Supplementary Information

Stepwise Assembly of Nanocluster Guided by DNA Origami Frames with High-throughput

Xiaodong Xin ${ }^{1,2,3}$, Lihui Wang ${ }^{2}$, Kaiwei Wang ${ }^{2,4}$, Lizhi Dai ${ }^{2}$, Hai Cao ${ }^{5}$, Zheng Li ${ }^{1,6, *}$, Ye Tian ${ }^{2,3,7, *}$
${ }^{1}$ College of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
${ }^{2}$ National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
${ }^{3}$ Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
${ }^{4}$ School of Science, Xi’an Jiaotong University, Xi’an, 710049, China
${ }^{5}$ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
${ }^{6}$ School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China
${ }^{7}$ Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China

*Email address: ytian@nju.edu.cn; lizheng@xtu.edu.cn

1. Materials and methods:

Folding DNA origami frames: Octahedral DNA origami frames (DOFs) were folded by mixing long scaffold DNA chains and ~ 120 different short staple DNA sequences by one-step annealing process. Briefly, 10 nM scaffold DNA (M13mp18, Bayou Biolab) were mixed with 100 nM of each staple DNA in $1 \times$ TAE buffer containing 12.5 $\mathrm{mM} \mathrm{Mg}{ }^{2+}$. The mixture was firstly heated to $90^{\circ} \mathrm{C}$ rapidly and then slowly cooling down to $20^{\circ} \mathrm{C}$ over 21 hours using polymerase chain reaction (PCR) machine. The product was then stored at $4^{\circ} \mathrm{C}$ and ready for use. Note that the DOFs used in the $1^{\text {st }}$ and $2^{\text {nd }}$ strategies were slightly different in the extracted DNA sticky ends from vertices, as shown in the sequence section.

DNA functionalized on Au nanoparticles: Au colloids we purchased from Ted Pella were 10 nm gold nanoparticles (NPs) functionalized with citric acid. The Au nanoparticles (AuNPs) used in both two strategies were modified with different thiolated DNA: the $1^{\text {st }}$ strategy used NPs functionalized with thiolated DNA A and B together, and the $2^{\text {nd }}$ strategy used NPs functionalized with thiolated DNA F (see the sequence section for details). For the $1^{\text {st }}$ strategy, thiolated DNA A and B were added to the AuNPs with molar ratio of $150: 1$ between DNA and AuNPs, respectively. For the $2^{\text {nd }}$ strategy, thiolated DNA F were added to the AuNPs with molar ratio of 300:1 between DNA and AuNPs. After 1 h , the sodium dodecyl sulfate (SDS) and phosphate buffer ($\mathrm{PB}, 100 \mathrm{mM}$) were added to the solution to bring to a concentration of 0.01% for SDS and 10 mM for phosphate. After another $1 \mathrm{~h}, 2 \mathrm{M} \mathrm{NaCl}$ was gradually added over 5 hours to a final concentration of 0.3 M . Then the solution was put on rotating apparatus overnight. The DNA functionalized AuNPs were purified by centrifuging for 1 h at $20,000 \mathrm{rcf}$ to remove the supernatant containing unreacted DNA. After repeating the centrifugation procedure three times, the AuNPs were finally resuspended in 0.1 M PBS buffer. The concentration of the AuNPs was measured by UV-vis spectroscope.

Fabrication of DNA/magnetic beads conjugates: Streptavidin capped on magnetic beads (MBs, $\sim 1 \mu \mathrm{~m}$) used in this experiment were purchased from New England Biolabs. Biotin-modified ssDNA A^{\prime} and buffer ($12.5 \mathrm{mM} \mathrm{Mg}^{2+}, 1 \times \mathrm{TAE}$) were mixed with MBs, and rotated at room temperature for 2 hours. After that, the mixture was rinsed several times to remove the unattached ssDNA A^{\prime}.

Transmission electron microscope (TEM) image: The carbon coated copper grids were glow discharged for 30 s before use. The $5 \mu \mathrm{~L}$ sample solution was dropped onto a carbon coated copper grid and deposited for 20 min , and then the excess solution was slowly wicked away with filter paper. After rinsing by buffer ($12.5 \mathrm{mM} \mathrm{Mg}^{2+}, 1 \times$ TAE $)$ twice, the sample was negatively stained by $5 \mu \mathrm{~L} 2 \%$ (weight/volume) uranyl acetate aqueous solution for 15 s and the excess staining solution was immediately removed. The sample was imaged in JEOL-2100 TEM operating at 200 kV .

