Unprecedented tin iodide perovskite structures featuring ordering of organic moieties

Jason A. McNulty and Philip Lightfoot^{*a}

^aSchool of Chemistry and EaStChem, University of St Andrews, Fife, KY169ST, UK. E-mail: <u>pl@st-andrews.ac.uk</u>

Supplementary Information

Synthesis

Tin powder (~325 mesh, 99.8% metals basis), hydroiodic acid (HI, 57%, w/w aqueous solution stabilised with 1.5% HPA), hypophosphorous acid (H₃PO₂ (HPA), 50% w/w aqueous solution), 1,2,4-triazole (C₂H₃N₃, 99%) and 1-methyl imidazole (C₄N₂H₇, 99%) were purchased from Alfa Aesar. Guanidinium carbonate (C₂H₁₀N₆H₂CO₃, 99%) and diethyl ether ((C₂H₅)₂O, 99.5%) were purchased from Sigma Aldrich. All chemicals were directly used without further purification.

Both $(GuH)_{1.5}(Me-ImH)_{0.5}SnI_4$ and $(GuH)_{0.5}(TzH)_{0.5}SnI_3$ were crystallised by a slow evaporation method.

For $(GuH)_{1.5}(Me-ImH)_{0.5}SnI_4$ ([C(NH₂)₃]_{1.5}[C₄N₂H₇]_{0.5}SnI₄: Tin powder (237 mg, 2 mmol) was dissolved in conc. HI (5 ml) and HPA (5 ml) with moderate heating. Once fully dissolved, guanidinium carbonate (180 mg, 2 mmol) and 1-methyl imidazole (164 mg, 2 mmol) were added and the solution allowed to cool for several days. A mixture of red crystals was obtained. These were filtered and washed with diethyl ether. Elemental analysis: (Anal. Calc. (%) for (GuH)_{1.5}(Me-ImH)_{0.5}SnI₄: C 5.55; N 10.16; H 1.66. Found: C 6.36; N 8.79; H 1.68). The excess of C found in the sample and lower than expected N suggests a mixture of phases present consistent with the mixture of crystals obtained.

For $G_{0.5}T_{0.5}SnI_3$ ([C(NH₂)₃]_{0.5}[C₂N₃H₄]_{0.5}SnI₃: Tin powder (237 mg, 2 mmol) was dissolved in conc. HI (5 ml) and HPA (5 ml) with moderate heating. Once fully dissolved, guanidinium carbonate (180 mg, 2 mmol) and 1,2,4-triazole (138 mg, 2 mmol) were added and the solution allowed to cool. Within days, small red crystals formed, these were left to grow in solution for several months before being filtered and washed with diethyl ether. Elemental analysis: (Anal. Calc. (%) for $G_{0.5}T_{0.5}SnI_3$: C 3.19; N 7.44; H 0.89. Found: C 3.31; N 7.57; H 0.88).

The synthesis of both $(GuH)_{1.5}(Me-ImH)_{0.5}SnI_4$ and $(GuH)_{0.5}(TzH)_{0.5}$ was carried out in air. HPA was used in the reaction to prevent oxidation of Sn²⁺ to Sn⁴⁺ while the crystals remained in solution. After filtration the crystals were stored under argon. In air $(GuH)_{1.5}(Me-ImH)_{0.5}SnI_4$ oxidises within seconds with a clear colour change and evolution of I₂. In $(GuH)_{0.5}(TzH)_{0.5}SnI_3$ however, there is no evidence of an immediate colour change or evolution of I₂. There does appear to be some decomposition after 30 minutes suggesting that $(GuH)_{0.5}(TzH)_{0.5}SnI_3$ is more stable than the 3D perovskites CsSnI₃¹ and MASnI₃² but not as stable as FASnI₃,³ which is air stable for approximately 2h before total decomposition after 1 day.

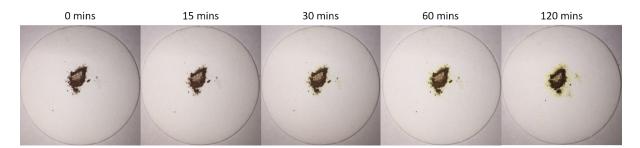


Figure S1 Powdered (GuH)_{0.5}(TzH)_{0.5}SnI₃ at different exposure times to air.

