Palladium-Catalyzed Remote C-H Functionalization of 2-Aminopyrimidines

Animesh Das, Akash Jana, and Biplab Maji*
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India. E-mail: bm@iiserkol.ac.in

Table of Content

1. General Considerations S2
2. Experimental Section
2a. General procedure S3
2b. Procedure for synthesis of deuteriated-1a S4
2c. Optimization of selective arylation S6
2d. Optimization of selective olefination S7
3. Characterisation
3a. Characterisation of substrates S9
3b. Characterisation of products S12
4. Deprotection of tert-butyl group S21
5. Mechanistic Study
5a. Role of N -H proton in 2-aminopyrimidine S22
5b. Deuteriation exchange experiment S22
5c. Homocoupling reaction of 1 b S24
5d. Kinetic isotope experiments S26
5e. Hammett analysis S27
5f: Mechanism S29
6. Copies of NMR Spectra S31
7. References S76

1. General Considerations

Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. Non-halogenated solvents were dried over calcium hydride. All the solvents were degassed with argon and stored over activated molecular sieves ($4 \AA$).

Analytical: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\{1 \mathrm{H}\},{ }^{19} \mathrm{~F}$ NMR spectra were collected using Bruker $\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$ $\{1 \mathrm{H}\}: 126 \mathrm{MHz})$ and JEOL ($\left.{ }^{1} \mathrm{H}: 400 \mathrm{MHz}, 13 \mathrm{C}\{1 \mathrm{H}\}: 100 \mathrm{MHz}\right)$ and were referenced to the resonances of the solvent used. Coupling constants (J) are reported in Hertz (Hz). Coupling patterns are indicated as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), or m (multiplet). Mass spectra were recorded on Bruker micrOTOF-Q II spectrometer. FT-IR spectra were recorded by Perkin-Elmer FT-IR Spectrometer. For thinlayer chromatography (TLC) analysis Merck pre-coated TLC plates (silica gel 60 F254 0.25 mm) were used. Visualization was accomplished by UV light (254 nm), KMnO4, and ceric ammonium molybdate strain.
Chemicals: Commercially available chemicals were purchased from Sigma-Aldrich, CombiBlocks, TCI, Alfa-Aesar, and Avra Synthesis and used without further purification. 2Aminopyrimidines were prepared by following the literature procedures. ${ }^{1}$

2. Experimental Section

2a. General procedure

General Procedure A (GPA): General procedure for synthesizing \boldsymbol{N}-(alkyl)pyrimidin-2-amine ${ }^{1}$

To a 15 mL sealed tube was added 2-chloropyrimidine (4 mmol), amine (4 mmol), potassium fluoride $(8 \mathrm{mmol})$, in solvent (2.5 mL) and the resulting mixture heated to $100^{\circ} \mathrm{C}$ for 17 h on an oil bath. Once cooled, the mixture was quenched with aqueous potassium carbonate solution $(40 \mathrm{~mL})$ and extracted into ethyl acetate ($2 \times 30 \mathrm{~mL}$). The organic extracts were then combined and washed with brine before being dried over sodium sulfate and the solvent evaporated under reduced pressure. The purification was carried out by column chromatography over silica gel. Yields are not optimized.

General Procedure B (GP B): General procedure for synthesizing olefins ${ }^{2}$

In a round bottom flask, acrylic acid (1 equiv, 3 mmol) was taken and cooled at $0^{\circ} \mathrm{C}$, then $\mathrm{SOCl}_{2}(1$ equiv, 3 mmol) was added, and stirred at $60^{\circ} \mathrm{C}$ for 6 h . After that $\mathrm{DCM}(3 \mathrm{ml})$ was added followed by $\mathrm{Et}_{3} \mathrm{~N}$ (1 equiv, 3 mmol) and substituted benzyl alcohol (1 equiv, 3 mmol) at $0^{\circ} \mathrm{C}$. The reaction was allowed to stir at room temperature overnight. To the reaction mixture, brine solution (5 mL) was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum. The remaining residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the desired acrylate. Yields are not optimized. 4e-k were synthesized using above mentioned procedure.

General Procedure C (GP C): General procedure for C-5 arylation

An oven-dried screw cap reaction tube was charged with a magnetic stir-bar, 2-aminopyrimidine substrate 1 ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 4.6 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}, 2$ equiv, 42 mg), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol}$, 2 equiv, 110 mg) and pyridine ($20 \mathrm{~mol} \%, 0.04 \mathrm{mmol}, 4 \mu \mathrm{~L}$) were
taken in air. Subsequently, Dioxane (1 mL) and aryl halide $2(0.6 \mathrm{mmol}, 3$ equiv) were added. The reaction tube was capped tightly and placed on a preheated oil bath at $120^{\circ} \mathrm{C}$. The reaction mixture was stirred vigorously for 17 h . After that the resulting mixture was diluted with EtOAc, filtered through a plug of Celite and concentrated under reduced pressure. The purification was carried out by column chromatography over silica gel (hexane/EtOAc) to give the C-H arylated product 3 .

General Procedure D (GP D): General procedure for C-5 olefination

An oven-dried screw cap reaction tube was charged with a magnetic stir-bar, N-(tertbutyl)pyrimidin-2-amine 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 4.6 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.2$ $\mathrm{mmol}, 2$ equiv, 80 mg), $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}, 2$ equiv, 110 mg) were taken in air. Subsequently, AcOH $(1 \mathrm{~mL})$ and olefin $4(0.3 \mathrm{mmol}, 3$ equiv) were added. The reaction tube was capped tightly and placed on a preheated oil bath at $120^{\circ} \mathrm{C}$. The reaction mixture was stirred vigorously for 30 h . Once cooled, the mixture was quenched with aqueous sodium chloride solution (15 mL) and extracted into ethyl acetate ($2 \times 30 \mathrm{~mL}$), the organic part was then passed through sodium sulfate and the solvent evaporated under reduced pressure. The purification was carried out by column chromatography over silica gel (Hexane/EtOAc) to give the C-H olefinated product 5.

