Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Copper-catalyzed cascade cyclization reaction of 3-aminocyclobutenones with electron-deficient internal alkynes: synthesis of fully substituted indoles

Yang Yu, Xin-Yu Wang, Ju-Yin Peng, Tao Liu, and Yu-Long Zhao*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; E-mail: zhaoyl351@nenu.edu.cn

Table of contents

I. General Information	
II. Synthetic procedures and analytical data of compounds 3	S3-S19
III. ORTEP Drawing of Compound 3ea	S20
IV. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of 3	

I. General Information:

Unless stated otherwise, all reactions were carried out in glassware under atmosphere. All glassware and stirrers were dried in an oven at 85 °C overnight. All reagents were commercially available without further purification. The substrates were prepared according to the previous method reported. Elevated temperatures were maintained by an IKA heating block for 1 dram vials. The chromatographic purification of the products was performed on silica gel 300-400 mesh. NMR-spectra were measured in the given solvent at room temperature on a Bruker Avance (600 MHz, ¹H; 151 MHz, ¹³C) or Varian (500 MHz, ¹H; 126 MHz, ¹³C) instrument. Data for ¹H NMR and ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI). The compound 3ea was glued on a glass fiber. Data were collected at 293 Kusing graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and IP technique in the range $2.19^{\circ} < \theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps.

II. General Procedure for the Preparation of 3 (3ba as Example):

4-Methyl-2-propionyl-3-(p-tolylamino)cyclobut-2-enone **1b** (0.2 mmol, 0.0487 g), dimethyl acetylenedicarboxylate **2a** (0.4 mmol, 0.049 mL), $Cu(OAc)_2 H_2O$ (0.06 mmol, 0.0120 g) and xylene (2.0 mL) were added to a 10 mL Schlenk tube equipped with a magnetic stir bar. The reaction mixture was stirred for 6 h at 130 °C. After **1b** was consumed (monitored by TLC), the reaction mixture was poured into saturated aqueous NaCl (5 mL), extracted with CH_2Cl_2 (2 mL × 3), washed with brine (10 mL). The combined organic extracts were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to yield the corresponding crude product, which was purified by silica gel chromatography (ethyl acetate/petroleum ether = 3/10, V/V) to give **3ba** (87.6 mg, 91%) as a white solid.

A scale-up reaction: 4-Methyl-2-propionyl-3-(phenylamino)cyclobut-2-enone **1e** (5 mmol, 1.15 g), dimethyl acetylenedicarboxylate **2a** (10 mmol, 1.23 mL), $Cu(OAc)_2 H_2O$ (1.5 mmol, 0.30 g) and xylene (20 mL) were added to a 50 mL Schlenk tube equipped with a magnetic stir bar. The reaction mixture was stirred for 12 h at 130 °C. After **1e** was consumed (monitored by TLC), the reaction mixture was poured into saturated aqueous NaCl (50 mL), extracted with CH_2Cl_2 (20 mL × 3), washed with brine (100 mL). The combined organic extracts were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to yield the corresponding crude product, which was purified by silica gel chromatography (ethyl acetate/petroleum ether = 3/10, V/V) to give **3ea** (1.71 g, 73%) as a white solid.

Tetramethyl 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3aa):

White solid; mp 118-120 °C, 80.6 mg, 81% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 6.95 (d, J = 8.4 Hz, 2H), 3.96 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 3H), 3.01 (q, J = 7.3 Hz, 2H), 1.83 (s, 3H), 1.25 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.22, 169.00, 167.19, 160.39, 160.14, 137.79, 136.33, 131.59, 131.37, 131.23, 130.33, 125.47, 123.63, 120.41, 116.39, 113.61, 55.51, 52.71, 52.42, 52.40, 52.35, 23.66, 15.89, 15.85; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₆H₂₈NO₉⁺: 498.1759, found: 498.1761.

