Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Palladium-catalyzed diastereo- and enantioselective allylic alkylation

of oxazolones with 1,3-dienes under base-free conditions

Haijian Yang and Dong Xing*

Email: dxing@sat.ecnu.edu.cn

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Rd., Shanghai, 200062, China

Table of Contents

1.	General information	S1
2.	Experimental procedures	S1
3.	Characterization data	S 5
4.	References	S21
5.	NMR spectra	S22
6.	HPLC spectra	S57

1. General information

Unless otherwise stated, ¹H NMR and ¹³C NMR spectra were recorded on a Bruker (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublets, m = multiplet, bs = broad singlet, etc.), coupling constants (Hz) and integration. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. Enantiomer excess was determined on Shimadzu SPD-M20A HPLC analysis employing Daicel Chiracel columns (IG, OD-H or OJ-H) and *n*-hexane/*i*-PrOH as eluents. High resolution mass spectra (HRMS) were obtained on IonSpec FT-ICR or Waters Micromass Q-TOF micro Synapt High Definition Mass Spectrometer. Optical rotation was determined on a RUDOLPH AUTOPOL-VI apparatus. Melting points were measured on an INESA WRR-Y melting point apparatus. Flash chromatography was carried out with silica gel 300–400 mesh.

All the key reactions were carried out under nitrogen atmosphere with a stir bar in a sealed vial. Tetrahydrofuran (THF) (99.5%, Extra Dry, stabilized) used for the key reactions was purchased from Acros and degassed with nitrogen before use. Pd(OAc)₂ were purchased from Strem Chemicals and ligands from Strem Chemicals or TCI. 1,3-oxazol-5(4H)-ones^{1–3} and 1,3-dienes^{4,5} used for the key reactions were synthesized according to literature procedures. All other materials were obtained from commercial sources and were used as received. The absolute configuration of the product was determined by comparing with the optical rotation of known chiral compound **4m**.⁶

2. Experimental procedures

2.1 General procedure A for the reaction of oxazolone with substituted 1,3-diene

A 4-mL oven-dried vial charged with a stir bar was transferred into glove box. To this vial was added $Pd(OAc)_2$ (1.2 mg, 5 mol%), (*R*)-DTBM-SEGPHOS (7.0 mg, 6 mol%) and CSA (1.2 mg, 5 mol%) followed by the addition of THF (0.2 mL). The reaction mixture was allowed to stir for 5 min at room temperature. **1a** (24 mg, 0.12 mmol) and **2a** (13 mg, 0.1 mmol) was then subsequently added. The vial was tightly capped, removed from glove box and heated at 50 °C for 24 h. After the completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc and passed through a short pad of Celite[®]. The resulted crude mixture was concentrated *in vacuo* and then analyzed by ¹H NMR spectroscopy to determine the dr. The combined crude mixture was then purified by silica gel chromatography (PE: Et₂O=150:1 to 100:1) to afford **3a** (28.1 mg, 81% yield) as a colorless oil.

2.2 General procedure B for the reaction of oxazolone with 1,3-butadiene

A 4-mL oven-dried vial charged with a stir bar was transferred into glove box. To this vial was added $Pd(OAc)_2(1.2 \text{ mg}, 5 \text{ mol}\%)$, (*rac*)-DTBM-SEGPHOS (7.0 mg, 6 mol%) and CSA (1.2 mg, 5 mol%) followed by the addition of THF (0.15 mL). The reaction mixture was allowed to stir for 5 min at room temperature. **1a** (20 mg, 0.1 mmol) and **6** (0.3 mmol, 2 mol/L in THF) was then subsequently added. The vial was tightly capped, removed from glove box and heated at 50 °C for 24 h. After the completion of the reaction, the mixture was cooled to room temperature, diluted with EtOAc and passed through a short pad of Celite[®]. The resulted crude mixture was concentrated *in vacuo* and then analyzed by ¹H NMR spectroscopy to determine the rr. The combined crude mixture was then purified by silica gel chromatography (PE: Et₂O=200:1 to

150:1) to afford 7a (21.4 mg, 79% yield) as a colorless oil.

2.3 Synthesis of 4 from 3a⁷

An 8-mL reaction vial with a stir bar was charged with **3a** (50 mg, 0.144 mmol) and K_2CO_3 (99.5 mg, 0.72 mmol, 5 equiv) and methanol (1.5 mL). The vial was sealed and allowed to stir at room temperature for 2 h before concentrated by rotary evaporation to remove the solvent. The resulting crude mixture was purified by silica gel chromatography (PE:Et₂O=20:1 to 10:1) to yield the hydrolyzed product **4** (49.7 mg, 91% yield, dr >20:1, 92:8 er) as a colorless oil.

The known compound $4m^6$ was synthesized from 3m by following the same procedure mentioned above. The absolute configuration of 4m was assigned to be (2*R*,3*S*) by comparing its optical rotation with the literature. 4m: [α]20 D = -52.2° (c 1.0, CH₂Cl₂).

2.4 Synthesis of 5 from 3a⁷

To a 20-mL vial was added **3a** (50 mg, 0.144 mmol), dioxane (9 mL) and 1 M HCl (9 mL). The vial was sealed and allowed to stir at 80 °C for 8 h before being cooled to room temperature and extracted with EtOAc (10 mL \times 3). The organic layers were dried

with Na₂SO₄, filtered and concentrated. The resulting crude mixture was then washed by PE to yield **5** as a white solid (46.8 mg, 89% yield, m.p. = 115.3 °C, > 20:1 dr, 92:8 er). $[\alpha]20 D = -52.8^{\circ}$ (c 0.5, CH₂Cl₂).

Scheme S1: Screening of different ligands for the reaction between 1a and 6.^a

^{*a*}Unless otherwise noted, all reactions were run in 0.1 mmol scale of **1a**, **6** (3.0 equiv), Pd(OAc)₂ (5 mol%), ligand (6 mol%), CSA (5 mol%), THF (0.2 mL). ^{*b*}Regioselective ratio (rr) was determined by ¹H NMR spectroscopy of the crude reaction mixture. ^{*c*}Enantioselective ratio (er) was determined by chiral HPLC analysis.

3. Characterization data

(*R*)-4-butyl-2-phenyl-4-((*S*,*E*)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3a)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to

afford a colorless oil in 81% yield, 10:1 dr, 93:7 er, [α]20 D= 93.1° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 15.3 Hz, 2H), 7.16 (dd, *J* = 13.2, 5.7 Hz, 1H), 6.44 (d, *J* = 15.9 Hz, 1H), 6.18 (dd, *J* = 15.9, 9.4 Hz, 1H), 2.75 (p, *J* = 7.3 Hz, 1H), 1.70-1.99 (m, 2H), 1.01-1.23 (m, 4H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.74 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.55, 160.26, 137.03, 132.63, 132.40, 129.65, 128.78, 128.52, 128.01, 127.44, 126.37, 125.85, 44.85, 35.92, 26.02, 22.57, 15.89, 13.86. IR (v/cm⁻¹): 693, 750, 764, 957, 1023, 1260, 1275, 1652, 1815, 2961. HRMS (ESI) calcd. for C₂₃H₂₆NO₂⁺(M + H)⁺: 348.1964, Found: 348.1982

(*R*)-4-((*S*,*E*)-4-([1,1'-biphenyl]-4-yl)but-3-en-2-yl)-4-butyl-2-phenyloxazol-5(4H)one (3b)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 80%

yield, 11:1 dr. 91:9 er. [α]20 D= 105.3° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H **NMR (400 MHz, CDCl₃)** δ 8.06 (d, J = 7.7 Hz, 2H), 7.40-7.69 (m, 10H), 7.34 (t, J = 7.5 Hz, 1H), 7.26 (s, 1H), 6.56 (d, J = 15.8 Hz, 1H), 6.31 (dd, J = 16.5, 9.5 Hz, 1H), 2.85 (dt, J = 13.9, 6.5 Hz, 1H), 1.78-2.06 (m, 2H), 1.15-1.37 (m, 4H), 1.05 (d, J = 7.0 Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H).¹³C **NMR (101 MHz, CDCl₃)** δ 180.56, 160.28, 140.73, 140.25, 136.04, 132.66, 131.94, 129.79, 128.80, 128.78, 128.03, 127.29, 127.23, 126.94, 126.79, 125.83, 44.95, 35.96, 26.03, 22.59, 15.93, 13.88. **IR (v/cm⁻¹):** 697, 761, 799, 1005, 1022, 1047, 1651, 1813, 2926, 2959. **HRMS (ESI)** calcd. for C₂₉H₃₀NO₂⁺(M + H)⁺: 424.2277, Found: 424.2256

(R)-4-butyl-2-phenyl-4-((S,E)-4-(p-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (3c)

Synthesized by following **general procedure A**, And purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 75%

yield, 9:1 dr. 91:9 er. [α]20 D = 82.7° (c 0.5, CH₂Cl₂), R_f = 0.6 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.50 (t, J= 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 7.8 Hz, 2H), 6.48 (d, J = 15.8 Hz, 1H), 6.19 (dd, J = 16.0, 9.3 Hz, 1H), 2.81 (p, J = 7.5 Hz, 1H), 2.33 (s, 3H), 2.02 – 1.78 (m, 2H), 1.10-1.35 (m, 4H), 1.02 (d, J = 6.9 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.64, 160.21, 137.25, 134.23, 132.62, 132.24, 129.21, 128.78, 128.55, 128.01, 126.27, 125.86, 44.91, 35.93, 26.03, 22.58, 21.19, 15.94, 13.87. IR (v/cm⁻¹): 699, 801, 956, 968, 1022, 1073, 1259, 1651, 1813, 2922, 2959. HRMS (ESI) calcd. for C₂₄H₂₈NO₂⁺(M + H)⁺: 362.2120, Found: 362.2122