DLS measurement: The instrument we used was Malvern Zetasizer Nano-ZSE, which was equipped with a 633 nm laser source and based on the principle of dynamic light scattering (DLS) to measure the hydrodynamic size of nanoclusters.

Brief protocol: In the $1^{\text {st }}$ strategy, we firstly capped both sulfhydryl DNA A and B on the AuNPs. In step 1, the modified AuNPs called $p-A B$ were added into the solution containing $s-A$ ' surface. AuNPs could bind with the surface of MBs tightly by the interactions between sticky end A and A^{\prime}. After rotating for 12 h at room temperature, the supernatant was removed and the sample was rinsed four times with buffer (12.5 $\mathrm{mM} \mathrm{Mg}{ }^{2+}, 1 \times \mathrm{TAE}$). In step 2 , we added ssDNA $B^{\prime} C^{\prime}$ to the rinsed solution at a molar ratio of $3: 1$ for ssDNA $B^{\prime} C^{\prime}$: AuNPs. The solution was shaken at $1,000 \mathrm{rpm}$ for 12 h at $35^{\circ} \mathrm{C}$ and then rinsed four times with method similar as mentioned above. In this procedure, complementary base-pairings between $B^{\prime} C^{\prime}$ and B only occurred on the top hemisphere of the AuNPs and was not affected by severe steric hindrance. After sufficient reaction time, we added the substituted chain $A^{\prime \prime}$ (molar ratio of $A^{\prime \prime}$ and A^{\prime} was $5: 1$), which contained three more complementary bases than A, to separate patchy particles from the surface. Then, we put the solution of octahedral DOFs which had two vertices stretched out with DNA chains F into the solution we obtained from step 3 at a $1: 3$ molar ratio, and shook at $1,000 \mathrm{rpm}$ for 12 h at $38{ }^{\circ} \mathrm{C}$ (step 4). After 12 h of adequate reaction, the dimes were produced.

In the $2^{\text {nd }}$ strategy, the DOFs had one specific vertex stretching out DNA sticky ends O, which were complementary with DNA O^{\prime} on the surface MBs (Figure 3a). In step $1,5 \mu \mathrm{~L}(10 \mathrm{nM})$ DOFs were added into MBs solution and reacted for at least 12 h to be installed on s - O ' surface. Another four vertices in the middle-plane were designed to 'active' (F) for grasping the AuNPs. We added AuNPs functioned with strand F ' into the solution at a 10:1 molar ratio for AuNPs and DOFs. The mixture was shaken at $1,000 \mathrm{rpm}$ for 12 h at $35^{\circ} \mathrm{C}$ in step 2. After that, the solution was rinsed for several times. Finally, 'fuel DNA' O '' was put into the solution to release the clusters, which were then separated from the surface by magnets.

DNA sequences: DNA oligonucleotides we used were ordered from Sangon Biotech (Shanghai, China). The thiolated DNA strands were purified by HPLC, while the other DNA strands were purified by PAGE. The DOFs we designed have totally six vertices, labeled from Octa I to Octa VI (as shown in the Figure S7). Each vertex stretched out four sticky ends for assembly with NPs. The sequences were listed as follows (5^{\prime} to 3^{\prime}).

(1). DNA sequences used in the $1^{\text {st }}$ strategy

The DOFs used in the $1^{\text {st }}$ strategy had two 'active' vertices: Octa II and Octa IV.

