 15s                |                                       |  |  |
| MeO <sub>2</sub> C | Synlett <b>2015</b> , 26, 2135        |  |  |
| 16s                |                                       |  |  |
| MeO <sub>2</sub> C | Org. Lett. 2012, 14, 1398             |  |  |

| 17s                      |                                              |  |
|--------------------------|----------------------------------------------|--|
| BnO <sub>2</sub> C       | Chem. Eur. J. 2009, 15, 12926                |  |
| 18s                      |                                              |  |
| PhO <sub>2</sub> C       | J. Am. Chem. Soc. 2009, 131, 6105            |  |
| 19s                      |                                              |  |
| PhOC                     | Org. Lett. 2011, 13, 5024                    |  |
| 20s                      |                                              |  |
| PhO <sub>2</sub> S       | J. Chem. Soc., Perkin Trans. 2 1988, 0, 1377 |  |
| <b>2f</b>                |                                              |  |
| EtO2C                    | Org. Lett. 2011, 13, 2388                    |  |
| 2b                       |                                              |  |
| MeO <sub>2</sub> C<br>Bn | Tetrahedron <b>1989</b> , 45, 1605           |  |
| 2d                       |                                              |  |

# 5. Optimization of the reaction conditions



| entry | solvent                       | yield <sup>a</sup> | ratio $(3b: 3a)^b$ |
|-------|-------------------------------|--------------------|--------------------|
| 1     | TFE                           | ND                 |                    |
| 2     | HFIP                          | ND                 |                    |
| 3     | DCM: CH <sub>3</sub> OH = 7:1 | 60%                | 1:2.9              |
| 4     | DCM: $CH_{3}OH = 4:1$         | 60%                | 1:3.2              |
| 5     | DCM: $CH_3OH = 1:1$           | 49%                |                    |
| 6     | Dioxane: $CH_3OH = 1:1$       | 41%                | 1:2.8              |
| 7     | PhMe: $CH_3OH = 1:1$          | 41%                | 1:6.6              |
| 8     | PhCl: $CH_3OH = 1:1$          | 41%                | 1:4.1              |
| 9     | Dioxane: $H_2O = 1:1$         | 30%                |                    |

<sup>*a*</sup> Reaction conditions: **1b** (0.15 mmol, 1.5 equiv), **2a** (0.1 mmol), solvent (1 mL), under air. Isolated yield. ND = not detected. <sup>*b*</sup> The ratio was determined by the integrals of <sup>19</sup>F-NMR. <sup>*c*</sup> Not determined.

## 6. Characterization data of substrates



**3s**: yellow oil,  $R_f = 0.54$  (PE:EA=6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29–7.24 (m, 2H), 7.05–7.00 (m, 2H), 6.60 (d, J = 6.4 Hz, 2H), 6.02 (d, J = 6.4 Hz, 2H), 3.76 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  214.4, 165.3, 162.5 (d, J = 246.5 Hz), 129.1 (d, J = 8.1 Hz), 127.0 (d, J = 3.3 Hz), 116.8 (d, J = 21.9 Hz), 97.7, 91.7, 52.2; ESI-HRMS m/z Calcd. for C<sub>11</sub>H<sub>9</sub>FO<sub>2</sub> + Na<sup>+</sup> 215.0479, found 215.0488.



**4s**: yellow oil,  $R_f = 0.58$  (PE:EA=6:1), <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\delta$  7.41–7.35 (m, 4H), 6.84 (d, J = 6.4 Hz, 1H), 6.11 (d, J = 6.4 Hz, 1H), 3.71 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\delta$  215.3, 165.4, 134.1, 131.2, 129.8, 129.7, 98.1, 92.3, 52.3; ESI-HRMS m/z Calcd. for C<sub>11</sub>H<sub>9</sub>ClO<sub>2</sub> + H<sup>+</sup> 209.0364, found 209.0366.



**6s:** yellow oil,  $R_f = 0.7$  (PE:EA = 6:1), <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.34–7.22 (m, 10H), 6.63 (d, J = 6.3 Hz, 1H), 6.05 (d, J = 6.3 Hz, 1H), 5.20 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  215.0, 164.8, 135.8, 130.9, 128.8, 128.5, 128.1 (2C), 128.0, 127.5, 98.8, 91.7, 66.6; ESI-HRMS m/z Calcd. for  $C_{17}H_{14}O_2 + H^+$  251.1067, found 251.1069.