(*R*)-4-butyl-4-((*S*,*E*)-4-(4-chlorophenyl)but-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3d)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 74%

yield, 9:1 dr. 91:9 er. [α]20 D = 89.4° (c 0.5, CH₂Cl₂), R_f = 0.55 (PE/Et₂O, 40:1). ¹H **NMR (400 MHz, CDCl₃)** δ 8.05 (d, J = 7.5 Hz, 2H), 7.65 – 7.56 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.37 – 7.26 (m, 4H), 6.47 (d, J = 15.8 Hz, 1H), 6.29 – 6.17 (m, 1H), 2.82 (p, J = 7.7 Hz, 1H), 2.02 – 1.77 (m, 2H), 1.39 – 1.11 (m, 4H), 1.03 (d, J = 6.1 Hz, 3H), 0.82 (t, J = 6.9 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 180.42, 160.34, 135.47, 133.05, 132.70, 131.21, 130.35, 128.81, 128.65, 128.01, 127.57, 125.76, 44.78, 35.89, 26.00, 22.57, 15.81, 13.86. **IR (v/cm⁻¹):** 699, 807, 1012, 1022, 1259, 1491, 1651, 1813, 2922, 2959. **HRMS (ESI)** calcd. for C₂₃H₂₅ClNO₂⁺(M + H)⁺: 382.1574, Found: 382.1588

(*R*)-4-butyl-4-((*S*,*E*)-4-(4-nitrophenyl)but-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3e)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a yellow solid in 26%

yield, m.p. 108-110 °C. 9:1 dr. 93:7 er. $[\alpha]20$ D= 77.0° (c 0.5, CH₂Cl₂), R_f = 0.3 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 7.7 Hz, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 4H), 6.59 (d, J = 15.9 Hz, 1H), 6.47 (dd, J = 16.1, 9.0 Hz, 1H), 2.88 (p, J = 7.5 Hz, 1H), 1.89 (ddd, J = 23.9, 19.4, 12.6 Hz, 2H), 1.37 – 1.11 (m, 4H), 1.06 (d, J = 7.0 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.08, 160.58, 146.88, 143.36, 134.88, 132.85, 130.55, 128.85, 128.02, 126.88, 125.62, 123.99, 44.81, 35.93, 25.97, 22.55, 15.65, 13.84. IR (v/cm⁻¹): 692, 701, 958, 1022, 1341, 1517, 1651, 1814, 2920, 2958. HRMS (ESI) calcd. for C₂₃H₂₅N₂O₄+(M + H)+: 393.1814, Found: 393.1783

(*R*)-4-butyl-4-((*S*,*E*)-4-(2-methoxyphenyl)but-3-en-2-yl)-2-phenyloxazol-5(4H)one (3f)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 77%

yield, 10:1 dr. 95:5 er. [α]20 D = 72.7° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 3H), 7.21 (t, J = 7.9 Hz, 1H), 6.92 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 12.5 Hz, 2H), 6.22 (dd, J = 16.2, 9.3 Hz, 1H), 3.83 (s, 3H), 2.85 (p, J = 7.6 Hz, 1H), 2.04 – 1.79 (m, 2H), 1.10-1.37 (m, 4H), 1.04 (d, J = 6.8 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.64, 160.11, 156.48, 132.55, 129.93, 128.74, 128.46, 128.01, 126.95, 126.59, 126.08, 125.94, 120.57, 110.85, 55.46, 45.17, 35.89, 26.04, 22.60, 15.91, 13.87. IR (v/cm⁻¹): 698, 749, 797, 956, 1021, 1082, 1243, 1652, 1813, 2928,

2959. HRMS (ESI) calcd. for $C_{24}H_{28}NO_3^+(M + H)^+$: 378.2069, Found: 378.2080

(R)-4-butyl-2-phenyl-4-((S,E)-4-(m-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (3g)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 70%

yield, 8:1 dr. 91:9 er. [α]20 D = 87.7° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.52 (d, *J* = 7.7 Hz, 2H), 7.25 – 7.16 (m, 3H), 7.05 (s, 1H), 6.49 (d, *J* = 15.8 Hz, 1H), 6.24 (dd, *J* = 16.1, 9.3 Hz, 1H), 2.88 – 2.75 (m, 1H), 2.35 (s, 3H), 2.05 – 1.91 (m, 1H), 1.84 (t, *J* = 13.2 Hz, 1H), 1.25 (dt, *J* = 14.8, 7.0 Hz, 4H), 1.02 (d, *J* = 6.9 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H) ,¹³C NMR (101 MHz, CDCl₃) δ 180.62, 160.24, 138.10, 136.93, 132.63, 132.48, 129.39, 128.78, 128.42, 128.24, 128.02, 127.00, 125.85, 123.60, 44.94, 35.95, 26.03, 22.58, 21.39, 15.96, 13.88. IR (v/cm⁻¹): 692, 777, 799, 875, 956, 1004, 1022, 1652, 1813, 2925, 2959. HRMS (ESI) calcd. for C₂₄H₂₈NO₂⁺(M + H)⁺: 362.2120, Found: 362.2112.

(*R*)-4-butyl-4-((*S*,*E*)-4-(naphthalen-1-yl)but-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3h)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 41%

yield, 4:1 dr. 93:7 er. [α]20 D = 87.7° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.4 Hz, 3H), 7.84 (d, J = 7.1 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 7.3 Hz, 2H), 7.46 (dq, J = 18.0, 7.7 Hz, 5H), 7.28 (d, J=15.9Hz, 1H), 6.24 (dd, J = 15.7, 9.3 Hz, 1H), 2.98 (p, J = 7.4 Hz, 1H), 1.88-2.12 (m, 2H), 1.19-1.39 (m, 4H), 1.15 (d, J = 7.0 Hz, 3H), 0.84 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.45, 160.21, 134.83, 133.54, 132.91, 132.63, 131.09, 129.88, 128.79, 128.49, 128.01, 127.81, 125.96, 125.85, 125.71, 125.59, 123.98, 123.76, 44.96, 35.89, 26.02, 22.63, 15.76, 13.86. IR (v/cm⁻¹): 698, 775, 795, 875, 956, 1021, 1260, 1651, 1812, 2917, 2958. **HRMS (ESI)** calcd. for $C_{27}H_{28}NO_2^+(M + H)^+$: 398.2120, Found: 398.2111

(R^*) -4-butyl-4-((R^*,E) -4-(naphthalen-1-yl)but-3-en-2-yl)-2-phenyloxazol-5(4H)one (3h')

Isolated as the minor diastereomer of compound **3h**. Colorless oil, 15% isolated yield, 93:7 er. [α]20 D = 58.6° (c 0.5, CH₂Cl₂), R_f = 0.4 (PE/Et₂O, 40:1). ¹H NMR (400

MHz, CDCl₃) δ 8.03 (d, J = 7.5 Hz, 3H), 7.82 (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.47 (dd, J = 17.9, 7.8 Hz, 5H), 7.35 (dd, J = 17.2, 8.7 Hz, 1H), 7.21 (d, J = 15.1 Hz, 1H), 6.12 (dd, J = 15.9, 9.4 Hz, 1H), 3.00 (q, J = 7.9 Hz, 1H), 1.89-2.14 (m, 2H), 1.18-1.41 (m, 7H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl3) δ 179.97, 160.27, 134.90, 133.50, 132.63, 132.29, 131.11, 130.11, 128.79, 128.76, 128.41, 128.00, 127.98, 127.80, 125.97, 125.86, 125.71, 125.55, 124.10, 123.91, 44.61, 35.43, 25.99, 22.67, 15.25, 13.86, 13.83. IR (v/cm⁻¹): 696, 775, 796, 1021, 1036, 1290, 1450, 1651, 1812, 2919, 2958. HRMS (ESI) calcd. for C₂₇H₂₈NO₂⁺(M + H)⁺: 398.2120, Found: 398.2111

(*R*)-4-butyl-4-((*S*,*E*)-4-(naphthalen-2-yl)but-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3i)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a white solid in 83% yield, m.p. 93-96 °C.

9:1 dr. 91:9 er. [α]20 D = 136.9° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 7.6 Hz, 2H), 7.80 (d, J = 6.9 Hz, 3H), 7.74 (s, 1H), 7.61 (dd, J = 18.3, 8.3 Hz, 2H), 7.51 (t, J = 7.7 Hz, 2H), 7.44 (q, J = 6.9 Hz, 2H), 6.68 (d, J = 15.8 Hz, 1H), 6.38 (dd, J = 15.9, 9.3 Hz, 1H), 2.89 (p, J = 7.5 Hz, 1H), 2.07 – 1.95 (m, 1H), 1.81-1.94 (m, 1H), 1.29 – 1.11 (m, 4H), 1.07 (d, J = 6.9 Hz, 3H), 0.82 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.58, 160.32, 134.45, 133.58, 132.92, 132.67, 132.55, 130.04, 128.81, 128.11, 128.03, 127.92, 127.64, 126.25,

126.11, 125.83, 125.79, 123.70, 45.02, 35.97, 26.05, 22.58, 15.95, 13.87. **IR (v/cm⁻¹):** 699, 747, 764, 812, 957, 1022, 1048, 1651, 1812, 2927, 2958. **HRMS (ESI)** calcd. for C₂₇H₂₈NO₂⁺(M + H)⁺: 398.2120, Found: 398.2111

(R)-4-butyl-4-((S,E)-4-(furan-2-yl)but-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3j)

Synthesized by following **general procedure A**, And purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a white solid in 66% yield, m.p. 60-63 °C.

