Visible-light-induced ligand-free RuCl₃ catalyzed C-H

phosphorylation in water

Xue-Ya Gou, [‡] Bo-Sheng Zhang, [‡] Xin-Gang Wang, Wei-Yu Shi, Hong-Chao Liu, Yang An, Zhe Zhang and Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

*Corresponding E-mail Address: liangym@lzu.edu.cn

Table of Contents

1. General Methods	3
2. Optimization Studies	4
3. General Procedure	7
a) C-H phosphorylation of arenes and heteroarenes	7
b) Three-component series phosphination and aromatization reaction of olefins	7
4. Derivatization of phosphonylated products	8
a) Gram-scale synthesis	8
b) Deprotection of N-(4-(oxophosphanyl)phenyl)pivalamide ²	8
5. Mechanistic Studies	9
a) Isotopic labeling studies	9
b) Radical trapping experiments	12
6. Identification of the photocatalyst	15
a) The UV-vis absorption spectra	. 15
b) On/off light experiments	.16
7. X-ray Crystallographic Data of 3j	17
8. Characterization Data	. 19
9. NMR Spectroscopic Data	39
10. References	109

1. General Methods

General Procedures. Unless otherwise noted, reactions were performed under argon atmosphere. Solvent was freshly distilled/degassed prior to use unless otherwise noted. Analytical TLC was performed with silica gel GF254 plates. For column chromatography, a 200-300 mesh silica gel was employed. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Room temperature (rt) is 18-25°C.

Materials. Substrate $2y-2ac^1$ were synthesized according to previously described methods. Commercial reagents were purchased from Adamas, Ark, Aladdin, or TCI and used as received with the following exceptions. 1,4-Dioxane and toluene were dried with CaH₂ and freshly distilled, DCE was dried with P₂O₅ and freshly distilled. Other commercially available reagents and solvents were used without further purification.

Instrumentation. Deuterated solvents were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on Bruker AVANCE III 400 and INOVA instruments with 400 frequencies, and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 with 101 MHz frequencies. ³¹P NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ³¹P operating frequency of 162 MHz. ¹⁹F NMR spectra were recorded on a Bruker AVANCE III 400 spectrometer with a ¹⁹F operating frequency of 376 MHz. Chemical shifts (δ) were reported in ppm relative to the residual solvent signal (CDCl3 δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Chemical shifts (ppm) were recorded with tetramethyl silane (TMS) as the internal reference standard. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets) or m (multiplet). HRMS was obtained using a Q-TOF instrument equipped with an ESI source. Data collection for crystal structure was performed at room temperature using Mo K α radiation on a Bruker APEXII diffractometer.

2. Optimization Studies

	0 + H-PPh ₂	[catalyst] NaOAc (3.0 equiv.) K ₂ S ₂ O ₈ (3.0 equiv.) AgNO ₃ (20 mol %)	HN HN	
		H ₂ O blue LED	$\int_{\mathbb{R}^2} PPh_2$	
1a	2a	rt, Ar, 24 h	3a	
entry	[catalyst]	yield $(\%)^b$	
1	[RuCl ₂	(p-cymene)] ₂	14	
2	[Ru(O ₂ CM	[les) ₂ (<i>p</i> -cymene)]	<5	
3	Ru	13		
4	R	<5		
5	Ru	Cl ₃ ·3H ₂ O	58	
6		AlCl ₃		
7		10		
8	FeCl ₂		16	
9	CoCl ₂		13	
10	BF ₃ ·Et ₂ O		12	
11	Z	7		
12	S	c(OTf) ₃	12	
13	Η	Bi(OTf) ₃	15	
14	C	Cu(OTf) ₂	8	
15	Ru	(bpy) ₃ Cl ₂	0	
16		23		

Table S1. Screening of catalyst^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.4 mmol), **catalyst (10 mol %)**, NaOAc (3.0 equiv.), K₂S₂O₈ (3.0 equiv.), AgNO₃ (20 mol %), H₂O (1.0 mL), 24 h, Ar, blue LED at room temperature (18-25 °C); ^{*b*} Yield of isolated products.

Table S2. Screening of solvent^a

	0 H + H-PPh ₂	RuCl ₃ •3H ₂ O (10 mol %) NaOAc (3.0 equiv.) K ₂ S ₂ O ₈ (3.0 equiv.) AgNO ₃ (20 mol %)	HN HN
1a	2a	solvent blue LED rt, Ar, 24 h	O ^{∽ PPh} ₂ 3a
entry		solvent	yield $(\%)^b$
1		H_2O	58
2		DCE	
3		PhMe	
4		dioxane	0

5	EtOH	0
6	TFE	0
7	MeCN	0
8	$H_2O:MeCN = 1:1$	61
9	$H_2O:MeCN = 8:1$	71
10	H ₂ O:MeCN = 4:1	76
11	$H_2O:MeCN = 2:1$	64
12	EtOH:MeCN = 4:1	0

^a Reaction conditions: 1a (0.1 mmol), 2a (0.4 mmol), RuCl ₃ ·3H ₂ O (10 mol %), NaOAc (3.0 equiv.)
K ₂ S ₂ O ₈ (3.0 equiv.), AgNO ₃ (20 mol %), solvent (1.0 mL), 24 h, Ar, blue LED at room temperatur
(18-25 °C); ^b Yield of isolated products.

	0 + H-PPh ₂	RuCl₃•3H₂O (10 mol %) NaOAc (3.0 equiv.) oxidant	HN HN
1a	2a	H ₂ O:MeCN = 4:1 blue LED rt, Ar, 24 h	0 ^{∞ PPh} 2 3a
	oxidant		
entry		oxidant	vield $(\%)^b$
entry 1	K2S2O8 (3.0 equ	oxidant uiv.), AgNO3 (20 mol %)	yield (%) ^b 76
entry 1 2	K2S2O8 (3.0 equ K2S2	oxidant uiv.), AgNO₃ (20 mol %) O ₈ (3.0 equiv.)	yield (%) ^b 76 23
entry 1 2 3	K2S2O8 (3.0 eq K2S2 AgN	oxidant uiv.), AgNO₃ (20 mol %) O ₈ (3.0 equiv.) O ₃ (20 mol %)	yield (%) ^b 76 23 0
entry 1 2 3 4	K2S2O8 (3.0 equ K2S2 AgN K2S2O8 (3.0 equ	oxidant uiv.), AgNO3 (20 mol %) O8 (3.0 equiv.) O3 (20 mol %) uiv.), AgOAc (20 mol %)	yield (%) ^b 76 23 0 65
entry 1 2 3 4 5	K2S2O8 (3.0 equ K2S2 AgN K2S2O8 (3.0 equ TBHP, A	oxidant uiv.), AgNO₃ (20 mol %) (O ₈ (3.0 equiv.) (O ₃ (20 mol %) uiv.), AgOAc (20 mol %) (AgNO ₃ (20 mol %)	yield (%) ^b 76 23 0 65 <5

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.4 mmol), RuCl₃·3H₂O (10 mol %), NaOAc (3.0 equiv.), **oxidant (3.0 equiv.)**, H₂O:MeCN = 4:1 (0.8 mL:0.2 mL), 24 h, Ar, blue LED at room temperature (18-25 °C); ^{*b*} Yield of isolated products.

Table 54. Screening of base	Table Se	4. Scre	ening	of	basea
-----------------------------	----------	---------	-------	----	-------

HN HN	O + H-PPh ₂	RuCl ₃ •3H ₂ O (10 mol %) base K ₂ S ₂ O ₈ (3.0 equiv.) AgNO ₃ (20 mol %)	HN HN
		H ₂ O:MeCN = 4:1 blue LED	O ^{EPPh} 2
1a	2a	rt, Ar, 24 h	3a
entry		base	yield $(\%)^b$
1		Na ₂ CO ₃	34
2	NaOAc		76
3	MesCOOK		54
4		CsF	43

PivOK

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.4 mmol), RuCl₃· $3H_2O$ (10 mol %), **base (3.0 equiv.)**, $K_2S_2O_8$ (3.0 equiv.), AgNO₃ (20 mol %), $H_2O:MeCN = 4:1$ (0.8 mL:0.2 mL), 24 h, Ar, blue LED at room temperature (18-25 °C); ^{*b*} Yield of isolated products.

HN HN	0 + H-PPh ₂	RuCl ₃ •3H ₂ O (10 mol %) NaOAc (3.0 equiv.) K ₂ S ₂ O ₈ (3.0 equiv.) AgNO ₃ (20 mol %)	
1a	2a	H ₂ O:MeCN = 4:1 blue LED rt, Ar, 24 h	O ^{∽ PPh} 2 3a
entry	deviation from	n standard conditions	yield $(\%)^b$
1	no I	$RuCl_3 \cdot 3H_2O$	<5
2	In	the dark	<5

Table S5. Black experiments^a

^{*a*} Reaction conditions: **1a** (0.1 mmol), **2a** (0.4 mmol), RuCl₃· 3H₂O (10 mol %), base (3.0 equiv.), K₂S₂O₈ (3.0 equiv.), AgNO₃ (20 mol %), H₂O:MeCN = 4:1 (0.8 mL:0.2 mL), 24 h, Ar, blue LED at room temperature (18-25 °C); ^{*b*} Yield of isolated products.