Name	Sequence
A	ATTGGATTGGAAGTATTTTTTTTTTTTTTT-C6H12-SH

B	CTCTCTACACTATCTTTTTTTTTTTTTTTT-C6H12-SH
$B^{\prime} C^{\prime}$	AGATAGTGTAGAGAGAGTATTGATAAGGAT
A^{\prime}	CTTGTGTCTACTTCCAATCCAATTTTTTTTTTTTTTTT-Biotin
$A^{\prime \prime}$	ATTGGATTGGAAGTAGACACAAGAA
Octa II-C ${ }_{1}$	AATAGCAATAGCACCAGAAGGAAACCTAAAGCCACTGGTAATTTATCCTTATCAATACT
Octa II-C2	GACAGGAGGTTGAAACAAATAAATCCGCCCCCTCCGCCACCCTTATCCTTATCAATACT
Octa II-C3	CAGAATCAAGTTTCGGCATTTTCGGTTAAATATATCACCAGTTTATCCTTATCAATACT
Octa II- C_{4}	TCATATGGTTTACGATTGAGGGAGGGAAACGCAATACATACATTATCCTTATCAATACT
Octa IV-C ${ }_{1}$	GCTCACAATTCCGTGAGCTAACTCACTGGAAGTAATGGTCAATTATCCTTATCAATACT
Octa IV-C ${ }_{2}$	GGCCCTGAGAGAAGCAGGCGAAAATCATTGCGTAGAGGCGGTTTATCCTTATCAATACT
Octa IV-C3	TTTGCGGATGGCCAACTAAAGTACGGGCTTGCAGCTACAGAGTTATCCTTATCAATACT
Octa IV-C4	CTTAAACAGCTTATATATTCGGTCGCTTGATGGGGAACAAGATTATCCTTATCAATACT

(2). DNA sequences used in the $2^{\text {nd }}$ strategy

The DOFs used in the $2^{\text {nd }}$ strategy had five vertexes: Octa I , Octa II, Octa III, Octa

IV and Octa V.

Name	Sequence
O^{\prime}	Biotin-TTTTTTTTTTTTTTTCTCTCTTCTATCCTAACCTTCAT
$O^{\prime \prime}$	ATGAAGGTTAGGATAGAAGAGAG
F^{\prime}	SH-C6H12- TTTAGTATTGATAAGGAT
Octa $\mathrm{I}-\mathrm{O}_{1}$	AGAGCCTAATTTGATTTTTTGTTTAAATCCTGAAATAAAGAATTTTTTTTTTATGAAGGTTAGGATA
Octa $\mathrm{I}-\mathrm{O}_{2}$	TGTAGCATTCCAACGTTAGTAAATGAAGTGCCGCGCCACCCTTTTTTTTTTTATGAAGGTTAGGATA
Octa II-F1	AATAGCAATAGCACCAGAAGGAAACCTAAAGCCACTGGTAATTTATCCTTATCAATACT
Octa Π - F_{2}	GACAGGAGGTTGAAACAAATAAATCCGCCCCCTCCGCCACCCTTATCCTTATCAATACT
Octa II-F3	CAGAATCAAGTTTCGGCATTTTCGGTTAAATATATCACCAGTTTATCCTTATCAATACT
Octa II-F4	TCATATGGTTTACGATTGAGGGAGGGAAACGCAATACATACATTATCCTTATCAATACT
Octa III- F_{1}	CAACGCTCAACAGCAGAGGCATTTTCAATCCAATGATAAATATTATCCTTATCAATACT
Octa III-F 2	ATCAAAATCATATATGTAAATGCTGAACAAACACTTGCTTCTTTATCCTTATCAATACT
Octa III-F3	TGATTGCTTTGAGCAAAAGAAGATGAAATAGCAGAGGTTTTGTTATCCTTATCAATACT
Octa III-F4	AACGGGTATTAAGGAATCATTACCGCCAGTAATTCAACAATATTATCCTTATCAATACT
Octa IV-F 1	GCTCACAATTCCGTGAGCTAACTCACTGGAAGTAATGGTCAATTATCCTTATCAATACT
Octa IV-F2	GGCCCTGAGAGAAGCAGGCGAAAATCATTGCGTAGAGGCGGTTTATCCTTATCAATACT
Octa IV-F 3	TTTGCGGATGGCCAACTAAAGTACGGGCTTGCAGCTACAGAGTTATCCTTATCAATACT
Octa IV-F ${ }_{4}$	CTTAAACAGCTTATATATTCGGTCGCTTGATGGGGAACAAGATTATCCTTATCAATACT
Octa V-F	CAAATGCTTTAAAAAATCAGGTCTTTAAGAGCAGCCAGAGGGTTATCCTTATCAATACT
Octa V-F2	CTTCATCAAGAGAAATCAACGTAACAGAGATTTGTCAATCATTTATCCTTATCAATACT
Octa V-F3	AAAGATTCATCAGGAATTACGAGGCATGCTCATCCTTATGCGTTATCCTTATCAATACT
Octa V-F	AAACGAAAGAGGGCGAAACAAAGTACTGACTATATTCGAGCTTTATCCTTATCAATACT