7s: yellow oil, R<sub>f</sub> = 0.67 (PE:EA = 6:1), <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.23 (d, J = 5.7 Hz, 2H),
6.87 (d, J = 5.7 Hz, 2H), 6.55 (d, J = 6.3 Hz, 1H), 5.90 (d, J = 6.3 Hz, 1H), 3.80 (s, 3H), 1.48 (s, 3H)

9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  214.0, 164.5, 159.4, 128.6, 123.5, 114.2, 97.9, 93.3, 81.1, 55.3, 28.0; ESI–HRMS m/z Calcd. for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub> + Na<sup>+</sup> 269.1148, found 269.1151.



**11s:** colorless liquid,  $R_f = 0.8$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.22 (m, 5H), 5.62–5.58 (m, 2H), 5.18 (d, J = 12.8 Hz, 1H), 5.14 (d, J = 12.4 Hz, 1H), 2.14–2.07 (m, 2H), 1.48–1.40 (m, 2H), 1.34–1.25 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  212.5, 165.8, 136.0, 128.3, 127.9 (2C), 95.4, 87.9, 66.2, 31.7, 29.2, 29.1, 28.8, 28.6, 27.3, 22.5, 14.0; ESI-HRMS m/z Calcd. for C<sub>19</sub>H<sub>26</sub>O<sub>2</sub> + H<sup>+</sup> 287.2006, found 287.2005.



**12s:** yellow liquid,  $R_f = 0.75$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.70–5.53 (m, 2H), 3.73 (s, 3H), 2.18–2.10 (m, 2H), 1.50–1.42 (m, 2H), 1.36–1.24 (m, 10H), 0.88 (t, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  212.3, 166.6, 95.4, 87.8, 51.8, 31.8, 29.2 (2C), 28.9, 28.6, 27.4, 22.6, 14.0; ESI-HRMS m/z Calcd. for  $C_{13}H_{22}O_2 + H^+$  211.1693, found 211.1695.





**13s** (i.e., **2e**): colorless liquid,  $R_f = 0.25$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.86–5.80 (m, 1H), 5.74–5.71 (m, 1H), 4.30–4.16 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.57 (br s, 1H), 1.29 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  211.6, 166.1, 96.4, 89.8, 61.1, 58.9, 14.0; ESI-HRMS m/z Calcd. for  $C_7H_{10}O_3 + H^+$  143.0703, found 143.0703.



**14s:** colorless liquid,  $R_f = 0.3$  (PE:EA = 4:1), The ratio of isomers is 1:1, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45–7.41 (m, 2H), 7.37–7.31 (m, 2H), 5.88–5.83 (m, 1H), 5.74–5.71 (m, 1H), 5.41–5.32 (m, 1H), 4.22–4.11 (m, 2H), 4.05 (d, *J* = 4.1 Hz, 0.5H), 3.95 (d, *J* = 4.6 Hz, 0.5H), 1.26 (q, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  211.4 (2C), 166.0, 165.7, 141.7, 141.6, 128.4, 128.3, 127.9, 127.7, 126.2, 126.0, 100.3, 100.1, 90.4, 90.3, 71.2 (2C), 61.1, 61.0, 14.0; ESI-HRMS m/z Calcd. for C<sub>13</sub>H<sub>14</sub>O<sub>3</sub> + Na<sup>+</sup> 241.0835, found 241.0835.



**2c:** yellow liquid,  $R_f = 0.6$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>);  $\delta$  7.39–7.22 (m, 5H), 6.53 (q, J = 2.8 Hz, 1H), 2.30 (s, 3H), 1.91 (d, J = 2.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  214.8, 198.2, 132.0, 128.8, 127.7, 127.0, 107.8, 97.4, 26.7, 13.1; ESI-HRMS m/z Calcd. for C<sub>12</sub>H<sub>12</sub>O + H<sup>+</sup> 173.0961, found 173.0962.



**26:** colorless liquid,  $R_f = 0.25$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 7.6 Hz, 2H), 7.39–7.29 (m, 3H), 5.48 (d, J = 5.6 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.35 (d, J = 2.0 Hz, 2H), 3.07 (d, J = 4.6 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.2, 140.6, 128.4, 128.2, 126.6, 83.4, 78.5, 64.4, 61.7, 26.1, 14.0; ESI-HRMS m/z Calcd. for C<sub>13</sub>H<sub>14</sub>O<sub>3</sub> + Na<sup>+</sup> 241.0835, found 241.0834.