10:1 dr. 89:11 er. [α]20 D = 80.5° (c 0.5, CH₂Cl₂), R_f = 0.45 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 2H), 7.68 – 7.55 (m, 1H), 7.51 (d, J = 7.7 Hz, 2H), 7.34 (s, 1H), 6.34 (d, J = 18.2 Hz, 2H), 6.28 – 6.13 (m, 2H), 2.77 (dt, J = 13.5, 6.3 Hz, 1H), 1.97 (t, J = 12.9 Hz, 1H), 1.90 – 1.76 (m, 1H), 1.39 – 1.13 (m, 4H), 1.02 (d, J = 6.3 Hz, 3H), 0.82 (t, J = 7.3 Hz, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 180.55, 160.25, 152.50, 141.76, 132.63, 128.77, 128.41, 128.03, 125.81, 120.78, 111.21, 107.42, 44.58, 35.90, 26.01, 22.57, 15.82, 13.87. IR (v/cm⁻¹): 698, 797, 957, 1012, 1077, 1259, 1652, 1812, 2928, 2959. HRMS (ESI) calcd. for C₂₁H₂₄NO₃⁺(M + H)⁺ : 338.1756, Found: 338.1775

(*R*)-4-butyl-4-((*S*,*E*)-dec-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3k)

Synthesized by following **general procedure A**, And purification by flash column chromatography (PE:Et₂O=200:1 to 150:1) to afford a colorless oil in 62% yield, 8:1 dr. 80:20 er.

[α]20 D = 31.7° (c 0.5, CH₂Cl₂), R_f = 0.7 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 2H), 5.55 (dt, *J* = 14.6, 7.0 Hz, 1H), 5.39 (dd, *J* = 15.5, 9.1 Hz, 1H), 2.60 (p, *J* = 7.9 Hz, 1H), 2.09 – 1.70 (m, 4H), 1.35 – 1.09 (m, 12H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.89 – 0.80 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 180.65, 159.88, 133.96, 132.49, 129.26, 128.72, 127.93, 125.96, 76.52, 44.31, 35.61, 32.52, 31.69, 29.37, 28.78, 26.00, 22.63, 22.59, 15.70, 14.09, 13.85. IR (v/cm⁻¹): 697, 750, 764, 875, 955, 1022, 1043, 1652, 1814, 2924, 2957. HRMS (ESI) calcd. for C₂₃H₃₄NO₂⁺(M + H)⁺: 356.2590, Found: 356.2590.

(R)-4-butyl-4-((S,E)-4-cyclohexylbut-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3l)

Synthesized by following **general procedure A**, And purification by flash column chromatography (PE:Et₂O=200:1 to 150:1) to afford a colorless oil in 34% yield, 3:1 dr. 85:15 er.

[α]20 D= 33.4° (c 0.5, CH₂Cl₂), $R_f = 0.7$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 5.50 (dd, J = 15.8, 6.8 Hz, 1H), 5.34 (dd, J = 16.0, 9.1 Hz, 1H), 2.58 (p, J = 7.7 Hz, 1H), 2.00 – 1.86 (m, 2H), 1.85 – 1.73 (m, 1H), 1.65 (m, 5H), 1.36 – 0.99 (m, 9H), 0.96 (d, J = 6.9Hz, 3H), 0.84 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.63, 159.80, 139.80, 132.47, 128.71, 127.93, 126.75, 125.99, 76.50, 44.28, 40.64, 35.49, 33.02, 32.97, 26.13, 25.97, 25.95, 22.64, 15.65, 13.84. IR (v/cm⁻¹): 699, 750, 764, 877, 955, 1022, 1260, 1275, 1653, 1814, 2851, 2923. HRMS (ESI) calcd. for C₂₃H₃₂NO₂⁺(M + H)⁺: 354.2433, Found: 354.2421

(R^*) -4-butyl-4-((R^*,E) -4-cyclohexylbut-3-en-2-yl)-2-phenyloxazol-5(4H)-one (3l')

Isolated as the minor diastereomer of compound **31**. Colorless oil, 12% isolated yield, 90:10 er, $[\alpha]20 \text{ D} = 31.6^{\circ}$ (c 0.5, CH₂Cl₂), $R_f = 0.6$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz,

CDCl₃) δ 8.00 (d, J = 7.5 Hz, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 7.9 Hz, 2H), 5.48 (dd, J = 15.8, 6.6 Hz, 1H), 5.25 (dd, J = 15.7, 9.2 Hz, 1H), 2.58 (p, J = 8.0 Hz, 1H), 1.98 – 1.78 (m, 3H), 1.52-1.71 (m, 5H), 1.38 – 1.23 (m, 3H), 1.11-1.22 (m, 3H), 1.10 (d, J = 6.7 Hz, 4H), 0.90-1.02 (m, 2H), 0.85 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.10, 159.86, 139.71, 132.46, 128.72, 127.89, 126.33, 126.03, 77.08, 43.86, 40.46, 35.12, 32.93, 32.81, 26.11, 25.97, 25.87, 22.67, 15.26, 13.84. IR (v/cm⁻¹): 697, 798, 876, 1021, 1035, 1259, 1450, 1652, 1814.35, 2851, 2922. HRMS (ESI) calcd. for C₂₃H₃₂NO₂⁺(M + H)⁺: 354.2433, Found: 354.2421

(R)-4-methyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3m)

by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 63% yield, 8:1 dr. 91:9 er. [α]20 D = 106.1° (c 0.5, CH₂Cl₂), R_f= 0.4 (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 2H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 7.0 Hz, 1H), 6.54 (d, *J* = 15.8 Hz, 1H), 6.25 (dd, *J* = 16.0, 9.3 Hz, 1H), 2.81 (dt, *J* = 15.9, 7.2 Hz, 1H), 1.50 (s, 3H), 1.05 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.94, 160.11, 136.95, 132.77, 132.66, 129.30, 128.78, 128.52, 127.99, 127.49, 126.37, 125.92, 72.44, 45.06, 22.69, 15.81. IR (v/cm⁻¹): 691, 766, 749, 887, 968, 998, 1651, 1819, 2929, 2964. HRMS (ESI) calcd. for C₂₀H₂₀NO₂⁺(M + H)⁺: 306.1494, Found: 306.1490

(R)-4-ethyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3n)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 52% yield, 8:1 dr. 92:8 er. [α]20

D= 89.0° (c 0.5, CH₂Cl₂), $R_f = 0.4$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.7 Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.40 (d, J =7.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.25 – 7.19 (m, 1H), 6.52 (d, J = 15.9 Hz, 1H), 6.33 – 6.20 (m, 1H), 2.84 (p, J = 7.6 Hz, 1H), 1.81-2.11 (m, 2H), 1.04 (d, J = 6.1 Hz, 3H), 0.80 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.44, 160.38, 136.98, 132.65, 132.37, 129.66, 128.78, 128.52, 128.01, 127.46, 126.35, 125.82, 44.58, 29.34, 16.00, 8.15. IR (v/cm⁻¹): 691, 749, 762, 799, 876, 1016, 1260, 1652, 1815, 2923, 2964. HRMS (ESI) calcd. for C₂₁H₂₂NO₂⁺(M + H)⁺: 320.1651, Found: 320.1653.

(R)-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)-4-propyloxazol-5(4H)-one (30)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 72% yield, 9:1 dr. 91:9 er. [α]20 D=84.8°

(c 0.5, CH₂Cl₂), $R_f = 0.5$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 7.7 Hz, 2H), 7.32

(t, J = 7.7 Hz, 2H), 7.22 (d, J = 7.8 Hz, 1H), 6.52 (d, J = 15.9 Hz, 1H), 6.26 (dd, J = 16.0, 9.2 Hz, 1H), 2.83 (p, J = 7.8 Hz, 1H), 2.03 – 1.73 (m, 2H), 1.24 – 1.08 (m, 2H), 1.03 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.58, 160.26, 137.00, 132.64, 132.39, 129.64, 128.79, 128.53, 128.00, 127.46, 126.38, 125.82, 76.74, 44.89, 38.23, 17.33, 15.90, 13.88. IR (v/cm⁻¹): 692, 749, 763, 881, 942, 1020, 1651, 1810, 2930, 2961. HRMS (ESI) calcd. for C₂₂H₂₄NO₂⁺(M + H)⁺ : 334.1807, Found: 334.1792

(R)-4-isobutyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3p)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 52% yield, 8:1 dr. 93:7 er. $[\alpha]20$ D =

131.0° (c 0.5, CH₂Cl₂), $R_f = 0.5$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.39 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.23 (dd, J = 13.1, 6.0 Hz, 1H), 6.49 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.1, 9.6 Hz, 1H), 2.77 (p, J = 7.7 Hz, 1H), 2.05 (dd, J = 14.1, 5.3 Hz, 1H), 1.78 (dd, J = 14.8, 6.9 Hz, 1H), 1.53 (dt, J = 13.7, 6.2 Hz, 1H), 1.03 (d, J = 6.2 Hz, 3H), 0.94 – 0.76 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 181.04, 159.92, 137.01, 132.62, 132.60, 129.65, 128.80, 128.51, 127.97, 127.45, 126.38, 125.94, 45.98, 44.71, 25.07, 24.05, 23.29, 15.49. IR (v/cm⁻¹): 692, 750, 764, 1022, 1260, 1275, 1651, 1811, 2960. HRMS (ESI) calcd. for C₂₃H₂₆NO₂⁺(M + H)⁺: 348.1964, Found: 348.1982.