(3). Staple DNA for octahedral DOFs (Octa-1 to Octa-120)

Octa-1	TCAAAGCGAACCAGACCGTTTTATATAGTC
Octa-2	GCTTTGAGGACTAAAGAGCAACGGGGAGTT
Octa-3	GTAAATCGTCGCTATTGAATAACTCAAGAA
Octa-4	AAGCCTTAAATCAAGACTTGCGGAGCAAAT
Octa-5	ATTTTAAGAACTGGCTTGAATTATCAGTGA
Octa-6	GTTAAAATTCGCATTATAAACGTAAACTAG
Octa-7	AGCACCATTACCATTACAGCAAATGACGGA
Octa-8	ATTGCGTAGATTTTCAAAACAGATTGTTTG
Octa-9	TAACCTGTTTAGCTATTTTCGCATTCATTC
Octa-10	GTCAGAGGGTAATTGAGAACACCAAAATAG
Octa-11	CTCCAGCCAGCTTTCCCCTCAGGACGTTGG
Octa-12	GTCCACTATTAAAGAACCAGTTTTGGTTCC
Octa-13	TAAAGGTGGCAACATAGTAGAAAATAATAA
Octa-14	GATAAGTCCTGAACAACTGTTTAAAGAGAA
Octa-15	GGTAATAGTAAAATGTAAGTTTTACACTAT
Octa-16	TCAGAACCGCCACCCTCTCAGAGTATTAGC
Octa-17	AAGGGAACCGAACTGAGCAGACGGTATCAT
Octa-18	GTAAAGATTCAAAAGGCCTGAGTTGACCCT
Octa-19	AGGCGTTAAATAAGAAGACCGTGTCGCAAG
Octa-20	CAGGTCGACTCTAGAGCAAGCTTCAAGGCG
Octa-21	CAGAGCCACCACCCTCTCAGAACTCGAGAG
Octa-22	TTCACGTTGAAAATCTTGCGAATGGGATTT
Octa-23	AAGTTTTAACGGGGTCGGAGTGTAGAATGG
Octa-24	TTGCGTATTGGGCGCCCGCGGGGTGCGCTC
Octa-25	GTCACCAGAGCCATGGTGAATTATCACCAATCAGAAAAGCCT
Octa-26	GGACAGAGTTACTTTGTCGAAATCCGCGTGTATCACCGTACG
Octa-27	CAACATGATTTACGAGCATGGAATAAGTAAGACGACAATAAA
Octa-28	AACCAGACGCTACGTTAATAAAACGAACATACCACATTCAGG
Octa-29	TGACCTACTAGAAAAAGCCCCAGGCAAAGCAATTTCATCTTC
Octa-30	TGCCGGAAGGGGACTCGTAACCGTGCATTATATTTTAGTTCT
Octa-31	AGAACCCCAAATCACCATCTGCGGAATCGAATAAAAATTTTT
Octa-32	GCTCCATTGTGTACCGTAACACTGAGTTAGTTAGCGTAACCT
Octa-33	AGTACCGAATAGGAACCCAAACGGTGTAACCTCAGGAGGTTT
Octa-34	CAGTTTGAATGTTTAGTATCATATGCGTAGAATCGCCATAGC
Octa-35	AAGATTGTTTTTTAACCAAGAAACCATCGACCCAAAAACAGG
Octa-36	TCAGAGCGCCACCACATAATCAAAATCAGAACGAGTAGTATG
Octa-37	GATGGTTGGGAAGAAAAATCCACCAGAAATAATTGGGCTTGA