3. General Procedure

a) C-H phosphorylation of arenes and heteroarenes

In a 20 mL tube, a mixture of **1** (0.2 mmol, 1.0 equiv.), **2** (0.8 mmol, 4.0 equiv.), RuCl₃· 3H₂O (10 mol %), NaOAc (3.0 equiv.), $K_2S_2O_8$ (3.0 equiv.), AgNO₃ (20 mol %) were added and charged with argon more than three times. H₂O (1.6 mL) was injected into the tube first, then MeCN (0.4 mL) was injected into the tube (the sequence of solvent injection is very important). The resulting black suspension was stirred vigorously at room temperature for 10 minutes before being irradiated in reactor with cooling device using a 440 (± 15) nm LED (25 W) for 24 hours. After the reaction was completed, the solvents were evaporated under reduced pressure, and the residue was purified with chromatography column on silica gel or preparative TLC (PTLC) (DCM/MeOH = 100:1 - 20:1).

b) Three-component series phosphination and aromatization reaction of olefins

In a 20 mL tube, a mixture of **1w** (0.2 mmol, 1.0 equiv.), **2** (0.8 mmol, 4.0 equiv.), **4** (0.8 mmol, 4.0 equiv.), RuCl₃· 3H₂O (10 mol %), NaOAc (3.0 equiv.), K₂S₂O₈ (3.0 equiv.), AgNO₃ (20 mol %) were added and charged with argon more than three times. H₂O (1.6 mL) was injected into the tube first, then MeCN (0.4 mL) was injected into the tube (the sequence of solvent injection is very important). The resulting black suspension was stirred vigorously at room temperature for 10 minutes before being irradiated in reactor with cooling device using a 440 (\pm 15) nm LED (25 W) for 24 hours. After the reaction was completed, the solvents were evaporated under reduced pressure, and the residue was purified with chromatography column on silica gel or preparative TLC (PTLC) (DCM/MeOH = 100:1 - 20:1).

4. Derivatization of phosphonylated products

a) Gram-scale synthesis

In a 50 mL flask, a mixture of **1a** (5 mmol, 1.0 equiv.), **2a** (20 mmol, 4.0 equiv.), RuCl₃· 3H₂O (10 mol %), NaOAc (3.0 equiv.), $K_2S_2O_8$ (3.0 equiv.), AgNO₃ (20 mol %) were added and charged with argon more than three times. H₂O (20.0 mL) was injected into the tube first, then MeCN (5.0 mL) was injected into the tube (the sequence of solvent injection is very important). The resulting black suspension was stirred vigorously at room temperature for 10 minutes before being irradiated in reactor with cooling device using a 440 (± 15) nm LED (25 W) for **48** hours. After the reaction was completed, the solvents were evaporated under reduced pressure, and the residue was purified with chromatography column on silica gel or preparative TLC (PTLC) (DCM/MeOH = 100:1).

b) Deprotection of N-(4-(oxophosphanyl)phenyl)pivalamide²

In a 20 mL tube, **3a** (0.2 mmol) and NaOH (4.0 equiv.) were added in EtOH (2.0 mL) under reflux for 12 hours. After evaporation of solvents under reduced pressure, the residue was purified by column chromatography (DCM/MeOH) on silica gel to give the product **6** as white solid (41.5 mg, 71%).

5. Mechanistic Studies

a) Isotopic labeling studies

The general procedure was followed, the reaction was run on **1a-[D**₅] (0.2 mmol, 1.0 equiv.), **2a** (0.8 mmol, 4.0 equiv.), RuCl₃· 3H₂O (10 mol %), NaOAc (3.0 equiv.), K₂S₂O₈ (3.0 equiv.), AgNO₃ (20 mol %), H₂O:MeCN = 4:1 (1.6 mL:0.4 mL). The residue was purified by column chromatography (DCM/MeOH) on silica gel to give a 73% yield of **3a-[D**₄], which was analyzed by ¹H NMR spectroscopy.

The general procedure was followed, the reaction was run on **1a-[Ds]** (0.2 mmol, 1.0 equiv.), RuCl₃·3H₂O (10 mol %), NaOAc (3.0 equiv.), K₂S₂O₈ (3.0 equiv.), AgNO₃ (20 mol %), H₂O:MeCN = 4:1 (1.6 mL:0.4 mL). The residue was purified by column chromatography (DCM/MeOH) on silica gel to give a 92% yield of **1a-[Ds]**, which was analyzed by ¹H NMR spectroscopy.

The general procedure was followed, the reaction was run on **1a-[D**₅] (0.2 mmol, 1.0 equiv.), NaOAc (3.0 equiv.), $K_2S_2O_8$ (3.0 equiv.), AgNO₃ (20 mol %), H₂O:MeCN = 4:1 (1.6 mL:0.4 mL). The residue was purified by column chromatography (DCM/MeOH) on silica gel to give a 93% yield of **1a-[D**₅], which was analyzed by ¹H NMR spectroscopy.

b) Radical trapping experiments

The general procedure was followed, the reaction was run on **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.8 mmol, 4.0 equiv.), $RuCl_3 \cdot 3H_2O$ (10 mol %), NaOAc (3.0 equiv.), $K_2S_2O_8$ (3.0 equiv.), $AgNO_3$ (20 mol %), **TEMPO** (3.0 equiv.), $H_2O:MeCN = 4:1$ (1.6 mL:0.4 mL). After the reaction was completed, the TLC and GC-MS were employed to observe the result, no desired product had been observed.

The general procedure was followed, the reaction was run on 1, 2-diphenyl ethylene (0.2 mmol, 1.0 equiv.), **2a** (0.8 mmol, 4.0 equiv.), $RuCl_3 \cdot 3H_2O$ (10 mol %), NaOAc (3.0 equiv.), $K_2S_2O_8$ (3.0 equiv.), $AgNO_3$ (20 mol %), $H_2O:MeCN = 4:1$ (1.6 mL:0.4 mL). The residue was purified by flash silica gel column chromatography (DCM/MeOH) to give the corresponding product **6** as White solid (38.7 mg, 51%), which was analyzed by ¹H NMR and ³¹P NMR spectroscopy.

1,3,3-triphenyl-2,3-dihydrophosphindole 1-oxide (6)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.5 – 7.3 (m, 13H), 7.1 – 7.0 (m, 5H), 6.8 (s, 1H), 3.4 (d, *J* = 9.6 Hz, 2H).

³¹P NMR (162 MHz, Chloroform-d) δ 33.3.

HRMS (ESI) Calcd for C₂₆H₂₁OP [M+H]⁺: 381.1403, found: 381.1400.

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)

6. Identification of the photocatalyst

a) The UV-vis absorption spectra

Figure S1. The UV-vis absorption spectra.

- (1). $RuCl_3 \cdot 3H_2O$ (10 mol %, 0.01 mmol) in 5.0 mL $H_2O:MeCN = 4:1$ (4.0 mL:1.0 mL).
- (2). **1a** (1.0 equiv., 0.1 mmol) in $5.0 \text{ mL H}_2\text{O:MeCN} = 4:1$ (4.0 mL:1.0 mL).
- (3). 2a (4.0 equiv., 0.1 mmol) in 5.0 mL H₂O:MeCN = 4:1 (4.0 mL:1.0 mL).
- (4). **3a** (10 mol %, 0.01 mmol) in 5.0 mL H₂O:MeCN = 4:1 (4.0 mL:1.0 mL).
- (5). RuCl₃·3H₂O (10 mol %, 0.01 mmol) + 2a (4.0 equiv., 0.1 mmol) in 5.0 mL H₂O:MeCN = 4:1 (4.0 mL:1.0 mL).
- (6). RuCl₃· 3H₂O (10 mol %, 0.01 mmol) + 1a (1.0 equiv., 0.1 mmol) in 5.0 mL H₂O:MeCN = 4:1 (4.0 mL:1.0 mL).
- (7). RuCl₃·3H₂O (10 mol %, 0.01 mmol) + 3a (10 mol %, 0.01 mmol) in 5.0 mL H₂O:MeCN = 4:1 (4.0 mL:1.0 mL).

Noted: on the basis of the above concentration, taking out 200 uL and dilute to the cuvette containing 3.0 mL solvent (H₂O:MeCN = 4:1) respectively.

b) On/off light experiments.

Figure S2. Light ON/OFF experiment for the synthesis of **3a**.

The reaction was set up following the general procedure on a 0.1 mmol scale by using five 20 mL tubes (No.1, No.2, No.3, No.4 and No.5). Under alternating periods of irradiation (blue LEDs) and darkness (wrapped in tinfoil), proceed as follows. Then the separation yield is obtained by column chromatography (DCM/MeOH) on silica gel.