Characterisation

Single Crystal data were collected at 173 K on a Rigaku SCX Mini diffractometer using Mo-Kα radiation. Data were collected using CrystalClear (Rigaku).⁴ Structures were solved by direct methods and refined using SHELX-2014⁵ incorporated in the WINGX program.⁶ Absorption corrections were performed semi-empirically from equivalent reflections on the basis of multi scans. Non-H atoms were refined anisotropically and hydrogen atoms were treated as riding atoms.

The bond length distortion of the SnI₆ octahedra in each composition at 173 K was calculated using eq. 1,⁷ where *d* is the average Sn-I bond distance and d_n are the six individual bond distances. The bond angle variance of each octahedron from the ideal 90° of an undistorted structure was calculated using eq. 2,⁸ where θ_i is the individual I-Sn-I angle.

$$\Delta d = \left(\frac{1}{6}\right) \sum \left[\frac{d_n - d}{d}\right]^2 \tag{1}$$

$$\sigma^2 = \sum_{i=1}^{12} \frac{(\theta_i - 90)^2}{11}$$
(2)

	(GuH) _{1.5} (Me-ImH) _{0.5} SnI ₄			(GuH) _{0.5} (TzH) _{0.5} SnI ₃			
Sn-I	Sn1-I1	3.585(3)	Sn2-I2	3.502(2)	Sn-I3	3.562(1)	
	Sn1-I6	3.269(5)	Sn2-I3	3.462(9)	Sn-I2	3.544(1)	
	Sn1-I3	3.217(6)	Sn2-I6	3.325(5)	Sn-I1	3.442(1)	
	Sn1-I5	3.147(6)	Sn2-I7	3.050(4)	Sn-I1	2.944(1)	
	Sn1-I4	3.104(4)	Sn2-I1	2.994(2)	Sn-I2	2.937(1)	
	Sn1-I2	2.978(2)	Sn2-I8	2.985(7)	Sn-I3	2.936(1)	
BVS	Sn1	1.91	Sn2	1.99	Sn	2.19	
	I1	0.63	I2	0.67	I1	0.75	
	I3	0.43	I6	0.46	I2	0.72	
					I3	0.72	
I-Sn-I	84.501(2)		81.549(2	81.549(2)		78.91(2)	
	84.525(2)			84.237(2)		79.00(2)	
	86.708(2))	87.948(2)		86.77(2)		
	88.362(2) 89.378(2) 90.763(2) 91.163(2) 91.823(1) 92.307(2) 93.366(2) 93.593(2)		 88.822(2) 89.108(2) 89.916(2) 91.222(2) 92.451(2) 92.594(2) 93.347(2) 93.687(2) 		 88.24(2) 89.20(2) 89.48(2) 89.61(2) 90.42(2) 91.64(2) 91.89(2) 94.11(2) 		
	93.807(2))	94.337(2	2)	112.45(2	2)	
Sn-I-Sn	159.205(2	2)	164.832	(2)			
	159.809(2	2)	169.057(2)				
			172.886(2)				

Table S1 Selected bond lengths (Å) and angles (°) derived from single crystal data collected at 173 K.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1A)I(1) #3	0.86	3.30	3.704(5)	111.5
N(1)-H(1A)I(6) #3	0.86	3.01	3.776(6)	148.9
N(1)-H(1B)I(5) #4	0.86	3.11	3.801(6)	139.4
N(1)-H(1B)I(6) #4	0.86	3.29	3.880(6)	127.8
N(2)-H(2A)I(6) #3	0.86	3.04	3.796(6)	148.1
N(2)-H(2B)I(1) #5	0.86	3.04	3.853(6)	158.9
N(3)-H(3A)I(5) #4	0.86	3.11	3.814(6)	141
N(3)-H(3B)I(1) #5	0.86	3.10	3.899(6)	156
N(4)-H(4A)I(4) #6	0.86	2.97	3.761(6)	154.7
N(4)-H(4B)I(8) #5	0.86	2.90	3.734(5)	164.1
N(5)-H(5A)I(4) #2	0.86	3.25	3.969(6)	142.5
N(5)-H(5A)I(5) #2	0.86	3.32	3.711(5)	110.8
N(5)-H(5B)I(4) #6	0.86	2.90	3.708(6)	158
N(6)-H(6A)I(2) #2	0.86	3.22	3.863(7)	133.5
N(6)-H(6B)I(7)	0.86	3.16	3.558(6)	111.2
N(7)-H(7A)I(6)	0.86	3.01	3.678(5)	136.2
N(7)-H(7A)I(8)	0.86	3.30	3.770(5)	116.8
N(7)-H(7B)I(7) #7	0.86	2.85	3.660(6)	158.7
N(8)-H(8A)I(7) #7	0.86	3.02	3.788(6)	150.5
N(8)-H(8B)I(3) #1	0.86	2.92	3.732(5)	158.2
N(9)-H(9A)I(2) #2	0.86	3.32	3.968(7)	134.3
N(9)-H(9B)I(3) #1	0.86	3.10	3.878(7)	151.3
N(9)-H(9B)I(6) #2	0.86	3.22	3.620(6)	111.2
N(11)-H(12)I(4) #1	0.86	3.14	3.694(6)	124
N(11)-H(12)I(5) #2	0.86	3.04	3.643(6)	129.3