Octa-38	CTCCTTAACGTAGAAACCAATCAATAATTCATCGAGAACAGA
Octa-39	AGACACCTTACGCAGAACTGGCATGATTTTCTGTCCAGACAA
Octa-40	GCCAGCTAGGCGATAGCTTAGATTAAGACCTTTTTAACCTGT
Octa-41	CCGACTTATTAGGAACGCCATCAAAAATGAGTAACAACCCCA
Octa-42	GTCCAATAGCGAGAACCAGACGACGATATTCAACGCAAGGGA
Octa-43	CCAAAATACAATATGATATTCAACCGTTAGGCTATCAGGTAA
Octa-44	AACAGTACTTGAAAACATATGAGACGGGTCTTTTTTAATGGA
Octa-45	TTTCACCGCATTAAAGTCGGGAAACCTGATTTGAATTACCCA
Octa-46	GAGAATAGAGCCTTACCGTCTATCAAATGGAGCGGAATTAGA
Octa-47	ATAATTAAATTTAAAAAACTTTTTCAAACTTTTAACAACGCC
Octa-48	GCACCCAGCGTTTTTTATCCGGTATTCTAGGCGAATTATTCA
Octa-49	GGAAGCGCCCACAAACAGTTAATGCCCCGACTCCTCAAGATA
Octa-50	GTTTGCCTATTCACAGGCAGGTCAGACGCCACCACACCACCC
Octa-51	CGCGAGCTTAGTTTTTCCCAATTCTGCGCAAGTGTAAAGCCT
Octa-52	AGAAGCAACCAAGCCAAAAGAATACACTAATGCCAAAACTCC
Octa-53	ATTAAGTATAAAGCGGCAAGGCAAAGAAACTAATAGGGTACC
Octa-54	CAGTGCCTACATGGGAATTTACCGTTCCACAAGTAAGCAGAT
Octa-55	ATAAGGCGCCAAAAGTTGAGATTTAGGATAACGGACCAGTCA
Octa-56	TGCTAAACAGATGAAGAAACCACCAGAATTTAAAAAAAGGCT
Octa-57	CAGCCTTGGTTTTGTATTAAGAGGCTGACTGCCTATATCAGA
Octa-58	CGGAATAATTCAACCCAGCGCCAAAGACTTATTTTAACGCAA
Octa-59	CGCCTGAATTACCCTAATCTTGACAAGACAGACCATGAAAGA
Octa-60	ACGCGAGGCTACAACAGTACCTTTTACAAATCGCGCAGAGAA
Octa-61	CAGCGAACATTAAAAGAGAGTACCTTTACTGAATATAATGAA
Octa-62	GGACGTTTAATTTCGACGAGAAACACCACCACTAATGCAGAT
Octa-63	AAAGCGCCAAAGTTTATCTTACCGAAGCCCAATAATGAGTAA
Octa-64	GAGCTCGTTGTAAACGCCAGGGTTTTCCAAAGCAATAAAGCC
Octa-65	AATTATTGTTTTCATGCCTTTAGCGTCAGATAGCACGGAAAC
Octa-66	AAGTTTCAGACAGCCGGGATCGTCACCCTTCTGTAGCTCAAC
Octa-67	ACAAAGAAATTTAGGTAGGGCTTAATTGTATACAACGGAATC
Octa-68	AACAAAAATAACTAGGTCTGAGAGACTACGCTGAGTTTCCCT
Octa-69	CATAACCTAAATCAACAGTTCAGAAAACGTCATAAGGATAGC
Octa-70	CACGACGAATTCGTGTGGCATCAATTCTTTAGCAAAATTACG
Octa-71	CCTACCAACAGTAATTTTATCCTGAATCAAACAGCCATATGA
Octa-72	GATTATAAAGAAACGCCAGTTACAAAATTTACCAACGTCAGA
Octa-73	AGTAGATTGAAAAGAATCATGGTCATAGCCGGAAGCATAAGT
Octa-74	TAGAATCCATAAATCATTTAACAATTTCTCCCGGCTTAGGTT
Octa-75	AAAGGCCAAATATGTTAGAGCTTAATTGATTGCTCCATGAGG
Octa-76	CCAAAAGGAAAGGACAACAGTTTCAGCGAATCATCATATTCC