Time	0~2 h	2~4 h	4~6 h	6~8 h	8~10 h
Number					
No.1	ON				
No.2	ON	OFF			
No.3	ON	OFF	ON		
No.4	ON	OFF	ON	OFF	
No.5	ON	OFF	ON	OFF	ON

7. X-ray Crystallographic Data of 3j

Crystals were grown from a mixture of ethyl acetate and n-hexane. The ellipsoid contour percent probability level is 30% in the caption of the thermalellipsoid plot. (CCDC: 1973724)

Bond precision:	C-C = 0.0040 A		Wavelength=	1.54184
Cell:	a=13.7106 (3) alpha=90	b=10.081 beta=91.4	7 (2) 380 (18)	c=19.9799 (4) gamma=90
Temperature:	236 K		× /	
	Calculated		Reported	
Volume	2760.88 (10)		2760.85 (10)	
Space group	P 21/c		P 1 21/c 1	
Hall group	-P 2ybc		-P 2ybc	
Moiety formula	C23 H23 F N O2 P, C H Cl3		C H Cl3, C23 H23 F N O2 P	
	[+ solvent]			
Sum formula	C24 H24 Cl3 F N O2 P [+		C24 H24 Cl3 F N O2 P	
	solvent]			
Mr	514.76		514.76	
Dx,g cm-3	1.238		1.238	
Z	4		4	
Mu (mm-1)	3.774		3.775	
F000	1064.0		1064.0	
F000'	1072.05			

h,k,lmax	16,12,23	16,12,23		
Nref	4876	4874		
Tmin,Tmax	0.668,0.739	0.368,1.000		
Tmin'	0.561			
Correction method= AbsCorr = MULTI-S	# Reported T Limits SCAN	s: Tmin=0.368 Tmax=1.000		
Data completeness= 1.000		Theta(max) = 66.594		
R(reflections)= 0.0487(3974)		wR2(reflections)= 0.1399(4874)		
S = 1.046	Npar= 292			

8. Characterization Data

N-(4-(diphenylphosphoryl)phenyl)pivalamide (3a)

57.4 mg, yield: 76%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.4 (s, 1H), 7.8 – 7.7 (m, 2H), 7.7 – 7.6 (m, 4H), 7.6 – 7.5 (m, 4H), 7.5 – 7.4 (m, 4H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.4, 142.0 (d, *J* = 2.7 Hz), 132.8 (d, *J* = 10.7 Hz), δ 132.3 (d, *J* = 104.8 Hz). 131.9 (d, *J* = 10.1 Hz), 128.4 (d, *J* = 12.2 Hz), 126.2 (d, *J* = 108.5 Hz), 119.7 (d, *J* = 12.5 Hz), 39.7, 27.4.

³¹P NMR (162 MHz, Chloroform-d) δ 29.4.

HRMS (ESI) Calcd for C₂₃H₂₄NO₂P [M+H]⁺: 378.1545, found: 378.1541.

N-(4-(diphenylphosphoryl)-2-methylphenyl)pivalamide (3b)

46.2 mg, yield: 59%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.1 (s, 1H), 7.7 – 7.6 (m, 6H), 7.5 (t, *J* = 7.3 Hz, 2H), 7.5 – 7.4 (m, 4H), 7.4 – 7.3 (m, 1H), 2.3 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.7, 139.5, 133.9 (d, *J* = 9.9 Hz), 132.5 (d, *J* = 102.9 Hz), 132.0 (d, *J* = 9.9 Hz), 131.8 (d, *J* = 2.7 Hz), 130.9 (d, *J* = 11.1 Hz), 128.4 (d, *J* = 12.2 Hz), 127.4 (d, *J* = 107.1 Hz), 121.5 (d, *J* = 12.9 Hz), 121.4 (d, *J* = 12.6 Hz), 39.9, 27.6, 17.5.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.0.

HRMS (ESI) Calcd for $C_{24}H_{26}NO_2P$ [M+H]⁺: 392.1774, found: 392.1771.

N-(2-(tert-butyl)-4-(diphenylphosphoryl)phenyl)pivalamide (3c)

33.8 mg, yield: 39%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.0 (dd, J = 8.3, 3.2 Hz, 1H), 7.8 (dd, J = 13.0, 1.4 Hz, 1H), 7.7 – 7.6 (m, 5H), 7.6 – 7.5 (m, 2H), 7.5 – 7.4 (m, 4H), 7.4 – 7.3 (m, 1H), 1.4 (s, 9H), 1.4 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.2, 140.5 (d, J = 11.4 Hz), 139.3 (d, J = 3.1 Hz), 132.7 (d, J = 104.2 Hz), 132.0 (d, J = 9.9 Hz), 131.8 (d, J = 2.7 Hz), 130.7 (d, J = 11.3 Hz), 130.6 (d, J = 10.9 Hz), 128.4 (d, J = 12.1 Hz), 128.1 (d, J = 107.0 Hz), 125.3 (d, J = 13.1 Hz), 39.8, 34.6, 30.3, 27.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) Calcd for $C_{27}H_{32}NO_2P [M+H]^+$: 3434.2243, found: 434.2241.

N-(4-(diphenylphosphoryl)-2-isopropylphenyl)pivalamide (3d)

24.3 mg, yield: 29%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.1 – 8.1 (m, 1H), 7.8 (dd, J = 12.5, 1.4 Hz, 1H), 7.7 – 7.5 (m, 7H), 7.5 – 7.4 (m, 4H), 7.3 – 7.3 (m, 1H), 3.0 (h, J = 6.9 Hz, 1H), 1.3 (s, 9H), 1.3 (s, 3H), 1.2 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.6, 138.1 (d, J = 3.2 Hz), 138.1 (d, J = 11.7 Hz), 132.7 (d, J = 104.2 Hz), 132.0 (d, J = 9.9 Hz), 131.8 (d, J = 2.7 Hz), 130.6 (d, J = 11.4 Hz), 129.5 (d, J = 10.1 Hz), 128.4 (d, J = 12.1 Hz), 127.8 (d, J = 107.1 Hz), 122.2 (d, J = 13.0 Hz), 40.0, 28.3, 27.6, 22.3. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.4.

HRMS (ESI) Calcd for $C_{26}H_{30}NO_2P$ [M+H]⁺: 420.2087, found: 420.2084.

N-(4-(diphenylphosphoryl)-2-methoxyphenyl)pivalamide (3e)

71.7 mg, yield: 88%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.5 (dd, *J* = 8.2, 3.6 Hz, 1H), 8.3 (s, 1H), 7.7 – 7.6 (m, 4H), 7.5 (t, *J* = 7.4 Hz, 2H), 7.5 – 7.4 (m, 5H), 7.0 – 6.9 (m, 1H), 3.9 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.8, 147.9 (d, J = 14.4 Hz), 132.5 (d, J = 106.5 Hz), 131.9 (d, J = 10.0 Hz), 131.8 (d, J = 2.8 Hz), 131.2 (d, J = 2.9 Hz), 128.4 (d, J = 12.2 Hz), 126.2 (d, J = 107.6 Hz), 125.6 (d, J = 11.1 Hz), 118.5 (d, J = 14.4 Hz), 112.7 (d, J = 10.4 Hz), 56.1, 40.1, 27.5.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.6.

HRMS (ESI) Calcd for C₂₄H₂₆NO₃P [M+H]⁺: 408.1723, found: 408.1722.

N-(4-(diphenylphosphoryl)-2-methoxyphenyl)pivalamide (3f)

21.8 mg, yield: 26%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 11.8 (s, 1H), 9.0 (dd, *J* = 13.4, 1.2 Hz, 1H), 8.0 (dd, *J* = 8.1, 2.9 Hz, 1H), 7.8 – 7.7 (m, 5H), 7.6 – 7.5 (m, 2H), 7.5 – 7.5 (m, 4H), 2.7 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 202.7, 178.2, 140.8 (d, J = 15.3 Hz), 139.7 (d, J = 99.7 Hz), 132.2 (d, J = 2.8 Hz), 132.0 (d, J = 10.0 Hz), 131.9, 131.5 (d, J = 87.2 Hz), 131.5 (d, J = 12.7 Hz), 128.6 (d, J = 12.3 Hz), 125.3 (d, J = 8.3 Hz), 124.0 (d, J = 14.0 Hz), 40.3, 28.8, 27.5.

³¹P NMR (162 MHz, Chloroform-d) δ 27.5.

HRMS (ESI) Calcd for C₂₅H₂₆NO₃P [M+H]⁺: 420.1723, found: 420.1720.

N-(4-(diphenylphosphoryl)-3-methylphenyl)pivalamide (3g)

49.3 mg, yield: 63%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.0 (s, 1H), 7.7 – 7.4 (m, 12H), 6.9 (dd, *J* = 13.5, 8.4 Hz, 1H), 2.3 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.3, 144.2 (d, J = 8.9 Hz), 141.8 (d, J = 2.9 Hz), 134.5 (d, J = 13.7 Hz), 132.7 (d, J = 104.0 Hz), 131.8 (d, J = 9.8 Hz), 131.7 (d, J = 3.1 Hz), 128.5 (d, J = 12.1 Hz), 125.3 (d, J = 107.1 Hz), 122.7 (d, J = 10.8 Hz), 116.2 (d, J = 13.3 Hz), 39.7, 27.4, 21.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.4. HRMS (ESI) Calcd for C₂₄H₂₆NO₂P [M+H]⁺: 392.1774, found: 392.1773.

N-(4-(diphenylphosphoryl)-3-methoxyphenyl)pivalamide (3h)

57.8 mg, yield: 71%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.5 (s, 1H), 7.8 – 7.8 (m, 1H), 7.7 – 7.5 (m, 7H), 7.4 – 7.3 (m, 4H), 7.0 (s, 1H), 3.5 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.7, 161.6 (d, J = 3.9 Hz), 144.5, 134.8 (d, J = 7.5 Hz), 133.1 (d, J = 107.9 Hz), 131.7 (d, J = 10.4 Hz), 131.4 (d, J = 2.7 Hz), 128.0 (d, J = 12.5 Hz), 114.0 (d, J = 110.4 Hz), 111.7 (d, J = 11.8 Hz), 103.2 (d, J = 6.7 Hz), 55.1, 39.9, 27.4.

³¹P NMR (162 MHz, Chloroform-*d*) δ 27.7.