Tetramethyl 4-ethyl-7-methyl-1-(p-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3ba):

White solid; mp 140-142 °C, 87.6 mg, 91% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 8.4 Hz, 2H), 7.24 – 7.20 (m, 2H), 3.96 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H), 3.70 (s, 3H), 3.02 (q, J = 7.5 Hz, 2H), 2.45 (s, 3H), 1.82 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.20, 168.98, 167.19, 160.34, 139.58, 137.65, 136.29, 136.23, 131.46, 131.22, 129.19, 129.07, 125.48, 123.67, 120.44, 116.43, 52.71, 52.40, 52.39, 52.35, 23.65, 21.36, 15.90, 15.86; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₆H₂₇NO₈Na⁺: 504.1629, found: 504.1633.

Tetramethyl 4-ethyl-7-methyl-1-(m-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3ca):

White solid; mp 109-111 °C, 81.9 mg, 85% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.18 (d, J = 7.4 Hz, 1H), 7.13 (s, 1H), 3.96 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.70 (s, 3H), 3.05 – 2.98 (m, 2H), 2.40 (s, 3H), 1.80 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.22, 168.99, 167.18, 160.30, 138.77, 138.61, 137.57, 136.34, 131.37, 131.22, 130.22, 129.88, 128.25, 126.47, 125.46, 123.70, 120.41, 116.50, 52.71, 52.40, 52.39, 52.35, 23.66, 21.24, 15.86, 15.86; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₆H₂₈NO₈⁺: 482.1809, found: 482.1811.

Tetramethyl 4-ethyl-7-methyl-1-(o-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3da):

White solid; mp 108-110 °C, 84.7 mg, 88% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.42 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.21 (d, J = 7.7 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.69 (s, 3H), 3.08 – 2.94 (m, 2H), 1.99 (s, 3H), 1.76 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.23, 169.03, 167.18, 160.19, 138.14, 137.66, 136.76, 136.41, 131.18, 130.66, 130.24, 129.79, 129.29, 126.23, 125.53, 123.75, 120.23, 116.65, 52.73, 52.43, 52.39, 23.71, 17.51, 15.85, 14.80; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₆H₂₇NO₈Na⁺: 504.1629, found: 504.1636.

Tetramethyl 4-ethyl-7-methyl-1-phenyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ea):

White solid; mp 121-123 °C, 81.3 mg, 87% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.52 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.35 (d, J = 7.7 Hz, 2H), 3.97 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 3.01 (q, J = 7.4 Hz, 2H), 1.79 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.12, 168.92, 167.11, 160.26, 138.93, 137.58, 136.30, 131.41, 131.33, 129.52, 129.40, 128.56, 125.60, 123.71, 120.33, 116.66, 52.74, 52.39, 52.36, 23.64, 15.87, 15.86; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₅H₂₅NO₈Na⁺: 490.1472, found: 490.1488.

Tetramethyl 4-ethyl-1-(4-fluorophenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3fa):

White solid; mp 111-113 °C, 74.8 mg, 77% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.33 (m, 2H), 7.15 (t, J = 8.2 Hz, 2H), 3.97 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 3H), 2.99 (q, J = 7.4 Hz, 2H), 1.82 (s, 3H), 1.26 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.06, 168.85, 167.13, 163.71, 161.10 (d, $J_{CF} = 285.8$ Hz), 137.77, 136.48, 134.91 (d, $J_{CF} = 3.4$ Hz), 131.58, 131.10 (d, $J_{CF} = 8.7$ Hz), 130.90, 125.69, 123.73, 120.08, 117.26, 115.60 (d, $J_{CF} = 22.9$ Hz), 52.80, 52.46, 52.39, 23.63, 16.05, 15.83; ¹⁹F NMR (471 MHz, CDCl₃) δ -110.64 – -110.70 (m, 1F); HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₅H₂₄NaFNO₈⁺: 508.1378, found: 508.1382.

Tetramethyl 1-(4-chlorophenyl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ga):

White solid; mp 124-126 °C, 83.3 mg, 83% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 3.97 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.72 (s, 3H), 2.98 (q, J = 7.4 Hz, 2H), 1.83 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.05, 168.83, 167.14, 160.10, 137.74, 137.56, 136.53, 135.56, 131.66, 130.69, 128.83, 125.75, 123.81, 120.07, 117.50, 52.83, 52.50, 52.49, 52.42, 23.63, 16.21, 15.84; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₅H₂₄ClNaNO₈⁺: 524.1083, found: 524.1089.