Compound **1b**: yellow solid, mp 161–162 °C. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.62 (d, J = 7.6 Hz, 2H), 7.57 (d, J = 7.6 Hz, 2H), 4.12 (s, 3H), 3.70 (s, 3H), 3.54 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  178.1, 170.8, 169.3, 160.7, 150.0, 123.6, 113.1, 58.1, 52.0, 51.5; ESI-HRMS m/z calcd for C<sub>12</sub>H<sub>13</sub>NO<sub>5</sub>S + H<sup>+</sup> 284.0587, found 284.0584.



Compound **1c**: yellow solid, mp 144–145 °C. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.62 (d, *J* = 6.8 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 4.12 (s, 3H), 4.03 (q, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.10 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  177.9, 170.6, 168.7, 160.3, 150.1, 123.8, 113.0 , 60.6, 60.0, 58.1, 14.3, 14.0; ESI-HRMS m/z calcd for C<sub>14</sub>H<sub>17</sub>NO<sub>5</sub>S + H<sup>+</sup> 312.0900, found 312.0897.



Compound **1d**: yellow solid, mp 175–176 °C. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.92 (d, J = 7.2 Hz, 2H), 7.98–7.86 (m, 2H), 7.59–7.50 (m, 3H), 7.44 (t, J = 7.2 Hz, 2H), 7.31–7.25 (m, 1H), 7.25–7.20 (m, 2H), 7.20–7.12 (m, 2H), 4.07 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  191.2, 191.1, 181.6, 170.6, 150.2, 139.1, 135.8, 135.4, 132.0, 130.1, 129.1, 128.0, 128.0, 127.2, 112.9, 58.1; ESI-HRMS m/z calcd for C<sub>22</sub>H<sub>17</sub>NO<sub>3</sub>S + H<sup>+</sup> 376.1002, found 376.1000.



Compound **1e**: yellow solid, mp 169–170 °C. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.83 (d, J = 3.6 Hz, 2H), 8.00–7.92 (m, 2H), 7.66–7.60 (m, 2H), 7.58–7.52 (m, 1H), 7.50–7.44 (m, 2H), 4.14 (s, 3H), 3.39 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  191.0, 185.9, 170.7, 160.8, 150.1, 135.6, 132.2, 129.2, 128.2, 123.9, 113.0, 58.1, 51.10; ESI-HRMS m/z calcd for C<sub>17</sub>H<sub>15</sub>NO<sub>4</sub>S + H<sup>+</sup> 330.0795, found 330.0791.

## 7. Characterization data of products



**3a**: Y = 68%, yellow oil, R<sub>f</sub> = 0.25 (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.25–7.21 (m, 2H), 7.00–7.05 (m, 2H), 4.47 (s, 2H), 3.97 (s, 3H), 3.85 (s, 3H), 3.82 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 161.9 (d, *J* = 244.5 Hz), 161.9, 160.4, 160.1, 140.7, 133.6 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.1 Hz), 127.2, 126.5, 115.6 (d, *J* = 21.4 Hz), 52.8, 52.5, 52.1, 35.2; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –115.0; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>15</sub>FO<sub>6</sub>S + H<sup>+</sup> 367.0646, found 367.0646.



**3b**: Y = 28%, yellow oil,  $R_f = 0.3$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28–7.23 (m, 2H), 7.13–7.06 (m, 2H), 3.88 (s, 3H), 3.72 (s, 3H), 3.71 (s, 3H), 3.70 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 165.7, 162.6 (d, *J* = 246.7 Hz), 161.1, 139.6, 139.3, 138.2, 131.1 (d, *J* = 8.2 Hz), 128.9 (d, *J* = 2.3 Hz), 115.6 (d, *J* = 21.5 Hz), 52.7, 52.5 (2C), 33.8, (1C missing); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  –112.97; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>15</sub>FO<sub>6</sub>S + H<sup>+</sup> 367.0646, found 367.0645.



**4a**: Y = 64%, colorless oil,  $R_f = 0.15$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 4.46 (s, 2H), 3.96 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 161.8, 160.3, 159.3, 140.7, 136.3, 133.1, 130.2, 128.8, 127.2, 126.6, 52.8, 52.5, 52.1, 35.2; ESI-HRMS m/z Calcd. for  $C_{17}H_{15}ClO_6S + H^+$  383.0351, found 383.0352.