HRMS (ESI) Calcd for C₂₄H₂₆NO₃P [M+H]⁺: 408.1723, found: 408.1720.

N-(3-chloro-4-(diphenylphosphoryl)phenyl)pivalamide (3i)

27.2 mg, yield: 33%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (s, 1H), 7.9 – 7.9 (m, 1H), 7.7 (dd, J = 12.4, 8.1 Hz, 4H), 7.6 – 7.3 (m, 8H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.5, 143.2 (d, J = 2.4 Hz), 138.3 (d, J = 4.4 Hz), 136.0 (d, J = 9.8 Hz), 132.0 (d, J = 3.6 Hz), 131.9 (d, J = 9.9 Hz), 131.8 (d, J = 108.3 Hz), 128.5 (d, J = 12.5 Hz), 124.9 (d, J = 108.6 Hz), 122.1 (d, J = 7.0 Hz), 117.6 (d, J = 11.3 Hz), 39.9, 27.4.

³¹P NMR (162 MHz, Chloroform-*d*) δ 28.5.

HRMS (ESI) Calcd for C₂₃H₂₃ClNO₂P [M+H]⁺: 412.1228, found: 412.1229.

N-(4-(diphenylphosphoryl)-3-fluorophenyl)pivalamide (3j)

37.2 mg, yield: 47%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (s, 1H), 7.8 – 7.8 (m, 1H), 7.7 (dd, *J* = 12.7, 7.3 Hz, 5H), 7.6 – 7.5 (m, 2H), 7.4 (td, *J* = 7.5, 3.0 Hz, 4H), 7.3 – 7.3 (m, 1H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.5, 164.6 (d, J = 2.6 Hz), 163.4 (d, $J_{C-F} = 248.5$ Hz), 163.3 (d, $J_{C-F} = 248.3$ Hz), 162.1 (d, J = 2.6 Hz), 144.7 (d, J = 11.6 Hz), 132.1 (d, $J_{C-F} = 108.7$ Hz), 132.1 (d, J = 2.7 Hz), 131.7 (d, J = 1.6 Hz), 131.5 (d, J = 1.4 Hz), 128.5 (d, J = 12.7 Hz), 115.4 (d, J = 2.6 Hz), 115.3 (d, J = 2.5 Hz), 114.3 (d, $J_{C-F} = 19.3$ Hz), 113.8 (d, $J_{C-F} = 105.8$ Hz), 113.6 (d, $J_{C-F} = 105.2$ Hz), 113.2 (d, $J_{C-F} = 18.7$ Hz), 107.8 (d, J = 5.7 Hz), 107.7 (d, $J_{C-F} = 28.4$ Hz), 107.6 (d, $J_{C-F} = 28.5$ Hz), 107.5 (d, J = 5.8 Hz), 39.9, 27.3.

³¹P NMR (162 MHz, Chloroform-d) δ 24.8.

¹⁹F NMR (376 MHz, Chloroform-d) δ -97.5.

HRMS (ESI) Calcd for $C_{23}H_{23}FNO_2P$ [M+H]⁺: 396.1523, found: 396.1521.

methyl (4-(diphenylphosphoryl)phenyl)carbamate (3k)

52.7 mg, yield: 75%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.8 (s, 1H), 7.7 – 7.6 (m, 6H), 7.5 – 7.4 (m, 8H), 3.6 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.6, 142.3 (d, *J* = 3.0 Hz), 132.9 (d, *J* = 10.8 Hz), 132.1 (d, *J* = 104.9 Hz), 132.1 (d, *J* = 2.7 Hz), 131.9 (d, *J* = 10.0 Hz), 128.6 (d, *J* = 12.2 Hz), 125.9 (d, *J* = 108.8 Hz), 119.5 (d, *J* = 12.4 Hz), 24.4.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.7.

HRMS (ESI) Calcd for C₂₀H₁₈NO₃P [M+H]⁺: 352.1097, found: 352.1095.

N-(4-(diphenylphosphoryl)phenyl)acetamide (3l)

55.0 mg, yield: 82%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.5 (s, 1H), 7.7 – 7.6 (m, 6H), 7.6 – 7.5 (m, 2H), 7.5 – 7.4 (m, 6H), 2.1 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 154.1, 142.4, 133.0 (d, J = 10.8 Hz), 132.4 (d, J = 106.1 Hz), 132.0 (d, J = 9.9 Hz), 131.8 (d, J = 2.7 Hz), 128.4 (d, J = 13.1 Hz), 125.0 (d, J = 109.7 Hz), 118.1 (d, J = 12.7 Hz), 52.1.

³¹P NMR (162 MHz, Chloroform-d) δ 30.0.

HRMS (ESI) Calcd for C₂₀H₁₈NO₂P [M+H]⁺: 336.1148, found: 336.1146.

N-(4-(diphenylphosphoryl)phenyl)benzamide (3m)

56.4 mg, yield: 71%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.1 – 9.9 (m, 1H), 8.0 (d, *J* = 7.3 Hz, 2H), 7.9 – 7.8 (m, 2H), 7.6 – 7.4 (m, 13H), 7.3 – 7.3 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 142.5 (d, J = 3.9 Hz), 134.6, 132.7 (d, J = 4.7 Hz), 132.4 (d, J = 85.7 Hz), 131.9 (d, J = 10.1 Hz), 131.7 (d, J = 9.5 Hz), 128.5 (d, J = 12.2 Hz), 128.3, 127.7, 126.2 (d, J = 107.2 Hz), 120.3 (d, J = 12.5 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.8.

HRMS (ESI) Calcd for C₂₅H₂₀NO₂P [M+H]⁺: 398.1304, found: 398.1303.

N-(4-(diphenylphosphoryl)phenyl)cyclobutanecarboxamide (3n)

59.9 mg, yield: 80%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.4 (s, 1H), 7.8 (d, *J* = 7.1 Hz, 2H), 7.6 (dd, *J* = 12.0, 7.2 Hz, 4H), 7.6 – 7.4 (m, 8H), 3.2 (p, *J* = 8.4 Hz, 1H), 2.4 – 2.3 (m, 2H), 2.1 – 2.0 (m, 2H), 1.9 – 1.7 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 142.6 (d, J = 3.0 Hz), 132.8 (d, J = 10.8 Hz), 132.2 (d, J = 104.7 Hz), 132.0 (d, J = 2.7 Hz), 131.9 (d, J = 10.0 Hz), 128.5 (d, J = 12.1 Hz), 125.4 (d, J = 109.2 Hz), 119.4 (d, J = 12.6 Hz), 40.5, 25.1, 18.1.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.9.

HRMS (ESI) Calcd for C₂₃H₂₂NO₂P [M+H]⁺: 376.1461, found: 376.1460.

N-(4-(diphenylphosphoryl)phenyl)-2,2,2-trifluoroacetamide (30)

17.9 mg, yield: 23%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.4 (s, 1H), 7.8 (d, *J* = 6.8 Hz, 2H), 7.7 – 7.6 (m, 4H), 7.6 – 7.4 (m, 8H).

¹³C NMR (101 MHz, DMSO- d_6) δ 147.9 (d, J = 37.8 Hz), 132.9 (d, J = 3.1 Hz), 123.5 (d, J = 106.1 Hz), 125.2 (d, J = 10.9 Hz), 124.8 (d, J = 2.7 Hz), 124.0 (d, J = 10.2 Hz), 121.0 (d, J = 12.4 Hz), 120.3 (d, J = 107.9 Hz), 112.9 (d, J = 12.6 Hz), 108.2 (d, J = 287.5 Hz).

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -75.1.

³¹P NMR (162 MHz, Chloroform-d) δ 30.1.

HRMS (ESI) Calcd for C₂₀H₁₅F₃NO₂P [M+H]⁺: 390.0865, found: 390.0865.

tert-butyl (4-(diphenylphosphoryl)phenyl)carbamate (3p)

48.8 mg, yield: 62%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.8 (s, 1H), 7.7 – 7.6 (m, 4H), 7.6 – 7.5 (m, 6H), 7.5 – 7.4 (m, 4H), 1.5 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 152.6, 142.4 (d, *J* = 3.0 Hz), 133.0 (d, *J* = 10.9 Hz), 132.6 (d, *J* = 104.5 Hz), 132.0 (d, *J* = 10.0 Hz), 131.8 (d, *J* = 2.7 Hz), 128.4 (d, *J* = 12.1 Hz), 125.0 (d, *J* = 109.6 Hz), 117.9 (d, *J* = 12.6 Hz), 80.7, 28.2.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.3. HRMS (ESI) Calcd for C₂₃H₂₄NO₃P [M+H]⁺: 394.1567, found: 394.1565.

N-(4-(diphenylphosphoryl)phenyl)-4-methylbenzenesulfonamide (3q)

32.2 mg, yield: 36%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 6H), 7.5 – 7.5 (m, 2H), 7.5 – 7.4 (m, 6H), 7.2 (dd, J = 8.6, 2.1 Hz, 2H), 7.1 (d, J = 8.2 Hz, 2H), 2.3 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 143.7, 141.3 (d, *J* = 2.9 Hz), 136.5, 133.2 (d, *J* = 10.9 Hz), 132.0 (d, *J* = 105.0 Hz), 131.9 (d, *J* = 9.9 Hz), 131.9 (d, *J* = 3.9 Hz), 129.5, 128.4 (d, *J* = 12.2 Hz), 127.1, 126.4 (d, *J* = 108.2 Hz), 119.0 (d, *J* = 12.7 Hz), 21.4.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.6.