Tetramethyl 1-(4-bromophenyl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ha):

White solid; mp 121-123 °C, 85.2 mg, 78% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 3.97 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.72 (s, 3H), 2.98 (q, J = 7.3 Hz, 2H), 1.83 (s, 3H), 1.25 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.03, 168.81, 167.11, 160.08, 138.09, 137.69, 136.52, 131.82, 131.66, 130.98, 130.60, 125.76, 123.82, 123.61, 120.05, 117.52, 52.82, 52.51, 52.48, 52.41, 23.62, 16.24, 15.84; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₅BrNO₈⁺: 546.0758, found: 546.0763.

Tetramethyl 4-ethyl-1-(4-iodophenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ia):

White solid; mp 123-125 °C, 92.6 mg, 78% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 3.96 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.72 (s, 3H), 2.98 (q, J = 7.5 Hz, 2H), 1.83 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.05, 168.83, 167.14, 160.09, 138.82, 137.82, 137.67, 136.52, 131.66, 131.20, 130.54, 125.74, 123.83, 120.09, 117.52, 95.18, 52.84, 52.53, 52.50, 52.43, 23.63, 16.28, 15.85; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₅INO₈⁺: 594.0619, found: 594.0622.

Tetramethyl 1-(2-bromophenyl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ja):

White solid; mp 94-96 °C, 79.8 mg, 73% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.75 – 7.65 (m, 1H), 7.45 – 7.37 (m, 3H), 3.98 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 3H), 3.02 – 2.93 (m, 2H), 1.82 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.11, 168.88, 167.32, 159.78, 138.74, 136.85, 136.46, 132.66, 131.55, 131.07, 130.98, 129.14, 127.64, 125.63, 124.93, 123.77, 120.07, 118.03, 52.81, 52.47, 52.45, 52.39, 23.63, 15.85, 15.04; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₅BrNO₈⁺: 546.0758, found: 546.0761.

Tetramethyl 4-ethyl-1-(2-iodophenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ka):

White solid; mp 95-97 °C, 89.0 mg, 75% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.26 – 7.19 (m, 1H), 3.98 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (s, 3H), 3.02 – 2.94 (m, 2H), 1.80 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.14, 168.93, 167.32, 159.77, 142.21, 138.83, 136.50, 136.46, 131.55, 130.88, 130.36, 128.97, 128.51, 125.64, 123.83, 120.10, 118.10, 100.94, 52.82, 52.49, 52.46, 52.40, 23.65, 15.86, 15.34; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₅INO₈⁺: 594.0619, found: 594.0625.

Tetramethyl1-(2,4-dichlorophenyl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate(3la):

White solid; mp 160-162 °C, 86.9 mg, 81% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, J = 8.5 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.26 – 7.24 (m, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 3.84 (s, 3H), 3.74 (s, 3H), 2.99 – 2.95 (m, 2H), 1.87 (s, 3H), 1.25 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.91, 168.69, 167.02, 159.89, 138.34, 137.75, 136.66, 134.07, 132.68, 131.94, 131.30, 130.15, 130.12, 128.89, 125.96, 123.87, 119.83, 118.11, 52.87, 52.59, 52.53, 52.44, 23.59, 16.43, 15.83; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₅H₂₃NaCl₂NO₈⁺: 558.0693, found: 558.0707.

Tetramethyl 1-(4-chloro-2-iodophenyl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ma):

White solid; mp 175-177 °C, 100.4 mg, 80% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.93 – 7.92 (m, 1H), 7.45 – 7.43 (m, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 3.98 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.74 (s, 3H), 3.00 – 2.93 (m, 2H), 1.84 (s, 3H), 1.27 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.02, 168.81, 167.19, 159.69, 141.03, 138.24, 136.59, 136.55, 135.90, 131.78, 130.73, 128.76, 128.63, 125.85, 123.90, 119.85, 118.54, 101.20, 52.87, 52.59, 52.51, 52.44, 23.63, 15.85, 15.61; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₄ClINO₈⁺: 628.0230, found: 628.0232.