(*R*)-4-(2-(methylthio)ethyl)-2-phenyl-4-((*S*,*E*)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3q)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 71% yield, 9:1 dr. 92:8 er. $[\alpha]20$ D =

102.1° (c 0.5, CH₂Cl₂), $R_f = 0.3$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 15.2 Hz, 2H), 7.23 (d, J = 7.5 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H),

6.23 (dd, J = 15.9, 9.3 Hz, 1H), 2.83 (p, J = 7.8 Hz, 1H), 2.40 (q, J = 10.5 Hz, 1H), 2.31 (d, J = 9.2 Hz, 2H), 2.21 (q, J = 10.8 Hz, 1H), 2.02 (s, 3H), 1.05 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.20, 160.87, 136.82, 132.84, 132.81, 129.22, 128.82, 128.54, 128.07, 127.58, 126.39, 125.71, 75.59, 45.11, 35.11, 28.75, 15.58, 15.29. IR (v/cm⁻¹): 691, 749, 764, 876, 966, 998, 1260, 1650, 1811, 2918, 2964. HRMS (ESI) calcd. for C₂₂H₂₄NO₂S⁺(M + H)⁺: 366.1528, Found: 366.1552.

(R)-4-benzyl-2-phenyl-4-((S,E)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3r)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 37% yield, 8:1 dr. 86:14 er. $[\alpha]$ 20 D =

205.8° (c 0.5, CH₂Cl₂), $R_f = 0.3$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.7 Hz, 2H), 7.51 (d, J = 7.2 Hz, 1H), 7.44 (t, J = 8.8 Hz, 4H), 7.34 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 15.7 Hz, 1H), 7.11 (s, 5H), 6.61 (d, J = 15.9 Hz, 1H), 6.37 (dd, J = 16.1, 9.4 Hz, 1H), 3.30 (d, J = 13.4 Hz, 1H), 3.08 (d, J = 13.5 Hz, 1H), 2.99 (p, J = 6.7, 6.2 Hz, 1H), 1.08 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.66, 160.16, 136.96, 134.63, 132.78, 132.46, 130.13, 129.56, 128.62, 128.58, 128.03, 127.85, 127.57, 127.03, 126.44, 125.72, 77.99, 45.03, 42.56, 16.27. IR (v/cm⁻¹): 691, 747, 777, 799, 965, 1023, 1056, 1260, 1812, 2921, 2962. HRMS (ESI) calcd. for C₂₆H₂₄NO₂⁺(M + H)⁺: 382.1807, Found: 382.1803.

(R)-4-butyl-4-((S,E)-4-phenylbut-3-en-2-yl)-2-(p-tolyl)oxazol-5(4H)-one (3s)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 45% yield, 8:1 dr. 93:7 er. $[\alpha]_{20}$ D = 94.3° (c 0.5, CH₂Cl₂), R_f = 0.5 (PE/Et₂O, 40:1). ¹H

NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.4 Hz, 2H), 7.30 (d, J = 7.8 Hz, 4H), 7.21 (d, J = 7.6 Hz, 1H), 6.51 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 16.1, 9.6 Hz, 1H), 2.80 (q, J = 7.7 Hz, 1H), 2.44 (s, 3H), 1.74-2.07 (m, 2H), 1.12-1.32 (m, 4H), 1.02 (d, J = 6.0 Hz, 3H), 0.81 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

180.71, 160.30, 143.36, 137.05, 132.33, 129.75, 129.51, 128.51, 128.00, 127.42, 126.38, 123.05, 76.57, 44.90, 35.98, 26.04, 22.59, 21.72, 15.91, 13.89. **IR (v/cm⁻¹):** 691, 727, 749, 764, 957, 1650, 1812, 2923, 2958. **HRMS (ESI)** calcd. for $C_{24}H_{28}NO_2^+(M + H)^+$: 362.2120, Found: 362.2112

(*R*)-4-butyl-2-(4-chlorophenyl)-4-((*S*,*E*)-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (3t)

Synthesized by following **general procedure A**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 46% yield, 13:1 dr. 92:8 er. $[\alpha]20 D = 94.3^{\circ}$ (c 0.5, CH₂Cl₂), $R_f = 0.5$ (PE/Et₂O, 40:1).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 7.7 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 16.3 Hz, 1H), 6.51 (d, J = 15.8 Hz, 1H), 6.23 (dd, J = 16.0, 9.3 Hz, 1H), 2.82 (p, J = 7.5 Hz, 1H), 1.77-2.07 (m, 2H), 1.08-1.32 (m, 4H), 1.03 (d, J = 6.8 Hz, 3H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.18, 159.43, 139.04, 136.95, 132.51, 129.43, 129.30, 129.18, 128.54, 127.50, 126.36, 124.28, 76.79, 44.81, 35.87, 26.01, 22.56, 15.87, 13.86. IR (v/cm⁻¹): 690, 730, 749, 264, 954, 1089, 1651, 1815, 2926, 2959. HRMS (ESI) calcd. for C₂₃H₂₅ClNO₂⁺(M + H)⁺: 382.1574, Found: 382.1588.

(*R*)-4-butyl-2-(4-chlorophenyl)-4-((*S*,*E*)-4-(naphthalen-2-yl)but-3-en-2-yl)oxazol-5(4H)-one (3u)

Synthesized by following **general procedure A**, And purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a white solid in 41% yield, m.p. 122-124 °C. 8:1 dr. 93:7 er. $[\alpha]$ 20 D = 148.8° (c

0.5, CH_2Cl_2), $R_f = 0.3$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.9 Hz, 2H), 7.80 (d, J = 7.1 Hz, 3H), 7.73 (s, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.56 – 7.36 (m, 4H), 6.67 (d, J = 15.8 Hz, 1H), 6.35 (dd, J = 15.5, 9.4 Hz, 1H), 2.95 – 2.81 (m, 1H), 2.07 – 1.80 (m, 2H), 1.09-1.36 (m, 4H), 1.07 (d, J = 6.5 Hz, 3H), 0.82 (t, J = 6.9 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.20, 159.50, 139.07, 134.37, 133.58, 132.94, 132.66, 129.82, 129.32, 129.20, 128.15, 127.92, 127.65, 126.29, 126.14, 125.84, 124.27, 123.64, 76.85, 44.96, 35.92, 26.04, 22.57, 15.92, 13.87. IR (v/cm⁻¹): 746, 764, 812, 839, 957, 1001, 1089, 1262, 1650, 1812, 2926, 2960. HRMS (ESI) calcd. for $C_{27}H_{27}CINO_2^+(M + H)^+$: 432.1730, Found: 432.1698.

methyl (R)-2-benzamido-2-((S,E)-4-phenylbut-3-en-2-yl)hexanoate (4)

Synthesized by following **experimental procedure 2.3**, and purification by flash column chromatography (PE:Et₂O=20:1 to 10:1) to afford a colorless oil in 91% yield, 49.7 mg, >20:1

dr, 92:8 er [α]20 D= -60.3° (c 0.5, CH₂Cl₂), R_f= 0.4 (PE/Et₂O, 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.4 Hz, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 8.4 Hz, 3H), 7.20 (d, J = 7.6 Hz, 2H), 6.42 (d, J = 15.7 Hz, 1H), 6.12 (dd, J = 15.8, 9.2 Hz, 1H), 3.84 (s, 3H), 3.39 (p, J = 7.6 Hz, 1H), 2.72 (t, J = 12.4 Hz, 1H), 2.10 (t, J = 12.5 Hz, 1H), 1.31 (d, J = 8.1 Hz, 3H), 1.21 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 10.3 Hz, 1H), 0.86 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.01, 166.35, 137.26, 135.43, 131.67, 131.36, 131.09, 128.60, 128.48, 127.27, 126.84, 126.31, 67.87, 52.76, 43.14, 31.84, 26.87, 22.64, 15.92, 14.06. IR (v/cm⁻¹): 693, 749, 764, 800, 1260, 1275, 1485, 1511, 1667, 2870, 2958. HRMS (ESI): calcd. for C₂₄H₃₀NO₃⁺(M + H)⁺: 380.2226, Found: 380.2202

methyl (2R,3S,E)-2-benzamido-2,3-dimethyl-5-phenylpent-4-enoate (4m)

Synthesized by following **experimental procedure 2.3**, and purification by flash column chromatography (PE:Et₂O=10:1 to 5:1) to afford a colorless oil in 86% yield, >20:1 dr. 91:9 er.