HRMS (ESI) Calcd for C₂₅H₂₂NO₃PS [M+H]⁺: 448.1131, found: 448.1129.

1-(5-(diphenylphosphoryl)indolin-1-yl)-2,2-dimethylpropan-1-one (3r)

59.7 mg, yield: 74%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (d, *J* = 8.3 Hz, 1H), 7.7 – 7.3 (m, 13H), 4.3 (t, *J* = 8.2 Hz, 2H), 3.1 (t, *J* = 8.1 Hz, 2H), 1.4 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 148.0 (d, J = 2.9 Hz), 132.8 (d, J = 104.2 Hz), 132.1 (d, J = 11.4 Hz), 132.0 (d, J = 9.9 Hz), 131.8 (d, J = 2.7 Hz), 131.4 (d, J = 13.2 Hz), 128.4 (d, J = 12.1 Hz), 127.8 (d, J = 10.4 Hz), 126.6 (d, J = 107.7 Hz), 117.8 (d, J = 13.1 Hz), 49.7, 40.3, 28.9, 27.5.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.1.

HRMS (ESI) Calcd for C₂₅H₂₆NO₂P [M+H]⁺: 404.1774, found: 404.1772.

N-(4-(diphenylphosphoryl)phenyl)acetamide (3s)

46.0 mg, yield: 69%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.2 (s, 1H), 7.7 – 7.6 (m, 4H), 7.6 – 7.4 (m, 8H), 6.9 (d, *J* = 7.8 Hz, 1H), 3.5 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.4, 146.9 (d, J = 2.3 Hz), 132.7 (d, J = 11.0 Hz), 132.3 (d, J = 104.8 Hz), 132.0 (d, J = 10.0 Hz), 132.0 (d, J = 2.7 Hz), 128.5 (d, J = 12.2 Hz), 127.7 (d, J = 11.5 Hz), 125.8 (d, J = 14.0 Hz), 124.8 (d, J = 109.0 Hz), 109.9 (d, J = 13.4 Hz), 35.9.

³¹P NMR (162 MHz, Chloroform-*d*) δ 30.3.

HRMS (ESI) Calcd for $C_{20}H_{16}NO_2P$ [M+H]⁺: 334.0991, found: 334.0990.

(4-hydroxyphenyl)diphenylphosphine oxide (3t)

22.9 mg, yield: 39%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.7 (s, 1H), 7.6 (dd, *J* = 12.0, 7.4 Hz, 4H), 7.5 – 7.3 (m, 8H), 7.0 (d, *J* = 7.1 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.8 (d, J = 2.6 Hz), 133.9 (d, J = 11.7 Hz), 132.2 (d, J = 105.6 Hz), 132.0 (d, J = 10.2 Hz), 132.0 (d, J = 3.1 Hz), 128.5 (d, J = 12.2 Hz), 119.8 (d, J = 113.9 Hz), 116.3 (d, J = 13.5 Hz).

³¹P NMR (162 MHz, Chloroform-d) δ 32.0.

HRMS (ESI) Calcd for C₁₈H₁₅O₂P [M+H]⁺: 295.0882, found: 295.0881.

(4-methoxyphenyl)diphenylphosphine oxide (3u) 46.8 mg, yield: 76% (o + p). White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.9 – 7.3 (m, 12H), 7.1 – 6.8 (m, 2H), 3.8 (s, 1H), 3.6 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, *J* = 2.8 Hz), 160.8 (d, *J* = 3.3 Hz), 134.9 (d, *J* = 7.1 Hz), 134.2 (d, *J* = 2.0 Hz), 133.9 (d, *J* = 11.2 Hz), 133.1 (d, *J* = 107.4 Hz), 132.9 (d, *J* = 104.5 Hz), 132.0 (d, *J* = 9.9 Hz), 131.8 (d, *J* = 4.7 Hz), 131.7 (d, *J* = 10.3 Hz), 131.4 (d, *J* = 2.8 Hz), 128.4 (d, *J* = 12.1 Hz), 128.0 (d, *J* = 12.5 Hz), 123.4 (d, *J* = 110.4 Hz), 120.9 (d, *J* = 11.6 Hz), 120.1 (d, *J* = 103.6 Hz), 114.0 (d, *J* = 13.2 Hz), 111.3 (d, *J* = 6.5 Hz), 55.3, 55.2.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.2, 27.5.

HRMS (ESI) Calcd for $C_{19}H_{17}O_2P [M+H]^+$: 309.1039, found: 309.1036.

(2,3-dihydrobenzofuran-5-yl)diphenylphosphine oxide (3v)

30.8 mg, yield: 48% (o + p). White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.8 – 7.6 (m, 4H), 7.6 – 7.3 (m, 8H), 7.0 – 6.8 (m, 1H), 4.7 – 4.4 (m, 2H), 3.2 (q, *J* = 8.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 163.3 (d, J = 2.7 Hz), 161.5 (d, J = 3.1 Hz), 133.2 (d, J = 12.0 Hz), 133.0 (d, J = 104.4 Hz), 132.6 (d, J = 106.7 Hz), 132.0 (d, J = 9.9 Hz), 131.8 (d, J = 10.5 Hz), 131.7 (d, J = 2.7 Hz), 131.6 (d, J = 2.8 Hz), 129.1 (d, J = 2.4 Hz), 128.8 (d, J = 11.2 Hz), 128.3 (d, J = 12.1 Hz), 128.1 (d, J = 12.5 Hz), 127.9 (d, J = 14.2 Hz), 123.3 (d, J = 110.1 Hz), 120.3 (d, J = 10.8 Hz), 112.8 (d, J = 104.7 Hz), 109.4 (d, J = 14.2 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.6, 26.3.

HRMS (ESI) Calcd for $C_{20}H_{17}O_2P [M+H]^+$: 321.1039, found: 321.1037.

diphenyl(2,4,6-trimethoxyphenyl)phosphine oxide (3w)

72.9 mg, yield: 99%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.8 – 7.7 (m, 4H), 7.4 – 7.3 (m, 6H), 6.0 (t, *J* = 3.5 Hz, 2H), 3.8 (d, *J* = 4.9 Hz, 3H), 3.3 (d, *J* = 4.5 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 164.4, 137.0 (d, J = 109.8 Hz), 130.5 (d, J = 9.8 Hz), 130.1 (d, J = 2.7 Hz), 127.6 (d, J = 12.5 Hz), 100.8 (d, J = 110.8 Hz), 91.1 (d, J = 6.5 Hz), 55.3, 55.2. ³¹P NMR (162 MHz, Chloroform-*d*) δ 21.4.

HRMS (ESI) Calcd for C₂₁H₂₁O₄P [M+H]⁺: 369.1250, found: 369.1248.

N-(3-(diphenylphosphoryl)-2,6-dimethoxyphenyl)pivalamide (3x)

35.7 mg, yield: 41%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (d, *J* = 14.1 Hz, 1H), 7.7 – 7.7 (m, 4H), 7.7 (s, 1H), 7.5 – 7.4 (m, 6H), 6.5 (d, *J* = 4.9 Hz, 1H), 3.9 (s, 3H), 3.5 (s, 3H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.0, 158.6 (d, J = 3.5 Hz), 153.8 (d, J = 2.6 Hz), 133.4 (d, J = 107.7 Hz), 131.7 (d, J = 10.2 Hz), 131.2 (d, J = 2.8 Hz), 128.0 (d, J = 12.4 Hz), 127.2 (d, J = 10.5 Hz), 120.9 (d, J = 15.0 Hz), 111.5 (d, J = 109.5 Hz), 95.4 (d, J = 8.1 Hz), 56.0, 55.8, 39.6, 27.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 27.0.

HRMS (ESI) Calcd for C₂₅H₂₈NO₄P [M+H]⁺: 438.1829, found: 438.1826.

N-(4-(di-p-tolylphosphoryl)phenyl)pivalamide (3y)

59.2 mg, yield: 73%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (s, 1H), 7.7 (d, *J* = 8.3 Hz, 2H), 7.5 (dd, *J* = 11.6, 8.1 Hz, 6H), 7.2 (d, *J* = 6.7 Hz, 4H), 2.4 (s, 6H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.3, 142.2 (d, J = 2.7 Hz), 141.8 (d, J = 2.6 Hz), 132.8 (d, J = 10.7 Hz), 131.9 (d, J = 10.3 Hz), 129.4 (d, J = 107.0 Hz), 129.1 (d, J = 12.5 Hz), 127.0 (d, J = 108.8 Hz), 119.7 (d, J = 12.4 Hz), 39.7, 27.4, 21.5.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.2.

HRMS (ESI) Calcd for C₂₅H₂₈NO₂P [M+H]⁺: 406.1930, found: 406.1929.

N-(4-(bis(4-methoxyphenyl)phosphoryl)phenyl)pivalamide (3z)

41.9 mg, yield: 48%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.0 (s, 1H), 7.7 (dd, *J* = 8.6, 2.2 Hz, 2H), 7.5 (dd, *J* = 11.4, 8.7 Hz, 6H), 6.9 (dd, *J* = 8.7, 2.0 Hz, 4H), 3.8 (s, 6H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.2, 162.3 (d, J = 2.8 Hz), 141.5 (d, J = 2.9 Hz), 133.8 (d, J = 11.3 Hz), 132.9 (d, J = 10.7 Hz), 127.7 (d, J = 108.7 Hz), 124.0 (d, J = 111.2 Hz), 119.5 (d, J = 12.4 Hz), 114.0 (d, J = 13.2 Hz), 55.3, 39.7, 27.5.

