Carbon-11 carboxylation of trialkoxysilane and trimethylsilane derivatives using [¹¹C]CO₂

Salvatore Bongarzone,^a Nicola Raucci,^a Igor Camargo Fontana,^a Federico Luzi^a and Antony D. Gee^a

^aSchool of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, United Kingdom

Supplementary Information

Table of Contents

General Method and Materials	2
Carbon-11 Radiochemistry	2
[¹¹ C]CO ₂ Production	2
Description of the system	2
Description of the carbon-11 carboxylation	3
Molar Activity calculation of [¹¹ C]1	3
Description of the carbon-11 methylation to obtain [¹¹ C]7	3
Quality control of compounds [¹¹ C]1-[¹¹ C]7	4
Semipreparative HPLC method for the purification of [¹¹ C]1	5
Fig. S1	5
Fig. S2	5
Fig. S3	6

General Method and Materials

2-Thiophencarboxylic acid (1, 99%), benzoic acid (2, 99%), toluic acid (3, 99%), fluorene-9-carboxylic acid (4, 96%), phenylpropiolic acid (5, 99%), 4-chlorobenzoic acid (6, 99%), 2-methyltiophene (7, 99%), trimethyl-2-thienylsilane (1a, 97%), triethoxy-2-thienylsilane (1b, 97%), trimethyl(phenyl)silane (2a, 99%), triethoxy(phenyl)silane (2b, 98%), trimethyl-p-tolylsilane (3a, 97%), triethoxy-p-tolylsilane (3b, 97%), 9-98%), trimethylsilylfluorene (**4a**, 1-phenyl-2-trimethylsilylacetilene (5a, 99%), 1-chloro-4(trimethylsilyl)benzene (6a, 98%), potassium fluoride (KF, 99%), 4.7,13,16,21,24-hexaoxa-1,10diazabicyclo[8.8.8]hexacosane (K2.2.2, 99%), 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine cesium fluoride 99%). 1,4,7,10,13,16-(BEMP. 98%). (CsF. hexaoxacvclooctadecane (18-crown-6, 99%), copper(I) iodide (99%), N,N-dimethylformamide (DMF, 99%), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 98%), tetrahydrofuran (THF, 99%), trifluoroacetic acid (TFA, 99%), acetonitrile (MeCN, for HPLC ≥99%). All chemicals and dry solvents were purchased from Sigma-Aldrich, Alfa Aesar, Merck, Fisher Scientific and Acros Organics. TE, RCP, RCY and molar activity values are reported as mean \pm standard deviation.

Carbon-11 Radiochemistry Preparation of the Vial

An oven-dried vial (KX Microwave Vials, 5 mL) and a crimp cap (Fisherbrand, centre hole with 3.0 mm PTFE seal aluminium silver 20 mm, part # 10132712) were used. The vials were prepared in a glovebox (Plas-Labs, Inc. 815 PGB Series) under nitrogen atmosphere and controlled CO₂ levels (lower than 30 ppm).

^{[11}C]CO₂ Production

 $[^{11}C]CO_2$ was produced using a Siemens RD112 cyclotron by the 11 MeV proton bombardment of nitrogen (+0.5% O₂) gas via the $^{14}N(p,\alpha)^{11}C$ reaction. The cyclotron-produced $[^{11}C]CO_2$ was bubbled in a stream of helium gas with a flow rate of 60 mL/min post target depressurisation directly into a reaction v-vial (time from end of bombardment (EOB) to end of delivery (EOD) = 1 minute and 50 seconds).

Description of the system

The set up was implemented on an Eckert & Ziegler system (Modular-Lab Standard) and included two switching valves and a heating block. All gas transfer lines were fabricated from PTFE tubing (length: 10-30 cm, O.D.: $0.79 \times 0.4 \text{ in.}$, I.D.: $1/32 \times 0.16 \text{ in.}$). A P₂O₅ trap and one-way valve (BRAUN, normally closed backcheck valve, part # 415062) were placed before the vial. The outlet gas line of the vial was connected to a cartridge (Biosys Solutions Ltd, Fritted Empty MiniSpeed Cartridges, part # 2447) filled with ascarite[®] (Sigma-Aldrich, 1310-73-2) to trap unreacted [¹¹C]CO₂. A tedlar[®] gas waste bag was placed at the outlet of the ascarite's cartridge to prevent any gaseous emission.