Tetramethyl 4-ethyl-7-methyl-1-(4-nitrophenyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3na):

White solid; mp 119-121 °C, 68.7 mg, 67% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.8 Hz, 2H), 3.99 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.73 (s, 3H), 2.97 (q, J = 7.5 Hz, 2H), 1.80 (s, 3H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.79, 168.62, 166.98, 159.86, 148.13, 144.92, 137.78, 136.81, 132.15, 130.65, 129.79, 126.19, 124.11, 123.87, 119.65, 118.67, 52.95, 52.65, 52.57, 52.50, 23.61, 16.56, 15.84; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₅H₂₅N₂O₁₀⁺: 513.1504, found: 513.1508.

Tetramethyl 1-([1,1'-biphenyl]-4-yl)-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (30a):

White solid; mp 95-97 °C, 84.8 mg, 78% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.66 (m, 4H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.35 (m, 1H), 3.97 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.71 (s, 3H), 3.04 (q, *J* = 6.5 Hz, 2H), 1.87 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.19, 168.97, 167.21, 160.33, 142.31, 139.63, 138.03, 137.79, 136.42, 131.42, 131.32, 129.75, 128.97, 128.01, 127.19, 127.05, 125.63, 123.81, 120.40, 116.90, 52.79, 52.47, 52.45, 52.40, 23.69, 16.09, 15.89; HRMS(ESI-TOF): [M + H]⁺ calculated for C₃₁H₃₀NO₈⁺: 544.1966, found: 544.1968.

Tetramethyl 4-ethyl-7-methyl-1-(naphthalen-1-yl)-1*H*-indole-2,3,5,6-tetracarboxylate (3pa):

White solid; mp 176-178 °C, 80.7 mg, 78% yield; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.50 (t, J = 6.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 3.99 (s, 3H), 3.87 (s, 3H), 3.76 (s, 3H), 3.53 (s, 3H), 3.17 – 2.97 (m, J = 7.1 Hz, 2H), 1.52 (s, 3H), 1.32 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.10, 168.94, 167.24, 159.95, 137.87, 136.41, 135.65, 133.35, 132.53, 131.35, 131.28, 129.96, 128.24, 127.86, 127.10, 126.82, 125.61, 124.62, 123.74, 122.46, 120.38, 52.72, 52.32, 52.30, 52.25, 23.69, 15.85, 14.85; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₉H₂₇NaNO₈⁺: 540.1629, found: 540.1635.

Tetramethyl

(3qa):

White solid; mp 65-67 °C, 82.9 mg, 81% yield; ¹H NMR (600 MHz, CDCl₃) δ 6.80 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 5.96 (s, 2H), 3.94 (s, 3H), 3.87 (s, 3H), 3.85 (s, 3H), 3.82 (s, 3H), 3.75 (s, 3H), 2.96 (q, J = 7.4 Hz, 2H), 2.54 (s, 3H), 1.23 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.37, 168.99, 167.52, 160.87, 158.82, 137.65, 136.49, 131.51, 130.43, 129.94, 126.25, 125.32, 123.94, 119.50, 117.53, 114.35, 55.26, 52.70, 52.63, 52.53, 52.41, 49.61, 23.59, 16.55, 15.80; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₇H₃₀NO₉⁺: 512.1915, found: 512.1917.

Tetramethyl 1-butyl-4-ethyl-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ra):

Colourless liquid; 64.4 mg, 72% yield; ¹H NMR (600 MHz, CDCl₃) δ 4.77 – 4.61 (m, 2H), 3.92 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H), 2.93 (q, *J* = 7.5 Hz, 2H), 2.69 (s, 3H), 1.73 – 1.68 (m, 2H), 1.35 – 1.29 (m, 2H), 1.19 (t, *J* = 7.5 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.48, 169.02, 167.61, 161.13, 137.11, 136.52, 131.36, 129.89, 125.03, 124.02, 119.18, 117.12, 52.60, 52.58, 52.53, 52.34, 46.70, 34.42, 23.53, 19.74, 16.80, 15.74, 13.66; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₃H₂₉NaNO₈⁺: 470.1785, found: 470.1790.