Octa-77	GAAATCGATAACCGGATACCGATAGTTGTATCAGCTCCAACG
Octa-78	TGAATATTATCAAAATAATGGAAGGGTTAATATTTATCCCAA
Octa-79	GAGGAAGCAGGATTCGGGTAAAATACGTAAAACACCCCCCAG
Octa-80	GGTTGATTTTCCAGCAGACAGCCCTCATTCGTCACGGGATAG
Octa-81	CAAGCCCCCACCCTTAGCCCGGAATAGGACGATCTAAAGTTT
Octa-82	TGTAGATATTACGCGGCGATCGGTGCGGGCGCCATCTTCTGG
Octa-83	CATCCTATTCAGCTAAAAGGTAAAGTAAAAAGCAAGCCGTTT
Octa-84	CAGCTCATATAAGCGTACCCCGGTTGATGTGTCGGATTCTCC
Octa-85	CATGTCACAAACGGCATTAAATGTGAGCAATTCGCGTTAAAT
Octa-86	AGCGTCACGTATAAGAATTGAGTTAAGCCCTTTTTAAGAAAG
Octa-87	TATAAAGCATCGTAACCAAGTACCGCACCGGCTGTAATATCC
Octa-88	ATAGCCCGCGAAAATAATTGTATCGGTTCGCCGACAATGAGT
Octa-89	AGACAGTTCATATAGGAGAAGCCTTTATAACATTGCCTGAGA
Octa-90	AACAGGTCCCGAAATTGCATCAAAAAGATCTTTGATCATCAG
Octa-91	ACTGCCCTTGCCCCGTTGCAGCAAGCGGCAACAGCTTTTTCT
Octa-92	TCAAAGGGAGATAGCCCTTATAAATCAAGACAACAACCATCG
Octa-93	GTAATACGCAAACATGAGAGATCTACAACTAGCTGAGGCCGG
Octa-94	GAGATAACATTAGAAGAATAACATAAAAAGGAAGGATTAGGA
Octa-95	CAGATATTACCTGAATACCAAGTTACAATCGGGAGCTATTTT
Octa-96	CATATAACTAATGAACACAACATACGAGCTGTTTCTTTGGGG
Octa-97	ATGTTTTGCTTTTGATCGGAACGAGGGTACTTTTTCTTTTGATAAGAGGTCATT
Octa-98	GGGGTGCCAGTTGAGACCATTAGATACAATTTTCACTGTGTGAAATTGTTATCC
Octa-99	CTTCGCTGGGCGCAGACGACAGTATCGGGGCACCGTCGCCATTCAGGCTGCGCA
Octa-100	TCAGAGCTGGGTAAACGACGGCCAGTGCGATCCCCGTAGTAGCATTAACATCCA
Octa-101	TTAGCGGTACAGAGCGGGAGAATTAACTGCGCTAATTTCGGAACCTATTATTCT
Octa-102	GATATTCTAAATTGAGCCGGAACGAGGCCCAACTTGGCGCATAGGCTGGCTGAC
Octa-103	TGTCGTCATAAGTACAGAACCGCCACCCATTTTCACAGTACAAACTACAACGCC
Octa-104	CGATTATAAGCGGAGACTTCAAATATCGCGGAAGCCTACGAAGGCACCAACCTA
Octa-105	AACATGTACGCGAGTGGTTTGAAATACCTAAACACATTCTTACCAGTATAAAGC
Octa-106	GTCTGGATTTTGCGTTTTAAATGCAATGGTGAGAAATAAATTAATGCCGGAGAG
Octa-107	GCCTTGAATCTTTTCCGGAACCGCCTCCCAGAGCCCAGAGCCGCCGCCAGCATT
Octa-108	CGCTGGTGCTTTCCTGAATCGGCCAACGAGGGTGGTGATTGCCCTTCACCGCCT
Octa-109	TGATTATCAACTTTACAACTAAAGGAATCCAAAAAGTTTGAGTAACATTATCAT
Octa-110	ACATAACTTGCCCTAACTTTAATCATTGCATTATAACAACATTATTACAGGTAG
Octa-111	GTAGCGCCATTAAATTGGGAATTAGAGCGCAAGGCGCACCGTAATCAGTAGCGA
Octa-112	TTATTTTTACCGACAATGCAGAACGCGCGAAAAATCTTTCCTTATCATTCCAAG
Octa-113	TTTCAATAGAAGGCAGCGAACCTCCCGATTAGTTGAAACAATAACGGATTCGCC
Octa-114	GGGCGACCCCAAAAGTATGTTAGCAAACTAAAAGAGTCACAATCAATAGAAAAT
Octa-115	AGCCGAAAGTCTCTCTTTTGATGATACAAGTGCCTTAAGAGCAAGAAACAATGA
Octa-116	GTGGGAAATCATATAAATATTTAAATTGAATTTTTGTCTGGCCTTCCTGTAGCC