Table S2 Hydrogen bond lengths (Å) and angles (°) for $(GuH)_{1.5}$ (Me-ImH)_{0.5}SnI₄ at 173 K.

Symmetry transformations used to generate equivalent atoms:

#1 $-x + 2, -y + 1, -z$	#2 - <i>x</i> + 1, - <i>y</i> + 1, - <i>z</i>	#3 - <i>x</i> + 2, - <i>y</i> + 2, - <i>z</i> + 1
#4 $x + 1, y, z + 1$	#5 -x + 1, -y + 2, -z + 1	#6 $x, y, z + 1$
#7 $x + 1, y, z$		

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1a)-H(1Aa)I(2) #2	0.86	3.31	3.958(5)	133.9
N(1a)-H(1Aa)I(3) #2	0.86	3.10	3.818(5)	142.9
N(1a)-H(1Ba)I(2) #5	0.86	3.31	3.958(5)	133.9
N(1a)-H(1Ba)I(3) #5	0.86	3.10	3.818(5)	142.9
N(1'b)-H(1'1b)I(1) #6	0.86	3.28	3.958(18)	138
N(1'b)-H(1'1b)I(2) #3	0.86	2.82	3.45(2)	131.5
N(1'b)-H(1'2b)I(1) #3	0.86	3.28	3.958(18)	138
N(1'b)-H(1'2b)I(2) #6	0.86	2.82	3.45(2)	131.5
N(2a)-H(2Aa)I(1)	0.86	3.12	3.863(9)	146.3
N(2a)-H(2Ba)I(2) #6	0.86	3.17	3.810(10)	132.9
N(2'b)-H(2'1b)I(2) #2	0.86	3.00	3.62(3)	130.8
N(2'b)-H(2'1b)I(3) #2	0.86	2.98	3.55(3)	125.4
N(2'b)-H(2'2b)I(1)	0.86	3.12	3.79(3)	136.7
N(4)-H(4A)I(1)	0.93	3.13	3.927(9)	144.8
N(4)-H(4A)I(2) #1	0.93	3.01	3.664(9)	128.7
N(5)-H(5A)I(2) #7	0.93	3.28	3.833(14)	120.2
N(5)-H(5A)I(3) #2	0.93	3.07	3.823(14)	139.6
N(5)-H(5A)I(3) #7	0.93	3.25	3.822(13)	121.8

Table S3 Hydrogen bond lengths (Å) and angles (°) for $(GuH)_{0.5}(TzH)_{0.5}SnI_3$ at 173 K.