**4b**: Y = 35%, brown oil,  $R_f = 0.25$  (PE:EA = 6:1), <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 3.88 (s, 3H), 3.73 (s, 3H), 3.71 (s, 5H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 165.6, 161.0, 139.3, 139.0, 138.2, 134.5, 131.4, 130.6, 129.0, 128.8, 52.7, 52.5, 33.8, (1C missing); ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>15</sub>ClO<sub>6</sub>S + H<sup>+</sup> 383.0351, found 383.0353.



**5a/5b**: Y = 95%, brown oil,  $R_f = 0.2$  (PE:EA = 6:1). The ratio of **5a**:**5b** = 3:1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42–7.22 (m, 7.3H), 4.49 (s, 2H), 3.96 (s, 3H), 3.86 (s, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.72 (s, 0.7H), 3.70 (s, 1H), 3.68 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 165.6, 165.3, 161.9, 161.0, 160.4, 160.3, 140.6, 140.2, 139.5, 137.9, 137.8, 132.8, 129.0, 128.8, 128.6 (2C), 128.4, 128.2, 127.2, 127.0, 126.4, 52.8, 52.4 (2C), 52.3 (2C), 52.0, 36.0, 33.7; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>16</sub>O<sub>6</sub>S + H<sup>+</sup> 349.0740, found 349.0740.



**6a**: Y = 68%, yellow oil,  $R_f = 0.26$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.24 (m, 8H), 7.24–7.19 (m, 2H), 5.26 (s, 2H), 4.50 (s, 2H), 3.78 (s, 3H), 3.62 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.3, 161.4, 160.9, 160.5, 140.7, 137.9, 134.8, 129.0, 128.8, 128.6, 128.5, 127.3, 127.1, 126.3, 67.3, 52.6, 52.5, 36.1, (1C missing); ESI-HRMS m/z Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>6</sub>S + H<sup>+</sup> 425.1053, found 425.1057.



**6b**: Y = 22%, yellow solid, 119.3–120.1 °C,  $R_f = 0.23$  (PE:EA = 6:1), <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.39–7.33 (m, 6H), 7.33–7.29 (m, 2H), 7.25–7.19 (m, 2H), 5.13 (s, 2H), 3.88 (s, 3H), 3.76 (s, 2H), 3.70 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 165.8, 161.2, 140.5, 139.6, 137.8, 135.2, 133.0, 129.2, 128.8, 128.6, 128.5 (2C), 128.4, 128.3, 67.3, 52.6, 52.5, 34.2; ESI-HRMS m/z Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>6</sub>S + H<sup>+</sup> 425.1053, found 425.1053.



**7a**: Y = 55%, yellow oil,  $R_f = 0.29$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.18 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 4.41 (s, 2H), 3.96 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 1.54 (s, 42)

9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 161.0, 160.9, 160.7, 158.8, 140.7, 130.2 (2C), 128.1, 126.7, 114.2, 82.6, 55.2, 52.8, 52.5, 35.4, 28.1; ESI-HRMS m/z Calcd. for C<sub>21</sub>H<sub>24</sub>O<sub>7</sub>S + Na<sup>+</sup> 443.1135, found 443.1135.



**7b**: Y = 14%, yellow oil,  $R_f = 0.24$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.21 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.74 (s, 3H), 3.61 (s, 2H), 1.44 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 166.2, 161.4, 159.4, 139.8, 138.8, 130.5, 128.2, 125.3, 113.9, 82.1, 55.2, 52.7, 52.4, 35.6, 27.9, (1C missing); ESI-HRMS m/z Calcd. for C<sub>21</sub>H<sub>24</sub>O<sub>7</sub>S + H<sup>+</sup> 421.1316, found 421.1317.



**8a**: Y = 19%, brownish red oil, mp:132.5–133.2 °C,  $R_f = 0.25$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77–7.70 (m, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.30–7.20 (m, 3H), 7.18–7.11 (m, 2H), 4.12 (s, 2H), 3.83 (s, 3H), 3.49 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.5, 163.7, 160.7, 153.6, 138.2, 138.1, 137.5, 133.5, 130.0, 129.2, 128.8, 128.6, 127.2, 52.6, 52.4, 35.1, (2C missing); ESI-HRMS m/z Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>5</sub>S + H<sup>+</sup> 395.0948, found 395.0947.