Octa-117	CCCACGCGCAAAATGGTTGAGTGTTGTTCGTGGACTTGCTTTCGAGGTGAATTT
Octa-118	ATGACCACTCGTTTGGCTTTTGCAAAAGTTAGACTATATTCATTGAATCCCCCT
Octa-119	TCCAAATCTTCTGAATTATTTGCACGTAGGTTTAACGCTAACGAGCGTCTTTCC
Octa-120	GGGTTATTTAATTACAATATATGTGAGTAATTAATAAGAGTCAATAGTGAATTT

2. Supporting figures

Figure S1. Representative negative stained TEM images for dimers fabricated by the $1^{\text {st }}$ strategy.

Figure S2. Representative negative stained TEM images for tetramers fabricated by the $2^{\text {nd }}$ strategy.

Figure S3. Schematic diagram of DNA functionalized on Au nanoparticles. Salt (NaCl) were gradually added to the tube, after mixing gold nanoparticles (yellow spheres) with DNA $(A$ and $B)$ and aging for two hours. Another 12 hours aging time were needed before centrifuging and rinsing the DNA functionalized nanoparticles ($p-A B$).

Figure S4. Schematic diagram of DNA functionalized on magnetic beads (MBs). MBs with surface encoded with streptavidin were purchased without further modification. DNA sequences with end contained biotins (A^{\prime}) were mixed with these MBs to attach DNA on the surface ($s-A^{\prime}$). By applying magnetic field, excess DNA-biotin sequences could be washed out.

Figure S5. Schematic illustration for dimers assembly realized by the $1^{\text {st }}$ strategy. First, we put the AuNPs $p-A B$ into the tube containing MBs surface $s-A^{\prime}$. After rotating for 12 h at room temperature, $p-A B$ were fixed on the surface $s-A$ ' tightly. The supernatant of the tube was removed and the sample was rinsed four times with buffer. Second, we added ssDNA $B^{\prime} C^{\prime}$ to the tube at a molar ratio of $3: 1$ for ssDNA $B^{\prime} C^{\prime}: p-A B$. The tube was shaken at $1,000 \mathrm{rpm}$ for 12 h at $35^{\circ} \mathrm{C}$ and then rinsed four times with method similar as mentioned above. After that, we added the substituted chain A '" at a molar ratio of $A^{\prime \prime}$ and A^{\prime} for 5:1 to release patchy particles $p-A B-B^{\prime} C^{\prime}$ from the $s-A^{\prime}$ to the supernatant. Finally, we put the octahedral DOFs into the supernatant at a $1: 3 \mathrm{molar}$ ratio with the patchy particles $p-A B-B^{\prime} C^{\prime}$. After been shaken at $1,000 \mathrm{rpm}$ for 12 h at $38^{\circ} \mathrm{C}$, the tube was filled with freshly produced dimer.

Figure S6. Schematic illustration for dimers assembly realized by the $2^{\text {nd }}$ strategy. First, the DOFs were added into surface $s-O^{\prime}$ ' solution and reacted for 12 h . Second, AuNPs $p-F^{\prime}$ was added into the solution at a 10:1 molar ratio for AuNPs and DOFs. After the tube was shaken at $1,000 \mathrm{rpm}$ for 12 h at $35^{\circ} \mathrm{C}$, the solution was rinsed for several times. Finally, 'fuel DNA' O '' was put into the solution to release the clusters to the supernatant.

Figure S7. Schematic diagram of the octahedral DOF. The DOF we designed has totally six vertices, as labeled from Octa I to Octa VI.