Description of the carbon-11 carboxylation

A cyclotron beam current of 5 μ A was maintained for a bombardment time of 1 minute for all reaction optimization experiments producing ~ 300 MBq of carbon-11 at EOD.

 $[^{11}C]CO_2$ (carried by helium gas) was bubbled directly from the target into a reaction vial containing aryltrimethylsilane or aryltrialkoxysilanes and reagents described in **Tables 1-3** at 0 °C. The outlet gas line of the vial was connected to an Ascarite[®] cartridge. After the delivery of $[^{11}C]CO_2$ (1.75 minutes from end of bombardment) the temperature was increased to 30, 70, 100, 140 °C for 2.5-5 minutes. At five minutes, the system was flushed with helium (60 ml/min) for 20 seconds. Thereafter, the reaction was cooled at 0 °C and quenched with a solution of 0.5% trifluoroacetic acid TFA (CF₃COOH) in MeCN/H₂O (1:1, 1 mL). The amount of radioactivity in the Ascarite[®] and vial were measured (to determine the trapping efficiency, TE), and an aliquot of the crude mixture analysed by radio-HPLC to determine the radiochemical purity, RCP.

Molar Activity calculation of [¹¹C]1

Eleven samples of **1** at different concentrations (1.15-0.011 μ mol/mL) were analysed by HPLC to obtain a calibration curve of the peak area (mAU*s) versus μ mol/mL. The peak areas of **1** were averaged and plotted in function of the corresponding μ mol/mL (**Figure S2**).

 $[^{11}C]1$ was produced following the procedure of entry 2 (**Table 2**) by starting from 2.30 ± 0.3 GBq of $[^{11}C]CO_2$. After quenching the reaction, $[^{11}C]1$ was purified by semipreparative HPLC and the peak corresponding to $[^{11}C]1$ collected.

The radioactivity in 1.00 mL of solution containing the purified [¹¹C]**1** was determined. An aliquot of purified [¹¹C]**1** (20 μ L) was analysed by analytical radio-HPLC (**Figure S3**) and the UV peak corresponding to **1** was integrated. The area of the UV peak was used to determine the μ mol/mL of the associated ¹²C-carrier content for [¹¹C]**1** from the equation of the calibration curve. The molar activity (A_m) of [¹¹C]**1** was calculated to be 3.1 ± 0.4 GBq/µmol at EOD (n = 3).

Description of the carbon-11 methylation to obtain [¹¹C]7

The [¹¹C]CO₂ was transferred in a stream of helium at 70 mL/min to a GE TRCAERLab® FX MeI module ($t_{delivery} = 1.75$ minutes). [¹¹C]CH₃I was produced by gas phase conversion from [¹¹C]CO₂ and transferred in a vial containing 1 mL of DMSO.

A DMSO solution of [¹¹C]CH₃I (2-4 MBq) was transferred into a reaction vial containing **1a** (0.1 mmol, 1 equiv.), KF (0.25 equiv.), K2.2.2, (0.25 equiv.), BEMP (0.6 equiv.) and CuI (10%) in 500 μ L of DMF at 0 °C. The temperature was then increased to 140 °C for 5 minutes. Thereafter, the reaction was cooled at 0 °C and quenched with a solution of 0.5% TFA in MeCN/H₂O 1:1. An aliquot of the crude mixture analysed by radio-HPLC to determine the radiochemical purity (RCP).

Quality control of compounds [11C]1-[11C]7

HPLC analysis was performed on an Agilent 1200 system equipped with a UV detector (λ =254 nm) and a β +-flow detector coupled in series. A reverse-phase column (Phenomenex Luna-C18, 4.6 x 150 mm, 5 μ m) was used with a flow rate of 1 mL/min.