Tetramethyl 4,7-dimethyl-1-(p-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3sa):

White solid; mp 127-129 °C, 86.0 mg, 92% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 3.96 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.70 (s, 3H), 2.58 (s, 3H), 2.45 (s, 3H), 1.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.24, 168.96, 167.13, 160.34, 139.61, 137.12, 136.18, 131.17, 131.02, 130.00, 129.22, 129.00, 125.80, 124.70, 120.32, 116.67, 52.71, 52.41, 52.38, 21.39, 16.37, 15.73; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₂₅H₂₅NaNO₈⁺: 490.1472, found: 490.1463.

Tetramethyl 7-ethyl-4-propyl-1-(p-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3ta):

White solid; mp 92-94 °C, 91.7 mg, 90% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (s, 4H), 3.96 (s, 3H), 3.87 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 3.01 – 2.91 (m, 2H), 2.46 (s, 3H), 2.27 (q, *J* = 7.4 Hz, 2H), 1.71 – 1.59 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H), 0.78 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.27, 169.06, 167.11, 160.36, 139.69, 137.00, 136.06, 134.91, 131.95, 130.82, 129.28, 128.68, 126.86, 125.92, 124.50, 116.70, 52.75, 52.39, 52.36, 52.31, 32.41, 25.06, 21.40, 20.82, 16.02, 14.38; HRMS(ESI-TOF): [M + H]⁺ calculated for C₂₈H₃₂NO₈⁺: 510.2122, found: 510.2125.

Tetramethyl 4-butyl-7-propyl-1-(p-tolyl)-1*H*-indole-2,3,5,6-tetracarboxylate (3ua):

White solid; mp 80-82 °C, 94.6 mg, 88% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 4H), 3.95 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H), 3.69 (s, 3H), 3.03 – 2.93 (m, 2H), 2.46 (s, 3H), 2.22 – 2.14 (m, 2H), 1.64 – 1.54 (m, 2H), 1.43 – 1.35 (m, 2H), 1.26 – 1.17 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H), 0.45 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.30, 169.14, 167.20, 160.35, 139.61, 137.12, 136.00, 135.03, 131.72, 130.96, 129.28, 128.74, 125.80, 125.54, 124.40, 116.67, 52.73, 52.39, 52.35, 52.32, 33.99, 30.27, 29.71, 24.94, 23.13, 21.36, 13.95; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₃₀H₃₅NNaO₈⁺: 560.2255, found: 560.2263.

Tetraethyl 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ab):

White solid; mp 98-100 °C, 102.9 mg, 93% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 4.43 (q, J = 7.2 Hz, 2H), 4.33 (q, J = 7.2 Hz, 2H), 4.29 (q, J = 7.2 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.87 (s, 3H), 3.04 (q, J = 7.5 Hz, 2H), 1.84 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H), 1.37 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.5 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.88, 168.69, 166.83, 160.11, 160.06, 137.65, 135.97, 131.67, 131.33, 130.45, 125.66, 123.60, 120.05, 116.61, 113.52, 61.88, 61.48, 61.44, 61.39, 55.52, 23.57, 16.05, 15.86, 14.10, 14.08, 13.99, 13.82; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₃₀H₃₅NNaO₉⁺: 576.2204, found: 576.2208.

Tetrabenzyl 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ac):

White solid; mp 45-47 °C, 133.1 mg, 83% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.25 (m, 18H), 7.19 – 7.15 (m, 4H), 6.84 (d, *J* = 8.8 Hz, 2H), 5.11 (s, 2H), 5.02 (s, 2H), 5.00 (s, 2H), 4.96 (s, 2H), 3.84 (s, 3H), 2.87 (q, *J* = 7.4 Hz, 2H), 1.75 (s, 3H), 1.03 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.59, 168.33, 166.27, 160.05, 159.86, 137.69, 136.43, 135.36, 135.24, 134.96, 134.61, 131.52, 131.37, 131.15, 130.32, 128.92, 128.87, 128.61, 128.54, 128.52, 128.50, 128.48, 128.44, 128.30, 128.30, 125.34, 123.73, 120.28, 116.38, 113.54, 67.71, 67.49, 67.28, 67.23, 55.43, 23.52, 15.97, 15.84; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₅₀H₄₃NaNO₉⁺: 824.2830, found: 824.2836.