 $[\alpha]_{20} D = -52.2^{\circ}$ (c 1.0, CH₂Cl₂), R_f= 0.3 (PE/Et₂O, 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 6.9 Hz, 1H), 7.43 – 7.33 (m, 4H), 7.31 (s, 2H), 7.24 (d, J = 7.6 Hz, 1H), 6.84 (s, 1H), 6.52 (d, J = 15.5 Hz, 1H), 6.17 (dd, J = 15.5, 9.3 Hz, 1H), 3.78 (s, 3H), 3.00 (t, J = 8.1 Hz, 1H), 1.80 (s, 3H), 1.22 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.34, 166.70, 136.83, 134.71, 132.44, 131.52, 130.20, 128.60, 128.57, 127.63, 126.87, 126.36, 62.67, 52.47, 45.18, 20.68, 15.73. **IR** (v/cm⁻¹): 692, 713, 800, 1025, 1104, 1259, 1486, 1518, 1647, 1736, 2962. **HRMS** (ESI): calcd. for C₂₁H₂₄NO₃⁺(M + H)⁺: 338.1756, Found: 338.1775.

(R)-2-benzamido-2-((S,E)-4-phenylbut-3-en-2-yl)hexanoic acid (5)

Synthesized by following **experimental procedure 2.4**. 46.8 mg, 89% yield, colorless solid, m.p. = 115 °C, > 20:1 dr, 92:8 er, $[\alpha]20 D = -52.8^{\circ}$ (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz,

CDCl₃) δ 9.48 (bs, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.30 (t, J = 7.8 Hz, 3H), 7.19 (t, J = 7.5 Hz, 1H), 7.10 (s, 1H), 6.48 (d, J = 15.7 Hz, 1H), 6.18 (dd, J = 16.0, 9.2 Hz, 1H), 3.39 (q, J = 7.8 Hz, 1H), 2.64 (t, J = 12.7 Hz, 1H), 2.17 (t, J = 12.2 Hz, 1H), 1.43 – 1.29 (m, 3H), 1.27 (d, J = 6.0 Hz, 3H), 1.12 (s, 1H), 0.87 (t, J = 7.0 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 176.83, 167.19, 137.09, 134.88, 132.12, 131.64, 130.78, 128.68, 128.50, 127.38, 126.88, 126.34, 67.46, 42.96, 31.90, 26.63, 22.69, 15.84, 14.04. **IR (v/cm⁻¹):** 691, 749, 799, 1026, 1260, 1275, 1487, 1520, 1626, 1715, 2857, 2926, 2959. **HRMS (ESI)** calcd. for C₂₃H₂₈NO₃⁺(M + H)⁺: 366.2069, Found: 366.2044.

(E)-4-(but-2-en-1-yl)-4-butyl-2-phenyloxazol-5(4H)-one (7a)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=200:1 to 150:1) to afford a colorless oil in 79% yield, 12:1 rr, 66:34 er, $R_f = 0.3$

(PE/Et₂O, 40:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 2H), 5.59 (tt, *J* = 11.3, 6.7 Hz, 1H), 5.27 (dt, *J* = 15.5, 7.5 Hz, 1H), 2.54 (dt, *J* = 21.6, 13.5 Hz, 2H), 1.89 (dt, *J* = 11.3, 4.8 Hz, 2H), 1.58 (d, *J* = 5.1 Hz, 3H), 1.17-1.39 (m, 3H), 1.04-1.17 (m, 1H), 0.86 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.16, 159.78, 132.55, 131.20, 128.75, 127.91, 125.97, 123.05, 74.10, 40.70, 36.69, 26.01, 22.57, 17.98, 13.81. IR (v/cm⁻¹): 694, 778, 882, 967, 1039, 1290, 1320, 1450, 1652, 1815, 2858, 2957; HRMS (ESI) calcd. for C₁₇H₂₂NO₂⁺(M + H)⁺: 272.1651, Found: 272.1652.

(E)-4-(but-2-en-1-yl)-2-phenyl-4-propyloxazol-5(4H)-one (7b)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=200:1 to 150:1) to afford a colorless oil in 76% yield, 13:1 rr. $R_f = 0.4$ (PE/Et₂O,

40:1). ¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (d, J = 7.6 Hz, 2H), 7.57 (d, J = 7.4 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 5.59 (dq, J = 14.0, 6.8 Hz, 1H), 5.28 (dt, J = 15.1, 7.4 Hz, 1H), 2.54 (dt, J = 21.6, 13.5 Hz, 2H), 1.97 – 1.79 (m, J = 8.7, 6.9 Hz, 2H), 1.59 (d, J = 4.6 Hz, 3H), 1.35 – 1.10 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 180.14, 159.80, 132.55, 131.21, 128.75, 127.89, 125.94, 123.03, 74.11, 40.69, 39.01, 17.99, 17.35, 13.89. **IR (v/cm⁻¹):** 694, 881, 966, 1021, 1291, 1450, 1652, 1815, 2960. **HRMS (ESI):** calcd. for C₁₆H₂₀NO₂⁺(M + H)⁺: 258.1494, Found: 2528.1484.

(E)-4-(but-2-en-1-yl)-4-isobutyl-2-phenyloxazol-5(4H)-one (7c)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=200:1 to 150:1) to afford a colorless oil in 74% yield, 13:1 rr. $R_f = 0.4$ (PE/Et₂O,

40:1). ¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (d, J = 7.6 Hz, 2H), 7.63 – 7.54 (m, 1H), 7.51 (d, J = 8.0 Hz, 2H), 5.71 – 5.46 (m, 1H), 5.36 – 5.15 (m, 1H), 2.51 (dt, J = 21.0, 13.2 Hz, 2H), 1.95 (dt, J = 14.7, 4.0 Hz, 1H), 1.80 (dd, J = 13.7, 7.5 Hz, 1H), 1.64 (dt, J = 13.9, 4.7 Hz, 1H), 1.57 (d, J = 5.0 Hz, 3H), 1.02 – 0.76 (m, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 180.64, 159.49, 132.54, 131.52, 128.79, 127.87, 126.04, 122.74, 73.54, 45.65, 41.94, 25.00, 24.06, 23.00, 18.00. **IR (v/cm⁻¹):** 696, 881, 969, 1046, 1289, 1320, 1450, 1494, 1652, 1815, 2957. **HRMS (ESI)** calcd. for C₁₇H₂₂NO₂⁺(M + H)⁺: 272.1651, Found: 272.1652.

(E)-4-(but-2-en-1-yl)-4-(2-(methylthio)ethyl)-2-phenyloxazol-5(4H)-one (7d)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=100:1 to 40:1) to afford a colorless oil in 81% yield, 14:1 rr, $R_f = 0.2$ (PE/Et₂O, 40:1). ¹**H NMR (400 MHz, CDCl₃)** δ 8.00 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 5.61 (dt, J = 15.0, 6.9 Hz, 1H), 5.28 (dt, J = 15.3, 7.4 Hz, 1H), 2.50 (ddd, J = 28.7, 13.6, 7.5 Hz, 3H), 2.38 (q, J = 12.6, 10.6 Hz, 1H), 2.22 (t, J = 7.8 Hz, 2H), 2.05 (s, 3H), 1.60 (d, J = 5.3 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 179.82, 160.45, 132.72, 131.75, 128.79, 127.96, 125.84, 122.51, 72.96, 40.93, 35.77, 28.77, 18.01, 15.21. **IR (v/cm⁻¹):** 692, 882, 966, 1057, 1289, 1319, 1450, 1650, 1812, 2916. **HRMS (ESI)** calcd. for C₁₆H₂₀NO₂S⁺(M + H)⁺: 290.1215, Found: 290.1243.

(*E*)-4-(but-2-en-1-yl)-4-methyl-2-phenyloxazol-5(4H)-one (7e)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=80:1 to 40:1) to afford a colorless oil in 81% yield, 14:1 rr, $R_f = 0.3$ (PE/Et₂O,

40:1). ¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 5.61 (dd, J = 15.1, 7.2 Hz, 1H), 5.29 (dt, J = 15.2, 7.2 Hz, 1H), 2.54 (t, J = 7.2 Hz, 2H), 1.60 (d, J = 6.5 Hz, 3H), 1.51 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.49, 159.69, 132.60, 131.36, 128.76, 127.90, 126.00, 123.14, 70.04, 41.37, 23.16, 17.99. IR (v/cm⁻¹): 693, 884, 1000, 1290, 1320, 1450, 1652, 1818, 2917. HRMS (ESI) calcd. for C₁₄H₁₆NO₂⁺(M + H)⁺: 230.1181, Found: 230.1207.

(E)-4-(but-2-en-1-yl)-4-ethyl-2-phenyloxazol-5(4H)-one (7f)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=150:1 to 100:1) to afford a colorless oil in 33% yield, 11:1 rr, $R_f = 0.4$ (PE/Et₂O,

40:1).¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (d, J = 7.6 Hz, 2H), 7.57 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 5.60 (dd, J = 15.3, 7.5 Hz, 1H), 5.28 (dt, J = 15.5, 7.4 Hz, 1H), 2.69 – 2.42 (m, 2H), 1.94 (q, J = 8.9 Hz, 2H), 1.59 (s, 3H), 0.85 (td, J = 7.6, 2.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.06, 159.92, 132.58, 131.16, 128.76, 127.92, 125.93, 123.10, 74.62, 40.33, 30.07, 18.00, 8.24. IR (v/cm⁻¹): 692, 883, 1013, 1290, 1331, 1450, 1652, 1816, 2911. HRMS (ESI) calcd. for C₁₅H₁₈NO₂⁺(M + H)⁺: 244.1338, Found: 244.1344.