Identification of all radioactive products was confirmed by co-elution of $([^{11}C]\mathbf{1}-[^{11}C]\mathbf{7})$ with the corresponding non-radioactive compounds (1-7).

Compounds [¹¹C]1 and [¹¹C]7

The HPLC method was isocratic between 0-5.5 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 25:75), gradient between 5.5-6 minutes (25:75 to 0:100), isocratic between 6-9 minutes (0:100), gradient between 9-10 minutes (0:100 to 25:75), isocratic between 10-13 minutes (25:75). [¹¹C]1 t_R= 5 minutes and 20 seconds (**Figure S1**). [¹¹C]7 t_R= 8 minutes and 40 seconds.

Compound [¹¹C]2

The HPLC method was isocratic between 0-9 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 25:75), gradient between 9-10 minutes (25:75 to 0:100), isocratic between 10-13 minutes (0:100), gradient between 13-14 minutes (0:100 to 25:75) and isocratic between 14-17 minutes (25:75). t_R = 7 minutes and 30 seconds.

Compounds [¹¹C]**3** and [¹¹C]**5**

The HPLC method was isocratic between 0-5.5 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 35:65), gradient between 5.5-9 minutes (35:65 to 0:100), isocratic between 9-12 minutes (0:100), gradient between 12-13 minutes (0:100 to 35:65), isocratic between 13-16 minutes (35:65). [¹¹C]**3**: t_R = 6 minutes and 20 seconds. [¹¹C]**5**: t_R = 7 minutes and 7 seconds.

Compound [¹¹C]4

The HPLC method was isocratic between 0-5.5 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 50:50), gradient between 5.5-9 minutes (50:50 to 0:100), isocratic between 9-12 minutes (0:100), gradient between 12-13 minutes (0:100 to 50:50), isocratic between 13-16 minutes (50:50). t_R = 5 minutes and 46 seconds.

Compound [¹¹C]6

The HPLC method was isocratic between 0-5.5 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 45:55), gradient between 5.5-9 minutes (45:55 to 0:100), isocratic between 9-12 minutes isocratic (0:100), gradient between 12-13 minutes (0:100 to 45:55), isocratic between 13-16 minutes (45:55). t_R = 5 minutes and 30 seconds.

Semipreparative HPLC method for the purification of [¹¹C]1.

HPLC analysis was performed on an Agilent 1200 system equipped with a UV detector (λ =254 nm) and a β +-flow detector coupled in series. A reverse-phase column (Phenomenex Luna-C18, 10 x 250 mm, 5 μ m) was used with a flow rate of 4 mL/min.

The HPLC method was isocratic between 0 – 10.4 minutes (CH₃CN + 0.5% TFA: H₂O + 0.5% TFA, 25:75), gradient between 10.4-11.8 minutes (25:75 to 0:100), isocratic between 11.8-17.7 minutes (0:100), gradient between 17.7-19.69 minutes (0:100 to 25:75), isocratic between 19.69-26 minutes (25:75). t_R = 11 minutes and 48 seconds.

Fig. S1 A) Radio-HPLC chromatogram of crude [¹¹C]1 (experiment Table 1 entry 2). **B** and **C)** UV chromatograms of crude [¹¹C]1 at 250 and 254 nm, respectively. **D)** Radio-HPLC chromatogram of crude [¹¹C]1 co-injected with **1** at 250 and 254 nm, respectively. The difference between UV peaks (retention time (t_R) = 5 minutes and 7 seconds) and radioactivity peaks (t_R = 5 minutes and 20 seconds) is 13 seconds, consistent with the expected delay time between detectors (13 seconds).

Fig. S2 Calibration Curve for 1.

Fig. S3 A) Radio-HPLC chromatogram of purified [¹¹C]**1**. [¹¹C]**1** has been purified by semipreparative HPLC column. **B** and **C**) UV chromatograms of HPLC-purified [¹¹C]**1** at 250 and 254 nm, respectively. The difference between UV peaks (retention time (t_R) = 5 minutes and 15 seconds) and radioactivity peaks (t_R = 5 minutes and 28 seconds) is 13 seconds consistent with the expected delay time between detectors (13 seconds).