³¹P NMR (162 MHz, Chloroform-d) δ 28.7.

HRMS (ESI) Calcd for C₂₅H₂₈NO₄P [M+H]⁺: 438.1829, found: 438.1825.

N-(4-(bis(4-chlorophenyl)phosphoryl)phenyl)pivalamide (3aa)

16.0 mg, yield: 18%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 (dd, *J* = 8.6, 2.4 Hz, 2H), 7.6 (s, 1H), 7.6 (dd, *J* = 11.5, 8.3 Hz, 6H), 7.4 (dd, *J* = 8.4, 2.2 Hz, 4H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.0, 141.9 (d, J = 2.9 Hz), 138.9 (d, J = 3.3 Hz), 133.3 (d, J = 10.9 Hz), 133.0 (d, J = 10.8 Hz), 130.7 (d, J = 106.2 Hz), 129.0 (d, J = 12.8 Hz), 126.1 (d, J = 110.1 Hz), 119.6 (d, J = 12.7 Hz), 39.8, 27.5.

³¹P NMR (162 MHz, Chloroform-*d*) δ 27.5.

HRMS (ESI) Calcd for C₂₃H₂₂Cl₂NO₂P [M+H]⁺: 446.0838, found: 446.0837.

N-(4-(di-m-tolylphosphoryl)phenyl)pivalamide (3ab)

52.7 mg, yield: 65%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.2 (s, 1H), 7.7 (d, J = 8.3 Hz, 2H), 7.5 (d, J = 12.0 Hz, 4H), 7.4 – 7.3 (m, 6H), 2.3 (s, 6H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.3, 141.8, 138.3 (d, J = 12.0 Hz), 132.9 (d, J = 10.7 Hz), 132.6 (d, J = 2.7 Hz), 132.3 (d, J = 105.3 Hz), 132.3 (d, J = 9.6 Hz), 129.1 (d, J = 10.3 Hz), 128.2 (d, J = 12.9 Hz), 126.9 (d, J = 95.3 Hz), 119.6 (d, J = 12.5 Hz), 39.7, 27.4, 21.3.

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.3.

HRMS (ESI) Calcd for $C_{25}H_{28}NO_2P$ [M+H]⁺: 406.1930, found: 406.1928.

N-(4-(bis(3-methoxyphenyl)phosphoryl)phenyl)pivalamide (3ac)

40.2 mg, yield: 46%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.8 (s, 1H), 7.7 (dd, *J* = 8.6, 2.3 Hz, 2H), 7.6 (dd, *J* = 11.5, 8.6 Hz, 2H), 7.3 (td, *J* = 7.9, 3.8 Hz, 2H), 7.3 – 7.2 (m, 2H), 7.1 – 7.0 (m, 4H), 3.8 (s, 6H), 1.3 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.1, 159.5 (d, J = 14.9 Hz), 141.7 (d, J = 3.0 Hz), 133.7 (d, J = 103.9 Hz), 133.0 (d, J = 10.7 Hz), 129.6 (d, J = 14.5 Hz), 126.8 (d, J = 108.3 Hz), 124.3 (d, J = 10.1 Hz), 119.4 (d, J = 12.6 Hz), 118.2 (d, J = 2.6 Hz), 116.6 (d, J = 10.8 Hz), 55.4, 39.8, 27.5. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.3.

HRMS (ESI) Calcd for C₂₅H₂₈NO₄P [M+H]⁺: 438.1829, found: 438.1826.

(2,6-dimethoxypyridin-3-yl)diphenylphosphine oxide (3ad)

46.1 mg, yield: 68%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.9 (dd, *J* = 12.0, 8.2 Hz, 1H), 7.7 – 7.6 (m, 4H), 7.5 – 7.4 (m, 6H), 6.4 (d, *J* = 8.2 Hz, 1H), 3.9 (s, 3H), 3.8 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4 (d, J = 1.5 Hz), 163.6 (d, J = 6.2 Hz), 146.6 (d, J = 8.2 Hz), 132.8 (d, J = 108.6 Hz), 131.7 (d, J = 10.3 Hz), 131.5 (d, J = 2.8 Hz), 128.1 (d, J = 12.5 Hz), 104.2 (d, J = 111.0 Hz), 102.0 (d, J = 9.4 Hz), 53.8, 53.3.

³¹P NMR (162 MHz, Chloroform-*d*) δ 25.9.

HRMS (ESI) Calcd for C₁₉H₁₈NO₃P [M+H]⁺: 340.1097, found: 340.1095.

diphenyl(quinoxalin-2-yl)phosphine oxide (3ae)

45.6 mg, yield: 69%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 9.7 (s, 1H), 8.2 – 8.1 (m, 2H), 8.0 – 7.9 (m, 4H), 7.8 (dt, *J* = 15.6, 7.0 Hz, 2H), 7.6 – 7.5 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 152.2 (d, J = 124.1 Hz), 146.4 (d, J = 22.1 Hz), 142.6 (d, J = 2.3 Hz), 142.1 (d, J = 17.1 Hz), 132.2 (d, J = 2.8 Hz), 132.1 (d, J = 9.6 Hz), 131.3 (d, J = 123.7 Hz), 130.9, 130.1, 129.6 (d, J = 1.8 Hz), 128.5 (d, J = 12.3 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 20.4.

HRMS (ESI) Calcd for C₂₀H₁₅N₂OP [M+H]⁺: 331.0995, found: 331.0994.

benzo[d]thiazol-2-yldiphenylphosphine oxide (3af)

45.6 mg, yield: 68%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.2 (d, *J* = 7.9 Hz, 1H), 8.1 – 7.9 (m, 5H), 7.6 – 7.5 (m, 8H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7 (d, J = 126.9 Hz), 155.3 (d, J = 21.6 Hz), 136.8, 132.6 (d, J = 2.9 Hz), 131.9 (d, J = 10.2 Hz), 130.9 (d, J = 109.0 Hz), 128.6 (d, J = 12.8 Hz), 126.6 (d, J = 5.4 Hz), 124.7, 122.1.

³¹P NMR (162 MHz, Chloroform-*d*) δ 20.1.

HRMS (ESI) Calcd for C₁₉H₁₄NOPS [M+H]⁺: 336.0606, found: 336.0606.

ethyl 2-(diphenylphosphoryl)-4-methylthiazole-5-carboxylate (3ag)

54.9 mg, yield: 74%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.9 (dd, *J* = 12.6, 7.6 Hz, 4H), 7.6 – 7.5 (m, 6H), 4.3 (q, *J* = 7.1 Hz, 2H), 2.8 (s, 3H), 1.4 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5 (d, J = 125.7 Hz), 162.9 (d, J = 19.0 Hz), 161.6, 132.6 (d, J = 2.9 Hz), 131.7 (d, J = 10.3 Hz), 130.7 (d, J = 109.4 Hz), 128.6 (d, J = 12.8 Hz), 127.3, 61.6, 17.5, 14.1. ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.7.

HRMS (ESI) Calcd for C₁₉H₁₈NO₃PS [M+H]⁺: 372.0818, found: 372.0815.

(3,4-dimethoxythiophene-2,5-diyl)bis(diphenylphosphine oxide) (3ah)

105.6 mg, yield: 97%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.8 – 7.7 (m, 8H), 7.6 – 7.4 (m, 12H), 3.5 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 154.8 (d, J = 15.9 Hz), 132.3, 131.6 (d, J = 11.2 Hz), 131.5 (d,

111.5 Hz), 128.4 (d, *J* = 13.3 Hz), 123.9 (d, *J* = 104.8 Hz), 60.2.

³¹P NMR (162 MHz, Chloroform-*d*) δ 20.5.

HRMS (ESI) Calcd for C₃₀H₂₆O₄P₂S [M+H]⁺: 545.1100, found: 545.1098.

5-(diphenylphosphoryl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (3ai)

57.8 mg, yield: 85%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.3 (d, *J* = 10.7 Hz, 1H), 7.9 – 7.8 (m, 4H), 7.6 – 7.5 (m, 2H), 7.5 (td, *J* = 7.5, 3.0 Hz, 4H), 3.5 (s, 3H), 3.3 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.4 (d, J = 10.4 Hz), 152.0 (d, J = 11.3 Hz), 151.4, 132.2 (d, J = 2.9 Hz), 131.7 (d, J = 10.9 Hz), 131.3 (d, J = 111.7 Hz), 128.3 (d, J = 13.0 Hz), 104.0 (d, J = 114.6 Hz), 37.6, 27.9.

³¹P NMR (162 MHz, Chloroform-*d*) δ 23.7.

HRMS (ESI) Calcd for C₁₈H₁₇N₂O₃P [M+H]⁺: 341.1050, found: 341.1046.

5-(diphenylphosphoryl)-1-((2S,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimi dine-2,4(1H,3H)-dione (3aj)

59.1 mg, yield: 69%. White solid.

¹H NMR (400 MHz, Methanol- d_4) δ 8.4 (d, J = 11.6 Hz, 1H), 7.9 – 7.7 (m, 4H), 7.6 – 7.5 (m, 6H), 6.2 (t, J = 6.5 Hz, 1H), 4.3 (dt, J = 6.3, 3.2 Hz, 1H), 4.0 (q, J = 3.7 Hz, 1H), 3.7 – 3.5 (m, 2H), 2.4 – 2.2 (m, 2H), 1.3 (s, 1H).