Tetrakis(4-fluorobenzyl) 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ad):

White solid; mp 48-50 °C, 141.6 mg, 81% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.29 (m, 4H), 7.27 – 7.24 (m, 2H), 7.16 (d, J = 8.8 Hz, 2H), 7.12 – 7.09 (m, 2H), 7.05 – 6.93 (m, 8H), 6.82 (d, J = 8.8 Hz, 2H), 5.09 (s, 2H), 5.06 (s, 2H), 5.01 (s, 2H), 4.93 (s, 2H), 3.83 (s, 3H), 2.83 (q, J = 7.4 Hz, 2H), 1.74 (s, 3H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.48, 168.26, 166.11, 163.61, 163.60, 163.55, 163.50, 161.97, 161.96, 161.91, 161.86, 160.13, 159.81, 137.64, 136.31, 131.77, 131.22, 131.19, 131.17, 131.07, 131.05, 131.01, 130.88, 130.86, 130.83, 130.77, 130.60, 130.54, 130.49, 130.47, 130.44, 130.26, 125.26, 123.71, 120.35, 116.22, 115.54, 115.47, 115.39, 115.33, 113.54, 66.93, 66.67, 66.52, 66.47, 55.41, 23.53, 15.93, 15.80; ¹⁹F NMR (470 MHz, CDCl₃) δ -112.81 – -113.27 (m, 4F); HRMS(ESI-TOF): [M + Na]⁺ calculated for

C₅₀H₃₉NaF₄NO₉⁺: 896.2453, found: 896.2458.

Tetrakis(4-chlorobenzyl) 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ae):

White solid; mp 55-57 °C, 142.8 mg, 76% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.24 – 7.21 (m, 4H), 7.21 – 7.15 (m, 8H), 7.12 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.3 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 5.00 (s, 2H), 5.00 (s, 2H), 4.91 (s, 2H), 4.84 (s, 2H), 3.76 (s, 3H), 2.80 (q, J = 7.4 Hz, 2H), 1.67 (s, 3H), 0.96 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.42, 168.19, 166.06, 160.18, 159.76, 137.66, 136.38, 134.52, 134.43, 134.32, 134.29, 133.75, 133.64, 133.44, 133.01, 131.82, 131.16, 130.97, 130.25, 130.11, 129.87, 129.77, 128.76, 128.74, 128.66, 125.22, 123.72, 120.45, 116.16, 113.57, 66.85, 66.57, 66.42, 66.39, 55.47, 23.61, 15.99, 15.87; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₅₀H₃₉NaCl₄NO₉⁺: 960.1271, found: 960.1273.

Tetrakis(4-bromobenzyl) 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3af):

White solid; mp 57-59 °C, 172.1 mg, 77% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.47 – 7.45 (m, 4H), 7.43 – 7.39 (m, 4H), 7.22 – 7.15 (m, 6H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 5.06 (s, 4H), 4.97 (s, 2H), 4.89 (s, 2H), 3.85 (s, 3H), 2.88 (q, *J* = 7.4 Hz, 2H), 1.75 (s, 3H), 1.05 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.40, 168.17, 166.04, 160.19, 159.74, 137.66, 136.39, 134.25, 134.13, 133.94, 133.50, 131.82, 131.73, 131.71, 131.63, 131.15, 130.95, 130.36, 130.25, 130.14, 130.04, 125.21, 123.72, 122.69, 122.58, 122.47, 122.44,

120.47, 116.15, 113.59, 66.87, 66.60, 66.44, 66.42, 55.52, 23.63, 16.00, 15.88; HRMS(ESI-TOF): $[M + Na]^+$ calculated for $C_{50}H_{39}NaBr_4NO_9^+$: 1135.9251, found: 1135.9256.