**8b**: Y = 25%, brownish red solid, mp:132.5–133.2 °C,  $R_f = 0.15$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85–7.80 (m, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.45–7.34 (m, 5H), 7.28–7.24 (m, 2H), 4.38 (s, 2H), 3.87 (s, 3H), 3.71 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  194.9, 166.0, 161.2, 140.2, 139.5, 138.7, 135.6, 133.7, 133.3, 129.2, 129.0, 128.7, 128.6, 128.3, 52.6, 52.4, 38.0, (1C missing); ESI-HRMS m/z Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>5</sub>S + H<sup>+</sup> 395.0948, found 395.0947.



**9a**: Y = 29%, brownish red oil,  $R_f = 0.3$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43–7.29 (m, 3H), 7.27–7.19 (m, 2H), 4.40 (s, 2H), 3.97 (s, 3H), 3.82 (s, 3H), 2.43 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  193.5, 165.9, 160.7, 157.8, 139.6, 137.7, 136.5, 129.0, 128.9, 127.8, 127.5, 53.2, 52.6, 36.4, 30.1; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>16</sub>O<sub>5</sub>S + H<sup>+</sup> 333.0791, found 333.0790.



**9b**: Y = 20%, brownish red oil,  $R_f = 0.2$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44–7.36 (m, 3H), 7.25–7.16 (m, 2H), 3.88 (s, 3H), 3.82 (s, 2H), 3.70 (s, 3H), 2.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  202.9, 165.9, 161.2, 140.2, 139.6, 138.1, 133.2, 129.1, 128.9, 128.6, 128.3, 52.6, 52.5, 42.7, 29.6; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>16</sub>O<sub>5</sub>S + H<sup>+</sup> 333.0791, found 333.0789.



**10**: Y = 87%, brown oil,  $R_f = 0.25$  (PE:EA = 4:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51–7.28 (m, 5H), 5.25 (s, 2H), 3.84 (s, 3H), 3.62 (s, 3H), 3.21 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.4, 163.4, 161.3, 160.6, 140.9, 134.9, 128.7, 128.5, 128.4, 126.1, 126.0, 67.2, 52.5, 23.8, 15.1, (1C missing); ESI-HRMS m/z Calcd. for C<sub>18</sub>H<sub>18</sub>O<sub>6</sub>S + H<sup>+</sup> 363.0897, found 363.0898.



**11**: Y = 85%, brown oil,  $R_f = 0.4$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.43–7.31 (m, 5H), 5.25 (s, 2H), 3.84 (s, 3H), 3.63 (s, 3H), 3.14 (t, J = 8.0 Hz, 2H), 1.71–1.62 (m, 2H), 1.34–1.22 (m, 12H), 0.89 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 161.8, 161.4, 160.6, 140.8, 134.9, 128.8, 128.5 (2C), 126.2 (2C), 67.2, 52.6, 52.5, 31.8, 31.1, 30.2, 29.4, 29.2, 22.6, 14.0, (2C missing); ESI-HRMS m/z Calcd. for  $C_{25}H_{32}O_6S + H^+$  461.1992, found 461.1991.



12: Y = 89%, yellow oil,  $R_f = 0.25$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.96 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.16 (t, *J* = 7.6 Hz, 2H), 1.73–1.65 (m, 2H), 1.41–1.26 (m, 12H), 0.88 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 162.1, 161.4, 160.7, 140.9, 126.5, 126.2, 52.9, 52.6, 52.0, 31.8, 31.0, 30.1, 29.4, 29.2, 22.6, 14.0, (2C missing); ESI-HRMS m/z Calcd. for  $C_{19}H_{28}O_6S + H^+$  385.1679, found 385.1682.



**13**: Y = 73%, brownish red oil,  $R_f = 0.25$  (PE:EA = 2:1), <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.30 (q, J = 8.4 Hz, 2H), 3.95 (s, 3H), 3.91 (t, J = 6.2 Hz, 2H), 3.87 (s, 3H), 3.42 (t, J = 6.0 Hz, 2H), 2.47 (s, 1H), 1.34 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 161.8, 160.6, 156.4, 140.4, 127.4, 127.2, 62.3, 61.4, 52.8, 52.6, 33.0, 13.9; ESI-HRMS m/z Calcd. for C<sub>13</sub>H<sub>16</sub>O<sub>7</sub>S + H<sup>+</sup> 317.0690, found 317.0688.