¹³C NMR (101 MHz, Methanol- d_4) δ 164.8 (d, J = 11.4 Hz), 153.0, 151.7 (d, J = 14.3 Hz), 134.7 (d, J = 1.6 Hz), 133.9 (d, J = 10.8 Hz), 133.1 (d, J = 112.1 Hz), 130.7 (d, J = 12.9 Hz), 105.9 (d, J = 120.0 Hz), 90.5, 89.0, 73.5, 63.9, 42.8.

³¹P NMR (162 MHz, Methanol- d_4) δ 27.9.

HRMS (ESI) Calcd for $C_{21}H_{21}N_2O_6P [M+H]^+$: 429.1210, found: 429.1208.

1-((2S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(diphenylphosphoryl)pyr imidine-2,4(1H,3H)-dione (3k)

35.5 mg, yield: 40%. White solid.

¹H NMR (400 MHz, Methanol- d_4) δ 8.0 (d, J = 11.8 Hz, 1H), 7.7 – 7.6 (m, 4H), 7.5 – 7.4 (m, 6H), 6.1 (d, J = 3.6 Hz, 1H), 4.0 (dd, J = 3.6, 1.9 Hz, 1H), 3.9 (t, J = 2.2 Hz, 1H), 3.8 (td, J = 5.3, 2.5 Hz, 1H), 3.5 – 3.4 (m, 2H).

¹³C NMR (101 MHz, Methanol- d_4) δ 164.6 (d, J = 10.1 Hz), 153.5 (d, J = 15.3 Hz), 152.7, 134.7 (d, J = 2.8 Hz), 133.9 (d, J = 10.7 Hz), 132.9 (d, J = 112.5 Hz), 130.8 (d, J = 12.5 Hz), 104.6 (d, J = 121.1 Hz), 89.4, 88.4, 79.2, 77.6, 63.8.

³¹P NMR (162 MHz, Methanol- d_4) δ 27.9.

HRMS (ESI) Calcd for $C_{21}H_{21}N_2O_7P [M+H]^+$: 445.1159, found: 445.1159.

8-(diphenylphosphoryl)-3,9-dimethyl-1-(5-oxohexyl)-3,9-dihydro-1H-purine-2,6-dione (3l)

43.1 mg, yield: 45%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.9 – 7.8 (m, 4H), 7.6 (td, *J* = 7.3, 1.5 Hz, 2H), 7.5 – 7.5 (m, 4H), 4.3 (d, *J* = 0.9 Hz, 3H), 4.0 (t, *J* = 6.7 Hz, 2H), 3.5 (s, 3H), 2.5 (t, *J* = 6.9 Hz, 2H), 2.1 (s, 3H), 1.7 – 1.6 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 208.7, 155.2, 151.2, 147.8 (d, J = 17.9 Hz), 145.0 (d, J = 135.6 Hz), 132.7 (d, J = 2.9 Hz), 131.8 (d, J = 10.4 Hz), 130.7 (d, J = 111.9 Hz), 128.6 (d, J = 13.1 Hz), 110.4 (d, J = 4.3 Hz), 43.1, 40.9, 34.3, 29.9, 29.8, 27.3, 20.9.

³¹P NMR (162 MHz, Chloroform-*d*) δ 19.2.

HRMS (ESI) Calcd for $C_{25}H_{27}N_4O_4P [M+H]^+$: 479.1843, found: 479.1840.

(2-(4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethyl)diphenylphosphine oxide (5a)

42.2 mg, yield: 42%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.7 (m, 2H), 7.5 – 7.3 (m, 7H), 7.3 – 7.2 (m, 3H), 6.8 – 6.6 (m, 2H), 5.8 (s, 2H), 5.3 – 5.2 (m, 1H), 3.7 (s, 3H), 3.7 (s, 3H), 3.6 (s, 6H), 3.6 – 3.5 (m, 1H), 3.0 (td, *J* = 14.7, 4.7 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 158.6, 157.4, 137.0 (d, J = 11.6 Hz), 134.7 (d, J = 97.5 Hz), 132.9 (d, J = 97.7 Hz), 131.1 (d, J = 2.9 Hz), 130.7, 130.6, 130.6 (d, J = 3.2 Hz), 130.5, 128.6, 128.3 (d, J = 11.4 Hz), 127.6 (d, J = 11.7 Hz), 113.1, 90.8, 55.4, 55.1, 55.1, 33.3 (d, J = 71.3 Hz), 31.9 (d, J = 2.5 Hz).

³¹P NMR (162 MHz, Chloroform-d) δ 30.5.

HRMS (ESI) Calcd for C₃₀H₃₁O₅P [M+H]⁺: 503.1982, found: 503.1982.

diphenyl(2-(2,4,6-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethyl)phosphine oxide (5b) 53.9 mg, yield: 48%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 2H), 7.5 – 7.3 (m, 6H), 7.3 – 7.2 (m, 2H), 6.6 (s, 2H),

5.9 (s, 2H), 5.3 – 5.2 (m, 1H), 3.8 – 3.7 (m, 18H), 3.6 – 3.4 (m, 1H), 3.1 – 3.0 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.9, 158.6, 152.4, 140.4 (d, J = 10.6 Hz), 135.8, 134.1 (d, J = 97.6 Hz), 132.8 (d, J = 98.2 Hz), 131.2 (d, J = 2.6 Hz), 130.8 (d, J = 2.8 Hz), 130.6 (d, J = 19.1 Hz), 130.6, 128.2 (d, J = 11.4 Hz), 127.7 (d, J = 11.7 Hz), 111.3 (d, J = 4.8 Hz), 105.0, 90.8, 60.6, 55.8, 55.4, 55.1, 34.0 (d, J = 70.7 Hz), 33.3 (d, J = 2.5 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 31.0.

HRMS (ESI) Calcd for C₃₂H₃₅O₇P [M+H]⁺: 563.2193, found: 563.2194.

(2-(3,4-dimethoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethyl)diphenylphosphine oxide (5c)

49.9 mg, yield: 47%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 2H), 7.5 – 7.3 (m, 6H), 7.3 – 7.2 (m, 2H), 6.9 (d, *J* = 1.9 Hz, 1H), 6.9 (dd, *J* = 8.3, 1.8 Hz, 1H), 6.7 (d, *J* = 8.3 Hz, 1H), 5.8 (s, 2H), 5.4 – 5.2 (m, 1H), 3.8 – 3.6 (m, 15H), 3.6 – 3.5 (m, 1H), 3.0 (td, *J* = 14.6, 5.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 158.5, 148.1, 146.8, 137.4 (d, *J* = 11.2 Hz), 134.6 (d, *J* = 97.2 Hz), 132.9 (d, *J* = 97.7 Hz), 131.1 (d, *J* = 2.6 Hz), 130.6 (d, *J* = 9.2 Hz), 130.5 (d, *J* = 9.0 Hz), 128.2 (d, *J* = 11.4 Hz), 127.6 (d, *J* = 11.7 Hz), 119.6, 111.7 (d, *J* = 4.4 Hz), 111.5, 110.5, 90.8, 55.7, 55.6, 55.4, 55.1, 33.7 (d, *J* = 70.9 Hz), 32.4 (d, *J* = 2.5 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 30.5.

HRMS (ESI) Calcd for C₃₁H₃₃O₆P [M+H]⁺: 533.2088, found: 533.2086.

(2-(benzo[d][1,3]dioxol-5-yl)-2-(2,4,6-trimethoxyphenyl)ethyl)diphenylphosphine oxide (5d) 41.3 mg, yield: 40%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 2H), 7.5 – 7.3 (m, 6H), 7.2 (dd, *J* = 7.2, 2.8 Hz, 2H), 6.9 – 6.8 (m, 2H), 6.6 (d, *J* = 8.1 Hz, 1H), 5.8 (s, 4H), 5.3 – 5.2 (m, 1H), 3.7 (d, *J* = 21.2 Hz, 9H), 3.5 (ddd, *J* = 15.0, 9.8, 8.0 Hz, 1H), 3.0 (td, *J* = 14.6, 5.1 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.8, 158.5, 146.9, 145.2, 138.8 (d, *J* = 11.3 Hz), 134.4 (d, *J* = 97.3 Hz), 132.9 (d, *J* = 97.9 Hz), 131.1 (d, *J* = 2.6 Hz), 130.6 (d, *J* = 9.9 Hz), 130.6 (d, *J* = 5.5 Hz), 130.5, 128.3 (d, *J* = 11.4 Hz), 127.7 (d, *J* = 11.7 Hz), 120.7, 111.7 (d, *J* = 4.4 Hz), 108.5, 107.5, 100.5, 90.7, 55.4, 55.1, 33.3 (d, *J* = 71.2 Hz), 32.5 (d, *J* = 2.5 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 30.5.

HRMS (ESI) Calcd for C₃₀H₂₉O₆P [M+H]⁺: 517.1775, found: 517.1774.