(E)-4-benzyl-4-(but-2-en-1-yl)-2-phenyloxazol-5(4H)-one (7g)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=150:1 to 80:1) to afford a colorless oil in 66% yield, 14:1 rr, $R_f = 0.2$ (PE/Et₂O,

40:1). ¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.23 – 7.01 (m, 5H), 5.63 (dq, *J* = 13.9, 6.8 Hz, 1H), 5.30 (dt, *J* = 15.2, 7.5 Hz, 1H), 3.18 (q, *J* = 13.6 Hz, 2H), 2.67 (dd, *J* = 7.5, 3.8 Hz, 2H), 1.60 (d, *J* = 5.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.27, 159.75, 134.48, 132.46, 131.47, 130.14, 128.64, 128.13, 127.80, 127.13, 125.78, 122.99, 75.13, 43.11, 40.50, 18.03. IR (v/cm⁻¹): 693, 886, 969, 1056, 1291, 1450, 152, 1813, 2918. HRMS (ESI) calcd. for C₂₀H₂₀NO₂⁺(M + H)⁺: 306.1494, Found: 306.1490.

(E)-4-(but-2-en-1-yl)-4-butyl-2-(p-tolyl)oxazol-5(4H)-one (7h)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=100:1 to 40:1) to afford a colorless oil in 51%

yield, 14:1 rr, $R_f = 0.3$ (PE/Et₂O, 40:1).¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 6.7 Hz, 2H), 7.30 (d, J = 7.7 Hz, 2H), 5.57 (dt, J = 13.8, 6.9 Hz, 1H), 5.27 (dt, J = 15.4, 7.3 Hz, 1H), 2.53 (qd, J = 13.4, 12.7, 6.4 Hz, 2H), 2.44 (d, J = 2.9 Hz, 3H), 1.86 (t, J = 11.8 Hz, 2H), 1.58 (d, J = 6.4 Hz, 3H), 1.33 – 1.06 (m, 4H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.32, 159.83, 143.28, 131.11, 129.48, 127.90, 123.13, 74.00, 40.74, 36.73, 26.02, 22.58, 21.69, 18.00, 13.83. IR (v/cm⁻¹): 726, 827, 883, 969, 1040, 1180, 1298, 1314, 1651, 1815, 2858, 2920,2957. HRMS (ESI) calcd. for $C_{18}H_{24}NO_2^+(M + H)^+$: 86.1807, Found: 286.1791.

(E)-4-(but-2-en-1-yl)-4-butyl-2-(4-chlorophenyl)oxazol-5(4H)-one (7i)

Synthesized by following **general procedure B**, and purification by flash column chromatography (PE:Et₂O=80:1 to 40:1) to afford a colorless oil in 43% yield, 12:1 rr, $R_f = 0.4$ (PE/Et₂O, 40:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 5.58 (dq, J = 14.9, 7.5 Hz, 1H), 5.25 (dt, J = 15.5, 7.7 Hz, 1H), 2.54 (tt, J = 21.9, 10.0 Hz, 2H), 1.89 (qd, J = 9.7, 6.7, 5.1 Hz, 2H), 1.78 – 1.51 (m, 3H), 1.34 – 1.06 (m, 4H), 0.86 (d, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.84, 158.96, 138.95, 131.36, 129.20, 129.16, 124.39, 122.90, 74.22, 40.64, 36.63, 26.01, 22.55, 18.00, 13.81. IR (v/cm⁻¹): 730, 839, 968, 1039, 1090, 1294, 1651, 1819, 2856, 2920, 2957. HRMS (ESI) calcd. for C₁₇H₂₁ClNO₂⁺(M + H)⁺: 306.1261, Found: 306.1232.

4. References:

- [1]. C. Macovei, P. Vicennati, J. Quinton, M.-C. Nevers, H. Volland, C. Créminon and F. Taran, *Chem. Commun.* 2012,48, 4411-4413.
- [2]. A.-D. Melhado, M. Luparia and F.-D Toste, J. Am. Chem. Soc. 2007, 129, 42, 12638-12639
- [3]. M. Kalek and G.-C. Fu, J. Am. Chem. Soc. 2015, 137, 9438-9442
- [4]. H. Kinuta, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2015, 137, 1593.
- [5]. A. Tortajada, R. Ninokata, R. Martin, J. Am. Chem. Soc. 2018, 140, 2050.
- [6]. M. Kawatsura, D. Ikeda, T. Ishii, Y. Komatsu, J. Uenishi, Synlett. 2006, 2435.
- [7]. M.-J. Goldfogel and S.-J. Meek. Chem. Sci., 2016, 7, 4079

5. NMR spectra

¹³C NMR Spectrum of Compound **3a** (101 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **3b** (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3c** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3d** (400 MHz, CDCl₃)

 ^{13}C NMR Spectrum of Compound **3f** (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3h** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3h'** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3i** (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

S34

S35

S37

¹³C NMR Spectrum of Compound **3m** (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3n** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **30** (400 MHz, CDCl₃)

¹H NMR Spectrum of Compound **3p** (400 MHz, CDCl₃)

S46

 ^{13}C NMR Spectrum of Compound 4m (101 MHz, CDCl_3)

6 5 f1 (ppm) ¹³C NMR Spectrum of Compound 5 (101 MHz, CDCl₃)

.9

-1

-2

¹H NMR Spectrum of Compound 7a (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 7a (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **7b** (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **7b** (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **7c** (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 7c (101 MHz, CDCl₃)

0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 fl (ppm)

¹³C NMR Spectrum of Compound **7e** (101 MHz, CDCl₃)

¹³C NMR Spectrum of Compound **7f** (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **7g** (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 7g (101 MHz, CDCl₃)

¹H NMR Spectrum of Compound **7h** (400 MHz, CDCl₃) ſſ n-Bu p-Me-C N $1.94_{\rm I}$ 1.90_H 1.00₄ 1.004 1.974 2.88⁴ 2.074 3.144 4.38{ 3.044 13 12 11 10 9 8 7 6 5 f1 (ppm) 3 2 1 0 -1 -2 4

¹H NMR Spectrum of Compound 7i (400 MHz, CDCl₃)

¹³C NMR Spectrum of Compound 7i (101 MHz, CDCl₃)

6. HPLC spectra

<u>Compound 3a</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 120:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 13.209 min, $t_{\rm R}$ (minor isomer) = 14.920 min.

YHJ-05-033A(RAC)-IG-0.4ML-120#1-80MIN.lcd

〈峰表〉

YHJ-05-033A(RAC)-IG-0.4ML-120#1-80MIN lcd

PD.	A Ch	1 254nm		11	IJ 00 000A (IAC)	10 0. HML 120#1 0
i.	暑号	保留时间	面积	高度	面积%	拖尾因子
	1	13.252	2361256	115220	50. 228	1.170
	2	<mark>14. 911</mark>	2339832	67967	49.772	1.059
	总计		4701087	183187	100.000	

〈色谱图〉

<u>Compound 3b</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 120:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 20.214 min, $t_{\rm R}$ (minor isomer) = 21.689 min.

YHJ-05-041C(RAC)-IG-0.4ML-120#1-80MIN.lcd

〈峰表〉

YHJ-05-041C(RAC)-IG-0.4ML-120#1-80MIN.lcd

PDA Ch	1 254nm		Inj	-05-0410 (RAC)-1	LG-0.4ML-120#1-0
峰号	保留时间	面积	高度	面积%	拖尾因子
1	20.244	1476776	37647	49.358	
2	21.691	1515195	29355	50.642)
总计		2991971	67002	100.000	

1	17.	116	10	1
51		間	소	1

YHJ-05-041C-IG-0.4ML-120#1-80MIN.lcd

<u>Compound 3c</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 11.712 min, $t_{\rm R}$ (minor isomer) = 12.518 min.

〈峰表〉

YHJ-05-041B(RAC)-IG-0.4ML-70#1-60MIN001.lcd

PDA Ch	1 254nm		111,) 05 041D (RAC)	10 0. HML 10#1 00k
峰号	保留时间	面积	高度	面积%	拖尾因子
1	11.745	3290509	213138	50.807	1.144
2	12.560	3185988	152431	49.193	1.201
总计		6476497	365568	100.000	

〈色谱图〉

YHJ-05-041B-IG-0.4ML-70#1-60MIN.lcd

<u>Compound 3d</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 200:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 19.217 min, $t_{\rm R}$ (minor isomer) = 21.215 min.

YHJ-05-041A(RAC)-IG-0.4ML-200#1-80MIN.lcd

〈峰表〉

YHJ-05-041A(RAC)-IG-0.4ML-200#1-80MIN.lcd

PDA Ch	1 254nm		In,	J-05-041A(RAC)	16 0. 4ML 200#1 00
峰号	保留时间	面积	高度	面积%	拖尾因子
1	19.372	1294810	29877	48.890	
2	21.183	1353586	26945	51.110	1.00
总计		2648396	56822	100.000	

〈色谱图〉

YHJ-05-041A-IG-0.4ML-200#1-80MIN.lcd

<u>Compound 3e</u>: HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 18.632 min, $t_{\rm R}$ (minor isomer) = 20.176 min.