**14**: Y = 85%, brownish red oil,  $R_f = 0.5$  (PE:EA = 2:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40–7.24 (m, 5H), 4.96 (d, *J* = 8.0 Hz, 1H), 4.28 (q, *J* = 7.2 Hz, 2H), 3.93 (s, 3H), 3.83 (s, 3H), 3.68 (dd, *J* = 14.4, 4.0 Hz, 1H), 3.38 (dd, *J* = 14.4, 8.4 Hz, 1H), 3.05 (s, 1H), 1.32 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 162.0, 160.6, 155.6, 143.1, 140.1, 128.4, 127.8, 127.6, 125.5, 73.8, 61.4, 52.8, 52.6, 39.3, 13.9. (1C missing); ESI-HRMS m/z Calcd. for C<sub>19</sub>H<sub>20</sub>O<sub>7</sub>S + H<sup>+</sup> 393.1003, found 393.0998.



**15**: Y = 72%, colorless oil,  $R_f = 0.3$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45–7.30 (m, 5H), 5.25 (s, 2H), 4.17–4.02 (m, 1H), 3.84 (s, 3H), 3.59 (s, 3H), 1.33 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 165.5, 161.3, 160.7, 140.7, 134.9, 128.8, 128.6, 128.5, 126.0,

125.5, 67.3, 52.5 (2C), 29.7, 24.5; ESI-HRMS m/z Calcd. for  $C_{19}H_{20}O_6S + Na^+$  399.0873, found 399.0870.



**16**: Y = 52%, yellow oil,  $R_f = 0.25$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.28 (m, 4H), 7.27–7.20 (m, 1H), 5.05 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 2.13–2.04 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 165.3, 162.0, 160.6, 141.9, 140.6, 128.6, 127.9, 127.1, 126.6, 52.9, 52.6, 52.0, 46.9, 30.8, 12.6, (1C missing); ESI-HRMS m/z Calcd. for C<sub>19</sub>H<sub>20</sub>O<sub>6</sub>S + Na<sup>+</sup> 399.0873, found 399.0870.



17: 49%, yellow oil,  $R_f = 0.4$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.96 (s, 3H), 3.86 (s, 3H), 3.84 (s, 3H), 3.74–3.61 (m, 1H), 2.05 (d, J = 11.2 Hz, 2H), 1.89–1.73 (m, 3H), 1.51–1.32 (m, 4H), 1.30–1.23 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 165.9, 162.1, 160.8, 140.6, 126.2, 125.6, 52.9, 52.6, 52.1, 39.4, 35.3, 26.4, 25.7; ESI-HRMS m/z Calcd. for  $C_{16}H_{20}O_6S + H^+$  341.1053, found 341.1050.





**18**: Y = 74%, yellow oil,  $R_f = 0.4$  (PE:EA = 5:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46–7.31 (m, 5H), 5.26 (s, 2H), 3.84 (s, 3H), 3.63 (s, 3H), 2.74 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 161.5, 160.6, 155.7, 140.8, 135.0, 128.7, 128.6, 128.5, 126.8, 126.1, 67.2, 52.6 (2C), 16.4; ESI-HRMS m/z Calcd. for C<sub>17</sub>H<sub>16</sub>O<sub>6</sub>S + H<sup>+</sup> 349.0746; found : 349.0740.



**19**: Y = 67%, yellow oil,  $R_f = 0.4$  (PE:EA = 5:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (t, J = 7.6 Hz, 2H), 7.30–7.24 (m, 1H), 7.17 (d, J = 7.6 Hz, 2H), 3.92 (s, 3H), 3.89 (s, 3H), 2.82 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.5, 160.6, 160.1, 156.7, 150.1, 141.0, 129.5, 126.4, 126.2, 121.5, 53.1, 52.7, 16.5, (1C missing); ESI-HRMS m/z Calcd. for C<sub>16</sub>H<sub>14</sub>O<sub>6</sub>S + H<sup>+</sup> 335.0589; found : 335.4584.





**20:**, Y = 31%, brownish red oil,  $R_f = 0.2$  (PE:EA = 2:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.0 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.47(t, J = 7.8 Hz, 2H), 3.88 (s, 3H), 3.55 (s, 3H), 2.43 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  191.4, 164.0, 160.7, 148.7, 138.7, 137.7, 137.4, 133.4, 129.2, 128.9, 128.6, 52.7, 52.5, 15.0; ESI-HRMS m/z Calcd. for C<sub>16</sub>H<sub>14</sub>O<sub>5</sub>S + H<sup>+</sup> 271.0276, found 271.0271.