Tetrakis(2-chlorobenzyl)4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarb-oxylate (3ag):

White solid; mp 49-51 °C, 139.1 mg, 74% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.39 (m, 2H), 7.36 – 7.32 (m, 3H), 7.32 – 7.27 (m, 2H), 7.24 – 7.14 (m, 11H), 6.85 – 6.80 (m, 2H), 5.28 (s, 2H), 5.22 (s, 2H), 5.20 (s, 2H), 5.11 (s, 2H), 3.82 (s, 3H), 2.95 (q, *J* = 7.4 Hz, 2H), 1.81 (s, 3H), 1.07 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.42, 168.17, 166.09, 160.06, 159.69, 137.78, 136.68, 133.83, 133.80, 133.64, 133.53, 133.10, 132.96, 132.87, 132.38, 131.62, 131.28, 131.13, 130.36, 130.28, 130.12, 130.06, 129.82, 129.65, 129.54, 129.45, 129.42, 129.41, 126.89, 126.87, 126.86, 126.80, 125.23, 123.84, 120.53, 116.34, 113.55, 64.81, 64.61, 64.57, 64.50, 55.41, 23.67, 15.95, 15.92; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₅₀H₃₉NaCl₄NO₉⁺: 960.1271, found: 960.1263.

Tetrabenzhydryl 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3ah):

Colourless liquid; 181.4 mg, 82% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.25 – 7.14 (m, 38H), 6.96 – 6.93 (m, 4H), 6.77 (s, 1H), 6.72 (d, J = 8.8 Hz, 2H), 6.52 (s, 1H), 6.48 (s, 1H), 6.41 (s, 1H), 3.79 (s, 3H), 2.46 (q, J = 7.4 Hz, 2H), 1.57 (s, 3H), 0.54 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz,

CDCl₃) δ 167.48, 167.30, 164.88, 160.02, 159.53, 139.90, 139.84, 139.54, 139.01, 137.50, 136.74, 133.24, 131.26, 130.93, 130.32, 128.22, 128.20, 127.80, 127.77, 127.69, 127.67, 127.37, 127.28, 127.18, 125.15, 123.94, 120.26, 116.00, 113.60, 78.75, 78.65, 78.23, 78.12, 55.40, 23.18, 15.65, 15.57; HRMS(ESI-TOF): [M + H]⁺ calculated for C₇₄H₆₀NO₉⁺: 1106.4263, found: 1106.4266.

Tetraphenethyl4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate(3ai):

Colourless liquid; 137.3 mg, 80% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.26 (m, 6H), 7.25 – 7.17 (m, 14H), 7.10 (d, J = 7.1 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.46 (t, J = 7.2 Hz, 2H), 4.42 (t, J = 7.3 Hz, 2H), 4.35 (t, J = 7.3 Hz, 2H), 4.17 (t, J = 7.4 Hz, 2H), 3.87 (s, 3H), 3.04 – 2.99 (m, 4H), 2.95 (t, J = 7.3 Hz, 2H), 2.89 (q, J = 7.4 Hz, 2H), 2.73 (t, J = 7.4 Hz, 2H), 1.72 (s, 3H), 1.12 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.76, 168.60, 166.56, 160.07, 160.00, 137.67, 137.56, 137.50, 137.44, 137.03, 136.10, 132.00, 131.45, 131.24, 130.36, 128.93, 128.90, 128.78, 128.57, 128.54, 128.50, 126.66, 126.62, 126.59, 125.56, 123.62, 120.21, 116.28, 113.53, 66.49, 66.06, 66.01, 65.84, 55.51, 34.96, 34.91, 34.81, 34.60, 23.50, 15.95, 15.83; HRMS(ESI-TOF): [M + H]⁺ calculated for C₅₄H₅₂NO₉⁺: 858.3637, found: 858.3639.