YHJ-05-041D(RAC)-ODH-0.4ML-60#1-60MIN.lcd

〈峰表〉

YHJ-05-041D(RAC)-ODH-0.4ML-60#1-60MIN.lcd

PDA Ch	1 254nm		11	HJ-05-041D(RAC)	-0DH-0. 4ML-60#1-6
峰号	保留时间	面积	高度	面积%	拖尾因子
1	18.717	839140	31818	49.641	1.283
2	20.237	851283	29320	50.359	1.263
总计		1690422	61138	100.000	

〈色谱图〉

YHJ-05-041D-0DH-0.4ML-60#1-60MIN001.lcd

PDA Ch	1 254nm		next and states and states and states and states and states and								
峰号	保留时间	面积	高度	面积%	拖尾因子						
1	18.632	930252	34226	93.346	1.293						
2	20.176	66314	2338	6.654							
总计		996567	36564	100.000							

<u>Compound 3f</u>: HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 12.834 min, $t_{\rm R}$ (minor isomer) = 15.198 min.

〈峰表〉

YHJ-05-041G(RAC)-ODH-0.4ML-60#1-60MIN001.lcd

PDA Ch	1 254nm		111.J	00 0110 (1010) 0	DI C. IML CONT COM
峰号	保留时间	面积	高度	面积%	拖尾因子
1	12.831	3475952	168518	49.778	1.387
2	15.168	3506947	142739	50. 222	1.304
总计		6982899	311257	100.000	

〈色谱图〉

<u>**Compound 3g: HPLC condition**</u>: Chiralcel IG column, *n*-hexane/*i*-PrOH = 120:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 12.658 min, $t_{\rm R}$ (minor isomer)

= 13.611 min.

〈色谱图〉

YHJ-05-041E(RAC)-IG-0.4ML-120#1-80MIN.lcd

〈峰表〉

YHJ-05-041E(RAC)-IG-0.4ML-120#1-80MIN.lcd

PDA Ch	1 254nm	la facilitati		IJ 00 011E (IAC)	10 0. Hill 120#1 00
峰号	保留时间	面积	高度	面积%	拖尾因子
1	12.672	827963	40256	48.902	
2	13.581	865150	25618	51.098	
总计		1693113	65874	100.000	

〈色谱图〉

YH 1-05-041E-1G-0, 4ML-120#1-80MIN, 1	C	1	Ι.	N	T	M	0	8	-8	#1)‡	21	15	-	MT	4	0	G-	T	E-	1	04	-	05	T-	ΥH	
---------------------------------------	---	---	----	---	---	---	---	---	----	----	----	----	----	---	----	---	---	----	---	----	---	----	---	----	----	----	--

<u>Compound 3h</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 14.349 min, $t_{\rm R}$ (minor isomer) = 15.943 min.

YHJ-05-0411(RAC)-IG-0.4ML-70#1-60MIN.lcd

〈峰表〉

YHJ-05-0411(RAC)-IG-0.4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		IHJ	-05-0411 (RAC)	IG-0. 4ML-70#1-60
峰号	保留时间	面积	高度	面积%	拖尾因子
1	14.353	925482	48235	46.358	1.144
2	15.924	1070904	28025	53.642	1.335
总计		1996386	76260	100.000	

〈色谱图〉

mAU

YHJ-05-041I-IG-0.4ML-70#1-60MIN.lcd

1 011 01	1 201111				
峰号	保留时间	面积	高度	面积%	拖尾因子
1	14.349	394923	20607	7.061	1.142
2	15.943	5198107	143899	92. 939	1.187
总计		5593030	164507	100.000	

<u>Compound 3h</u>': HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 26.184 min, $t_{\rm R}$ (minor isomer) = 19.278 min.

〈峰表〉

YHJ-05-0411-2(RAC)-IG-0.4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		In	J UJ UHII 2 (NAC	/ 16 0. HML 10#1 C
峰号	保留时间	面积	高度	面积%	拖尾因子
1	19.546	3161113	117334	50.830	1.085
2	27.043	3057926	81606	49.170	1.108
总计		6219039	198940	100.000	

〈色谱图〉

YHJ-05-041I-2-IG-0. 4ML-70#1-60MIN. lcd

<u>Compound 3i</u>: HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 17.445 min, $t_{\rm R}$ (minor isomer) = 13.574 min.

〈峰表〉

YHJ-05-041J(RAC)-ODH-0. 4ML-60#1-60MIN.lcd

PDA Ch	1 254nm		III	J 0J 041J(KAC) 0	DII U. HML OUHI U
峰号	保留时间	面积	高度	面积%	拖尾因子
1	13.569	5729661	274968	49.777	1.365
2	17.508	5781018	197296	50. 223	1.320
总计		11510679	472264	100.000	

〈色谱图〉

YHJ-05-041J-0DH-0.4ML-60#1-60MIN.lcd mAU 1500 PDA Multi 1 254nm, 4nm 17.445 'n-Bu 1000-3i 500-13.574 0 25 20 10 15 Ó min 〈峰表〉 YHJ-05-041J-ODH-0.4ML-60#1-60MIN.lcd PDA Ch1 254nm 峰号 保留时间 面积 高度 面积% 拖尾因子 3360935 1.364 13.574 8,927 1 161670 2 17.445 34287286 1142909 91.073 1.488 100.000 总计 37648221 1304579

<u>**Compound 3j</u>: HPLC condition**: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 12.426 min, $t_{\rm R}$ (minor isomer) = 14.934 min.</u>

YHJ-05-041H(RAC)-IG-0.4ML-70#1-60MIN.lcd

〈峰表〉

YHJ-05-041H(RAC)-IG-0.4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		In,	J-05-04III (RAC)	IG-0. 4ML-70#1-00
峰号	保留时间	面积	高度	面积%	拖尾因子
1	12.418	1432259	88763	50. 479	1.167
2	14.925	1405065	45796	49.521	1.161
总计		2837324	134560	100.000	

〈色谱图〉

总计

10510222

633951

YHJ-05-041H-IG-0.4ML-70#1-60MIN.lcd

<u>**Compound 3k: HPLC condition**</u>: Chiralcel IG column, *n*-hexane/*i*-PrOH = 400:1, flow rate = 0.2 mL/min, $\lambda = 254 \text{ nm}$, t_{R} (major isomer) = 26.791 min, t_{R} (minor isomer) = 28.480 min.

100.000

〈峰表〉

YHJ-05-041L(RAC)-IG-0.2ML-400#1-60MIN001.lcd

PDA Ch	1 254nm	玉和	च्छेन स्ट्रेस	- file	长日田フ
唯亏	保留时间	山积	尚度	山积%	他甩囚丁
1	26.771	13338695	320304	49. 539	-
2	28.376	13586918	288044	50. 461	-
总计		26925613	608348	100.000	

〈色谱图〉

YHJ-05-041L-IG-0.2ML-400#1-60MIN.lcd

<u>Compound 31</u>: HPLC condition: Chiralcel IA column, *n*-hexane/*i*-PrOH = 1000:1, flow rate = 0.3 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 21.831 min, $t_{\rm R}$ (minor isomer) = 20.737 min.

YHJ-05-041M(RAC)-IA-0.3ML-1000#1-60MIN.lcd

〈峰表〉

YHJ-05-041M(RAC)-IA-0.3ML-1000#1-60MIN.lcd

峰号	保留时间	面积	高度	面积%	拖尾因子
1	20.702	1329391	42285	50.375	
2	21.982	1309619	31055	49.625	
总计		2639009	73340	100.000	

〈色谱图〉

YHJ-05-041M-IA-0.3ML-1000#1-60MIN.lcd

峰亏	保留时间	山积	尚度	山积%	他甩囚丁
1	20.737	1163023	37585	15.107	
2	21.831	6535344	150045	84.893	1.870
总计		7698367	187630	100.000	

<u>**Compound 31'</u>: HPLC condition**: Chiralcel IF column, *n*-hexane/*i*-PrOH = 500:1, flow rate = 0.3 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 27.468 min, $t_{\rm R}$ (minor isomer) = 25.966 min.</u>

YHJ-05-041M-2(RAC)-IF-0.3ML-500#1-60MIN.lcd

〈峰表〉

YHJ-05-041M-2(RAC)-IF-0.3ML-500#1-60MIN.lcd

PDA Ch	1 254nm		IIIJ	-05-04IM-2 (RAC) II 0. 3ML 300#1 0
峰号	保留时间	面积	高度	面积%	拖尾因子
1	25.642	5315525	133327	48.024	
2	27.133	5752952	157161	51.976	1
总计		11068477	290488	100.000	

〈色谱图〉

YHJ-05-041M-2-IF-0.3ML-500#1-60MIN.lcd

<u>Compound 3m</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 150:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 27.011 min, $t_{\rm R}$ (minor isomer) = 24.678 min.