$(2-(4-(methylthio)phenyl)-2-(2,4,6-trimethoxyphenyl)ethyl) diphenylphosphine\ oxide\ (5h)$

47.0 mg, yield: 43%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 2H), 7.5 – 7.3 (m, 6H), 7.3 – 7.2 (m, 4H), 7.1 (d, J = 8.4 Hz, 2H), 5.8 (s, 2H), 5.3 – 5.2 (m, 1H), 3.7 (d, J = 29.5 Hz, 9H), 3.6 – 3.5 (m, 1H), 3.0 (td, J = 14.8, 4.8 Hz, 1H), 2.4 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.9, 158.6, 142.1, 141.9, 134.7, 134.7 (d, J = 97.4 Hz), 132.8 (d, J = 97.7 Hz), 131.2 (d, J = 2.7 Hz), 130.7, 130.6, 130.6 (d, J = 2.4 Hz), 130.5 (d, J = 8.9 Hz), 128.3 (d, J = 11.4 Hz), 128.2, 127.7 (d, J = 11.6 Hz), 126.5, 111.5 (d, J = 4.2 Hz), 90.7, 55.4, 55.1, 32.9 (d, J = 71.5 Hz), 32.1 (d, J = 2.5 Hz), 16.2.

³¹P NMR (162 MHz, Chloroform-d) δ 30.3.

HRMS (ESI) Calcd for C₃₂H₃₅O₄PS [M+Na]⁺: 569.1886, found: 569.1870.

(2-(4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethyl)di-p-tolylphosphine oxide (5i)

40.3 mg, yield: 38%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.6 (dd, *J* = 10.9, 8.1 Hz, 2H), 7.4 (dd, *J* = 11.2, 8.0 Hz, 2H), 7.2 (dd, *J* = 21.5, 7.4 Hz, 4H), 7.0 (d, *J* = 6.1 Hz, 2H), 6.7 (d, *J* = 8.7 Hz, 2H), 5.8 (s, 2H), 5.2 (td, *J* = 12.0, 11.3, 4.6 Hz, 1H), 3.7 – 3.6 (m, 12H), 3.5 – 3.4 (m, 1H), 3.0 (td, *J* = 14.8, 4.7 Hz, 1H), 2.3 (d, *J* = 16.0 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.7, 158.5, 157.3, 141.3 (d, J = 2.9 Hz), 140.7 (d, J = 2.9 Hz), 137.1 (d, J = 11.6 Hz), 131.6 (d, J = 99.8 Hz), 130.7 (d, J = 9.6 Hz), 130.5 (d, J = 9.4 Hz), 129.8 (d, J = 100.3 Hz), 128.9 (d, J = 11.7 Hz), 128.6, 128.3 (d, J = 12.0 Hz), 113.0, 90.7, 55.4, 55.1 (d, J = 3.2 Hz), 33.4 (d, J = 71.7 Hz), 31.9 (d, J = 2.4 Hz), 21.4 (d, J = 6.0 Hz).

³¹P NMR (162 MHz, Chloroform-d) δ 30.8.

HRMS (ESI) Calcd for C₃₂H₃₅O₅P [M+H]⁺: 531.2295, found: 531.2294.

bis(4-methoxyphenyl)(2-(4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethyl)phosphine oxide (5j) 38.3 mg, yield: 34%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.6 (dd, *J* = 10.6, 8.7 Hz, 2H), 7.4 (dd, *J* = 10.9, 8.7 Hz, 2H), 7.2 (d, *J* = 8.6 Hz, 2H), 6.9 (dd, *J* = 8.7, 2.0 Hz, 2H), 6.7 – 6.7 (m, 4H), 5.8 (s, 2H), 5.2 (td, *J* = 11.3, 10.4, 4.6 Hz, 1H), 3.8 – 3.6 (m, 18H), 3.5 – 3.4 (m, 1H), 2.9 (td, *J* = 14.9, 4.7 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 161.7 (d, J = 2.8 Hz), 161.4 (d, J = 2.9 Hz), 159.6, 158.4, 157.3, 137.2 (d, J = 11.6 Hz), 132.5 (d, J = 10.6 Hz), 132.3 (d, J = 10.4 Hz), 128.6, 126.2 (d, J = 103.5 Hz), 124.2 (d, J = 103.9 Hz), 113.7 (d, J = 12.4 Hz), 113.1 (d, J = 12.6 Hz), 113.0, 112.1 (d, J = 4.0 Hz), 90.7, 55.4, 55.2, 55.1, 55.1, 55.0, 33.6 (d, J = 72.3 Hz), 31.9 (d, J = 2.4 Hz).

³¹P NMR (162 MHz, Chloroform-d) δ 30.6.

HRMS (ESI) Calcd for C₃₂H₃₅O₇P [M+H]⁺: 563.2193, found: 563.2191.

(4-aminophenyl)diphenylphosphine oxide (6)

41.6 mg, yield: 71%. White solid.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.7 – 7.6 (m, 4H), 7.5 – 7.3 (m, 8H), 6.7 (dd, *J* = 8.6, 2.3 Hz, 2H), 4.2 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 150.0 (d, J = 2.7 Hz), 133.7 (d, J = 11.3 Hz), 133.3 (d, J = 104.2 Hz), 132.0 (d, J = 9.9 Hz), 131.5 (d, J = 2.7 Hz), 128.3 (d, J = 12.0 Hz), 119.4 (d, J = 113.7 Hz), 114.2 (d, J = 13.2 Hz).

³¹P NMR (162 MHz, Chloroform-*d*) δ 29.7.

HRMS (ESI) Calcd for C₁₈H₁₆NOP [M+H]⁺: 294.1042, found: 294.1041.

9. NMR Spectroscopic Data

N-(4-(diphenylphosphoryl)phenyl)pivalamide (3a)

-100

-140

-160

-180

-200

-240

-220

140

80

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

-240

N-(4-(diphenylphosphoryl)-2-isopropylphenyl)pivalamide (3d)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)

f1 (ppm)

-29.601

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 ffl (ppm)

N-(4-(diphenylphosphoryl)-3-methylphenyl)pivalamide (3g)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)

N-(3-chloro-4-(diphenylphosphoryl)phenyl)pivalamide (3i)

-28.461

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)

methyl (4-(diphenylphosphoryl)phenyl)carbamate (3k)

N-(4-(diphenylphosphoryl)phenyl)acetamide (3l)

-200

-220

-240

140 100 -40 -60 fl (ppm) 120 80 60 40 20 0 -20 -80 -100 -120 -140 -160 -180

N-(4-(diphenylphosphoryl)phenyl)benzamide (3m)

- 166, 710 - 166, 710 - 162, 689 - 162, 689 - 162, 689 - 163, 689 - 173, 689 - 163,

 $\underbrace{}_{77.000}^{77.318}$

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

N-(4-(diphenylphosphoryl)phenyl)-2,2,2-trifluoroacetamide (30)

148.50 147.50 14

40. 639 40. 126 40. 213 39. 787 39. 362 39. 362

0.000

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

$N-(4-(diphenyl phosphoryl) phenyl)-4-methyl benzenesul fonamide \ (3q)$

1-(5-(diphenylphosphoryl)indolin-1-yl)-2,2-dimethylpropan-1-one (3r)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

N-(4-(diphenylphosphoryl)phenyl)acetamide (3s)

(4-hydroxyphenyl)diphenylphosphine oxide (3t)

(4-methoxyphenyl)diphenylphosphine oxide (3u)

22, 164

 ×27, 495

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 ſ1 (ppa)
diphenyl(2,4,6-trimethoxyphenyl)phosphine oxide (3w)

90 80 f1 (ppm)

N-(3-(diphenylphosphoryl)-2,6-dimethoxyphenyl)pivalamide (3x)

----21.352

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)

N-(4-(di-p-tolylphosphoryl)phenyl)pivalamide (3y)

N-(4-(bis(4-methoxyphenyl)phosphoryl)phenyl)pivalamide (3z)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 r11 (ppm)

$N-(4-(bis (4-chlorophenyl) phosphoryl) phonyl) pivalamide \ (3aa)$

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

N-(4-(bis(3-methoxyphenyl)phosphoryl)phenyl)pivalamide (3ac)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

diphenyl(quinoxalin-2-yl)phosphine oxide (3ae)

---0.000

ethyl 2-(diphenylphosphoryl)-4-methylthiazole-5-carboxylate (3ag)

-40 -60 -80 f1 (ppm) 140 120 100 80 60 20 -20 -100 -120 -140 40 0 -160 -180 -200 -220

(3,4-dimethoxythiophene-2,5-diyl)bis(diphenylphosphine oxide) (3ah)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

5-(diphenylphosphoryl)-1-((2S,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimi dine-2,4(1H,3H)-dione (3aj)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

 $1-((2S,\!4S,\!5R)\!-\!3,\!4-dihydroxy\!-\!5-(hydroxymethyl)tetrahydrofuran-2-yl)\!-\!5-(diphenylphosphoryl)pyr imidine-2,\!4(1H,\!3H)-dione~(3k)$

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

(2-(4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl)ethyl)diphenylphosphine oxide (5a)

diphenyl(2-(2,4,6-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethyl)phosphine oxide (5b)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

101

0.0

-0

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

$(2-(4-(methylthio)phenyl)-2-(2,4,6-trimethoxyphenyl)ethyl) diphenylphosphine\ oxide\ (5h)$

-40 -60 -80 -100 fl (ppm) -120 -140 140 120 100 80 60 40 20 0 -20 -160 -180 -200 -220

$(2-(4-methoxyphenyl)-2-(2,4,6-trimethoxyphenyl) ethyl) di-p-tolyl phosphine \ oxide \ (5i)$

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 II (ppm)
10. References

- C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei and C. H. Senanayake, *Org. Lett.*, 2005, 7, 4277.
- 2. Kitson, S. L., Jones, S., Watters, W., Chen, F. & Madge, D, J, Label Compd. Radiopharm., 2010, 53, 140.