Tetrakis(3-phenylpropyl) 4-ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetracarboxylate (3aj):

Colourless liquid; 149.9 mg, 82% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.26 (m, 6H), 7.25 (d, *J* = 7.3 Hz, 4H), 7.20 – 7.13 (m, 10H), 7.09 (d, *J* = 7.3 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 4.37 (t, *J* = 6.7 Hz, 2H), 4.26 (t, *J* = 6.6 Hz, 2H), 4.22 (t, *J* = 6.7 Hz, 2H), 4.09 (t, *J* = 6.5 Hz, 2H), 3.81 (s, 3H), 3.07 (q, *J* = 7.4 Hz, 2H), 2.74 – 2.71 (m, 2H), 2.71 – 2.68 (m, 2H), 2.68 – 2.63 (m, 2H), 2.51 – 2.47 (m, 2H), 2.11 – 2.06 (m, 2H), 2.05 – 2.00 (m, 2H), 2.00 – 1.95 (m, 2H), 1.85 (s, 3H), 1.79 – 1.73 (m, 2H), 1.29 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 168.98, 168.78, 166.82, 160.28, 160.20, 141.09, 141.05, 141.03, 140.82, 137.68, 135.99, 131.93, 131.68, 131.51, 130.49, 128.49, 128.48, 128.47, 128.44, 128.41, 128.30, 126.10, 126.07, 125.73, 123.67, 120.10, 116.72, 113.65, 65.43, 65.11, 65.05, 64.99, 55.50, 32.25, 32.23, 32.19, 31.92, 30.26, 30.19, 30.06, 29.80, 23.71, 16.23, 15.99; HRMS(ESI-TOF): [M + H]⁺ calculated for C₅₈H₆₀NO₉⁺: 914.4263, found: 914.4266.

(4-Ethyl-1-(4-methoxyphenyl)-7-methyl-1*H*-indole-2,3,5,6-tetrayl)tetrakis(phenylmethanone) (3ak):

White solid; mp 86-88 °C, 58.6 mg, 43% yield; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.4 Hz, 2H), 7.70 (d, J = 7.4 Hz, 2H), 7.48 (d, J = 7.1 Hz, 4H), 7.43 (q, J = 7.5 Hz, 2H), 7.39 – 7.32 (m, 8H), 7.22 – 7.19 (m, 4H), 6.82 (d, J = 8.9 Hz, 2H), 3.76 (s, 3H), 2.76 (q, J = 7.3 Hz, 2H), 1.72 (s, 3H), 0.82 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 199.17, 199.07, 193.15, 189.10, 160.03, 141.92, 139.44, 138.42, 138.28, 138.05, 137.92, 136.75, 135.01, 133.49, 133.38, 133.27, 133.16, 133.03, 131.06, 130.62, 130.03, 129.84, 129.71, 129.34, 128.40, 128.26, 128.23, 128.20, 124.44, 120.37, 118.48, 113.66, 55.43, 24.00, 16.58, 15.16; HRMS(ESI-TOF): [M + Na]⁺ calculated for C₄₆H₃₅NaNO₅⁺: 704.2407, found: 704.2410.

III. ORTEP Drawing of Compound 3ea:

Figure 1. Crystal ORTEP drawing of compound 3ea

IV. Copies of ¹H NMR and ¹³C NMR Spectra of 3:

Figure 2. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3aa.

Figure 3. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ba.

7.135 7.33 7.33 7.19 7.19

Figure 4. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ca.

7.43 7.42 7.41 7.32 7.31 7.31 7.28 7.28 7.28 7.28 7.26 7.20 7.20 2.3.97 3.3.97 3.3.83 3.05 3.04 3.04 3.04 3.00 3.00 3.00 3.00 2.97 2.99 -1.76 -1.26

Figure 5. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3da.

Figure 6. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ea.

7.35 7.34 7.17 7.17 7.17 7.15

Figure 7. ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra of compound 3fa

Figure 8. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ga.

Figure 9. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ha.

Figure 10. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ia.

Figure 11. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ja.

Figure 12. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ka.

Figure 13. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3la.

Figure 14. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ma.

Figure 15. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3na.

Figure 16. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 30a.

Figure 17. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3pa.

Figure 18. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3qa.

Figure 19. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ra.

Figure 20. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3sa.

Figure 21. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ta.

Figure 22. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ua.

Figure 23. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ab.

Figure 24. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ac.

Figure 25. ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra of compound 3ad.

Figure 26. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ae.

Figure 27. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3af.

Figure 28. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ag.

Figure 29. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ah.

Figure 30. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ai.

Figure 31. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3aj.

Figure 32. ¹H- (upper) and ¹³C-NMR (lower) spectra of compound 3ak.