〈峰表〉

YHJ-05-043A(RAC)-IG-0.4ML-150#1-60MIN.lcd

PDA Ch	1 254nm			00 01011 (1110)	10 01 1112 100011 0
峰号	保留时间	面积	高度	面积%	拖尾因子
1	24.647	1980858	55765	50.092	1.174
2	27.048	1973622	50744	49.908	1.170
总计		3954480	106509	100.000	

<u>Compound 3n</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 13.202 min, $t_{\rm R}$ (minor isomer) = 14.180 min.

〈峰表〉

YHJ-05-043B(RAC)-IG-0.4ML-60#1-60MIN002.lcd

PDA Ch	1 254nm		1H	J-05-043B(RAC)-	1G-0.4ML-60#1-60M
峰号	保留时间	面积	高度	面积%	拖尾因子
1	13.259	24189575	1388308	51.055	1.452
2	14.218	23189410	1169815	48.945	1.147
总计		47378985	2558122	100.000	

<u>**Compound 30: HPLC condition**</u>: Chiralcel IG column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 11.877 min, $t_{\rm R}$ (minor isomer) = 13.353 min.

YHJ-05-043C(RAC)-IG-0.4ML-60#1-60MIN.lcd

〈峰表〉

YHJ-05-043C(RAC)-IG-0.4ML-60#1-60MIN.lcd

PDA Ch	11 254nm		1	IIJ 05 0450 (IAC)	10 0. Hall 00#1 00
峰号	保留时间	面积	高度	面积%	拖尾因子
1	11.833	8162526	562899	49.946	1.177
2	13.357	8180262	363179	50.054	1.096
总计		16342788	926078	100.000	

<u>Compound 3p</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 11.767 min, $t_{\rm R}$ (minor isomer) = 12.745 min.

〈峰表〉

YHJ-05-043G(RAC)-IG-0. 4ML-70#1-60MIN. lcd

PDA Ch	1 254nm		11	-05-045G (RAC)	IG-0. 4ML-70#1-60
峰号	保留时间	面积	高度	面积%	拖尾因子
1	11.761	4404104	287065	49.265	1.215
2	12.746	4535540	219078	50.735	1.234
总计		8939644	506143	100.000	

<u>Compound 3q</u>: HPLC condition: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 24.110 min, $t_{\rm R}$ (minor isomer) = 27.182 min.

YHJ-05-043H(RAC)-IG-0.4ML-70#1-60MIN.lcd

〈峰表〉

YHJ-05-043H(RAC)-IG-0.4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		INJ	-05-045H (RAC)	IG-0. 4ML-70#1-6
峰号	保留时间	面积	高度	面积%	拖尾因子
1	24.138	1956476	57530	49.908	1.135
2	27.179	1963684	38426	50.092	1.073
总计		3920160	95957	100.000	

〈色谱图〉

YHJ-05-043H-IG-0.4ML-70#1-60MIN.lcd

<u>Compound 3r</u>: HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 60:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 16.807 min, $t_{\rm R}$ (minor isomer) = 15.740 min.

YHJ-05-043D(RAC)-ODH-0.4ML-60#1-60MIN.lcd

〈峰表〉

YHJ-05-043D(RAC)-ODH-0.4ML-60#1-60MIN.lcd

PDA Ch	1 254nm		11	IJ 05 045D (RRC)	ODII O. HAL OUHI OC
峰号	保留时间	面积	高度	面积%	拖尾因子
1	15.750	1741978	71834	49.149	1.343
2	16.869	1802275	66196	50.851	1.328
总计		3544253	138029	100.000	

〈色谱图〉

<u>**Compound 3s</u>: HPLC condition**: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 12.334 min, $t_{\rm R}$ (minor isomer) = 13.704 min.</u>

YHJ-05-043E(RAC)-IG-0.4ML-70#1-60MIN.lcd

〈峰表〉

YHJ-05-043E(RAC)-IG-0.4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		1	IIJ 05 045E (IAC)	16 0. HML 70#1 00
峰号	保留时间	面积	高度	面积%	拖尾因子
1	12.320	15164325	890687	50. 324	1.412
2	13.662	14969271	497326	49.676	1.294
总计		30133596	1388013	100.000	

〈色谱图〉

<u>**Compound 3t</u>: HPLC condition**: Chiralcel IG column, *n*-hexane/*i*-PrOH = 70:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 11.731 min, $t_{\rm R}$ (minor isomer) = 12.686 min.</u>

YHJ-05-043F(RAC)-IG-0.4ML-70#1-60MIN.lcd

〈峰表〉

YHJ-05-043F(RAC)-IG-0. 4ML-70#1-60MIN.lcd

PDA Ch	1 254nm		1	nj-05-045r (RAC)	-1G-0. 4ML-70#1-60
峰号	保留时间	面积	高度	面积%	拖尾因子
1	11.719	20110485	1345356	50.770	1.094
2	12.663	19500442	815340	49. 230	1.210
总计		39610927	2160696	100.000	

〈色谱图〉

<u>Compound 3u</u>: HPLC condition: Chiralcel ODH column, *n*-hexane/*i*-PrOH = 140:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 15.278 min, $t_{\rm R}$ (minor isomer) = 13.548 min.

YHJ-05-043I(RAC)-ODH-0.4ML-50#1-60MIN.lcd

〈峰表〉

YH	H J-05-0 43I (RAC)	-ODH-0. 4ML-50#1-	60MIN.lcd
言度	面和叫	施尾因子	

PDA Ch	1 254nm		11	1J-03-0431 (RAC)-0	DH-0.4ML-30#1-60
峰号	保留时间	面积	高度	面积%	拖尾因子
1	13.539	13553614	595278	50. 186	1.309
2	15.291	13452942	521645	49.814	1.276
总计		27006557	1116923	100.000	

〈色谱图〉

<u>Compound 4</u>: HPLC condition: Chiralcel ODH column, *n*-hexane/*i*-PrOH = 30:1, flow rate = 0.4 mL/min, λ = 254 nm, t_R (major isomer) = 18.089 min, t_R (minor isomer) = 14.520 min.

〈峰表〉

YHJ-05-YS1(RAC)-IG-0.4ML-30#1-60MIN001.lcd

PDA Ch	1 254nm			00 101 (1010) 10	o. mil oomi oomi
峰号	保留时间	面积	高度	面积%	拖尾因子
1	14.552	899188	32118	50.360	1.573
2	18.173	886321	29948	49.640	1.319
总计		1785510	62066	100.000	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.

〈色谱图〉

<u>Compound 4m</u>: HPLC condition: Chiralcel ODH column, *n*-hexane/*i*-PrOH = 15:1, flow rate = 0.4 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 31.885 min, $t_{\rm R}$ (minor isomer) = 36.699 min.

YHJ-05-T3(RAC)-ODH-0.4ML-15#1-60MIN.lcd

〈峰表〉

YHJ-05-T3(RAC)-ODH-0.4ML-15#1-60MIN.lcd

PDA Ch	1 254nm			11j 00 10 (IAC)	ODII O. TALL IOTTI COM
峰号	保留时间	面积	高度	面积%	拖尾因子
1	31.918	1806583	30235	50. 197	1.343
2	36.199	1792422	28884	49.803	1.269
总计		3599005	59119	100.000	

〈色谱图〉

<u>**Compound 5**</u>: **HPLC condition**: Chiralcel OJH column, *n*-hexane/*i*-PrOH = 16:1, 1% CH₃COOH, flow rate = 0.2 mL/min, λ = 254 nm, $t_{\rm R}$ (major isomer) = 34.150 min, $t_{\rm R}$ (minor isomer) = 29.512 min.

YHJ-05-YS2(RAC)-0JH-0.2ML-16#1-60MIN001.lcd

PDA Multi 1 254nm, 4nm

34.009

〈峰表〉

YHJ-05-YS2(RAC)-0JH-0.2ML-16#1-60MIN001.lcd

PDA Ch	1 254nm		IIIJ	00 152 (RAC) 0J	II 0. ZML IOHI OOMI
峰号	保留时间	面积	高度	面积%	拖尾因子
1	29.454	14977754	200843	49.747	1.217
2	34.009	15129999	109142	50.253	1.203
总计		30107754	309984	100.000	

〈色谱图〉

Compound 7a: HPLC condition: Chiralcel IA column, *n*-hexane/*i*-PrOH = 16:1, 1% CH₃COOH, flow rate = 0.2 mL/min, λ = 254 nm, t_R (major isomer) = 31.647 min, t_R (minor isomer) = 34.624 min.

YHJ-05-045B-IA-0.3ML-1000#1-60MIN.lcd

〈峰表〉

YHJ-05-045B-IA-0.3ML-1000#1-60MIN.lcd

PDA Ch	1 254nm		YHJ-05-045B-IA-0.3ML-1000#1-60M		
峰号	保留时间	面积	高度	面积%	拖尾因子
1	30.784	6443014	118680	49.501	1.866
2	33. 425	6572914	108834	50. 499	1.924
总计		13015928	227514	100.000	

〈色谱图〉

mAU

YHJ-05-045(40)-IA-0.3ML-1000#1-60MIN.lcd

〈峰表〉

YHJ-05-045(40)-IA-0.3ML-1000#1-60MIN.lcd

PDA CI	h1 254nm		Y	HJ-05-045(40)-1	A-0.3ML-1000#1-60
峰号	保留时间	面积	高度	面积%	拖尾因子
1	31.647	6721352	116612	65.967	1.932
2	34.624	3467546	55145	34.033	1.718
总计	-	10188897	171758	100.000	