**21**: Y = 89%, colorless oil,  $R_f = 0.55$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42-7.31 (m, 5H), 5.26 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 4.07 (q, J = 7.2 Hz, 2H), 3.20 (q, J = 7.2 Hz, 2H), 1.38-1.28 (m, 6H), 1.20 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.0, 163.2, 161.4, 160.2, 140.7, 135.0, 128.6, 128.5, 128.4, 126.6, 125.9, 67.0, 61.7, 61.6, 23.8, 15.1, 14.0, 13.7; ESI-HRMS m/z Calcd. for C<sub>20</sub>H<sub>22</sub>O<sub>6</sub>S + H<sup>+</sup> 391.1210, found 391.1212.



**22**: Y = 36%, yellow oil,  $R_f = 0.4$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (dd, J = 1.2, 8.0 Hz, 2H), 7.66 (dd, J = 1.2, 8.0 Hz, 2H), 7.53–7.44 (m, 2H), 7.40–7.27 (m, 4H), 7.27–7.17 (m, 3H), 7.01 (dd, J = 1.2, 8.0 Hz, 2H), 5.02 (s, 2H), 3.28 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.7, 186.4, 163.4, 161.8, 148.1, 137.7, 137.2, 134.6, 134.4, 132.8, 132.7, 129.0, 128.6, 128.3 (3C), 128.2, 128.1, 67.0, 23.8, 15.3, (1C missing); ESI-HRMS m/z Calcd. for C<sub>28</sub>H<sub>22</sub>O<sub>4</sub>S + Na<sup>+</sup> 477.1131, found 477.1132.



**23**: Y = 34%, yellow oil,  $R_f = 0.4$  (PE:EA = 6:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83–7.75 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.40–7.32 (m, 5H), 5.27 (s, 2H), 3.39 (s, 3H), 3.20 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  186.9, 165.1, 162.0 (2C), 139.6, 137.7, 135.6, 135.0, 132.8, 128.9, 128.7, 128.6, 128.5, 128.4, 127.2, 67.3, 52.3, 23.6, 15.4; ESI-HRMS m/z Calcd. for C<sub>23</sub>H<sub>20</sub>O<sub>5</sub>S + Na<sup>+</sup> 431.0924, found 431.0922.



**24**: Y = 59% for two steps, colorless oil,  $R_f = 0.2$  (PE:EA = 2:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.62 (t, *J* = 6.0 Hz, 2H), 3.98 (s, 3H), 3.90 (s, 3H), 3.22 (t, *J* = 6.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.3, 160.2, 158.8, 154.1, 138.4, 128.9, 126.2, 67.3, 53.1, 52.7, 24.6; ESI-HRMS m/z Calcd. for C<sub>11</sub>H<sub>10</sub>O<sub>6</sub>S + H<sup>+</sup> 271.0271, found 271.0269.



**25**: Y = 83%, colorless oil,  $R_f = 0.4$  (PE:EA = 2:1), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.4 Hz, 2H), 4.04 (s, 3H), 3.86 (s, 3H), 2.66 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164. 6, 160.0, 153.0, 140.8, 139.2, 135.3, 133.6, 129.2, 127.4, 126.9, 53.3, 52.8, 15.1; ESI-HRMS m/z Calcd. for C<sub>15</sub>H<sub>14</sub>O<sub>6</sub>S<sub>2</sub> + H<sup>+</sup> 355.0305, found 355.0306.

# 8. Copies of NMR spectra





<sup>13</sup>C NMR of **3s** 



<sup>1</sup>H NMR of **4s** 















s28













s32



<sup>19</sup>F NMR of **3a** 



<sup>13</sup>C NMR of **3b** 





<sup>1</sup>H NMR of **4a** 



<sup>1</sup>H NMR of **4b** 



<sup>1</sup>H NMR of **5a**, **5b** 



<sup>1</sup>H NMR of **6a** 







<sup>1</sup>H NMR of **7a** 



<sup>1</sup>H NMR of **7b** 









































s54



























<sup>1</sup>H NMR of **1b** 



<sup>1</sup>H NMR of **1c** 



<sup>1</sup>H NMR of **1d** 

#### 881.1101 881.1101 7722.071 881.022.071 881.022.071 881.022.071 881.022.071 881.022.071 881.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.071 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 110.022.072 1