Symmetry transformations used to generate equivalent atoms:

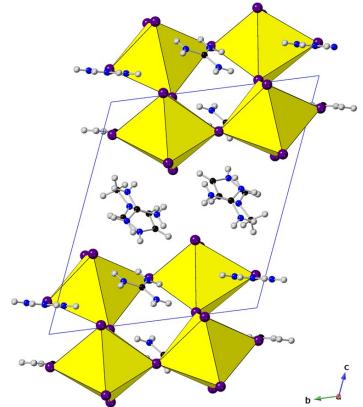

#1 y, x, -z#2 x - $\frac{1}{2}$, -y + $\frac{1}{2}$, -z + $\frac{1}{4}$ #3 x + $\frac{1}{2}$, -y + $\frac{1}{2}$, -z + $\frac{1}{4}$ #4 -y + 1, -x + 1, -z + $\frac{1}{2}$ #5 y + $\frac{1}{2}$, -x + $\frac{3}{2}$, z + $\frac{1}{4}$ #6 y + $\frac{1}{2}$, -x + $\frac{1}{2}$, z + $\frac{1}{4}$ #7 x, y + 1, z

Table S4 Distortion mode amplitudes for the SnI_6 octahedra in $(GuH)_{0.5}(TzH)_{0.5}SnI_3$ obtained from	
the ISODISTORT software suite ⁹ compared to the aristotype CsSnI ₃ structure. ¹⁰	

Mode	Amplitude (Å)	Origin	S, i	<i>k</i> -active
Δ_5^a	1.704	(0, 0, 3/2)	4, 24	$(0, 0, \frac{1}{4})$
R_3^+	0.034	(-1/2, -1/2, 0)	2, 6	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
X4-	0.299	$(0, 0, \frac{1}{2})$	2, 6	$(0, 0, \frac{1}{2})$
M_3^+	0.077	(0, 0, 0)	2, 6	$(\frac{1}{2}, \frac{1}{2}, 0)$
M ₃ -	0.370	(-1/2, 0, 0)	2, 6	$(\frac{1}{2}, \frac{1}{2}, 0)$
T ₅	0.459	$(-\frac{1}{2}, 0, -\frac{1}{2})$	4, 24	$(\frac{1}{2}, \frac{1}{2}, \frac{1}{4})$

 ${}^{a}\Delta_{5}$ is clearly the dominant distortion mode and is responsible for displacement of the iodide ligands leading to

the extreme octahedral distortion observed.

Figure S2 Crystal structure of $(GuH)_{1.5}$ (Me-ImH)_{0.5}SnI₄ viewed along the *b*-axis highlighting the observed staggering of amines.

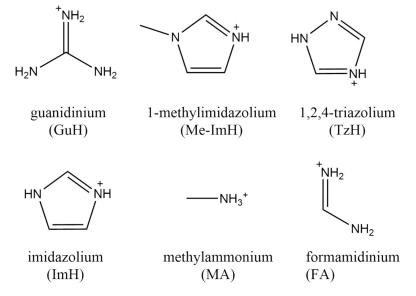


Figure S3 Structures of organic moieties used in this work (top) and previously in literature (bottom).

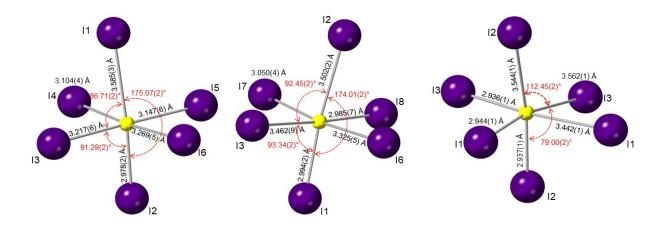


Figure S4 Ball and stick representations of the octahedra present in (left and middle) 1 and (right) 2 highlighting the significant distortion in both bond lengths and bond angles. Note the considerably distorted I2-Sn-I3 bond angle present in 2.

References

- J. Jiang, C. K. Onwudinanti, R. A. Hatton, P. A. Bobbert and S. Tao, J. Phys. Chem. C, 2018, 122, 17660-17667.
- 2. J. Xiang, K. Wang, B. Ziang and X. Cui, J. Chem. Phys., 2018, 148, 124111.
- 3. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019-9038.
- 4. Rigaku, 2014, CrystalClear, Rigaku Corporation, Tokyo, Japan.
- 5. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.
- 6. L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849.
- 7. M. W. Lufaso and P. M. Woodward, Acta Crystallogr., 2004, B60, 10.
- 8. K. Robinson, G. V. Gibbs and P. H. Ribbe, Science, 1971, 172, 567.
- B. J. Campbell, H. T. Stokes, D. E. Tanner and D. M. Hatch, J. Appl. Cryst., 2006, 39, 607-614.
- I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2012, **134**, 8579-8587.