2b. procedure for synthesis of deuteriated-1a

To a 15 mL sealed tube was added 2-chloro-5-iodopyrimidine ($2 \mathrm{mmol}, 480 \mathrm{mg}$), tert-butylamine (2 $\mathrm{mmol}, 210 \mu \mathrm{~L}$), potassium fluoride ($4 \mathrm{mmol}, 232 \mathrm{mg}$), in solvent (1.5 mL) and the resulting mixture heated to $100^{\circ} \mathrm{C}$ for 17 h on a heating block. Once cooled, the mixture was quenched with aqueous potassium carbonate solution (40 mL) and extracted into ethyl acetate (2 x 30 mL). The organic extracts were then combined and washed with brine before being dried over sodium sulfate and the
solvent evaporated under reduced pressure. The purification was carried out by column chromatography over silica gel and $\mathbf{1 i}$ was obtained ($454 \mathrm{mg}, 82 \%$) as white solid.

To an oven dried round bottom flask were added $\mathbf{1 i}$ ($1.64 \mathrm{mmol}, 454 \mathrm{mg}$), THF (15 mL) under nitrogen. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EtMgCl}(2 \mathrm{M}, 1 \mathrm{~mL})$ was added slowly, after addition the solution was kept at room temperature and stirred overnight. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product $\mathbf{1} \mathbf{j}$ was purified using column chromatography over silica gel (hexane/ $\mathrm{EtOAc}=10: 1)$ to give yellow oil ($467,85 \%$).

To an oven dried two neck round bottom flask were added $\mathbf{1} \mathbf{j}(0.7 \mathrm{mmol}, 235 \mathrm{mg})$ and THF (10 mL) under nitrogen condition, the solution was cooled to $-78^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}(0.5 \mathrm{~mL}, 2.5 \mathrm{M}$ in THF) was added slowly. After stirring for one hour, $\mathrm{D}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ was added to the reaction mixture. After stirring for two hours the reaction mixture was allowed to warm to room temperature. The mixture was diluted with ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The product was purified with silica gel chromatography (hexane/ EtOAc $=20: 1$) to give $\mathbf{1 k}$ as a yellow oil (130 mg , 88%). Next the deprotection of $\mathbf{1 k}$ was carried out. To an oven dried round bottom flask $\mathbf{1 k}$ (0.6 $\mathrm{mmol}, 130 \mathrm{mg}$), 10% of aq. NaOH (8 equiv) and methanol (2 equiv) were refluxed for overnight. After cooling to room temperature, the product was extracted into ethyl acetate, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product $\mathbf{D}-1 \mathbf{1 a}$ was purified using column chromatography over silica gel to give a white solid ($56 \mathrm{mg}, 61 \%$).

2c. Optimization of C5-arylation

Table S1: Initial finding

$\#$	Catalyst	Oxidant	Base	Ligand	Solvent	Yield $(\%)^{\mathbf{a}}$
1	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Toluene	N.D
2	$\mathrm{Fe}(\mathrm{acac})_{3}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Toluene	N.D
3	$\mathrm{Ni}(\mathrm{OAc})_{2} .4 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Toluene	N.D
4	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Toluene	N.D
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Toluene	20%
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	Dioxane	62%
7	$\mathbf{P d}(\mathrm{OAc})_{2}$	$\mathbf{A g}_{2} \mathrm{CO}_{3}$	$\mathbf{N a}_{2} \mathrm{CO}_{3}$	Pyridine	Dioxane	77%

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol})$, $\mathbf{2 a}(0.3 \mathrm{mmol})$, catalyst $(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, solvent $(0.5 \mathrm{~mL})$, under air at $120{ }^{\circ} \mathrm{C}$ for 17 h . Isolated yield.

Table S2: Optimization of base and loading of base

$\#$	Base	Yield (\%)
$\mathbf{1}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2 equiv)	$\mathbf{7 7 \%}(\mathbf{8 5 \%})^{\mathrm{b}}$
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$ (2 equiv)	66%
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}$ (2 equiv)	33%
4^{b}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1.5 equiv)	68%
5^{b}	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (1 equiv)	55%
6^{b}	$\mathrm{Na}_{2} \mathrm{CO}_{3}(0.5$ equiv)	46%

${ }^{\text {a }}$ Reaction conditions: $1 \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, base ($0.05-0.2 \mathrm{mmol}$), pyridine ($20 \mathrm{~mol} \%$) dioxane (0.5 mL), under air at $120^{\circ} \mathrm{C}$ for 17 h . Isolated yield. ${ }^{\mathrm{b}} \mathrm{GC}$ yield of crude reaction mixture using mesitylene as an internal standard.

Table S3: Optimization of Ag salt and loading of Ag salt

$\#$	Base	Yield (\%)
$\mathbf{1}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2equiv)	$\mathbf{7 7 \% (8 5 \%) ^ { \mathrm { b } }}$
2	$\mathrm{AgOAc}^{(2 \text { equiv) }}$	28%
3	AgNO_{3} (2 equiv)	15%
4^{b}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1.5 equiv)	68%
5^{b}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (1 equiv)	57%
6^{b}	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (0.5 equiv)	50%

${ }^{\text {a Reaction conditions: }} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, oxidant ($0.05-0.2 \mathrm{mmol}$), pyridine ($20 \mathrm{~mol} \%$) dioxane (0.5 mL), under air at $120^{\circ} \mathrm{C}$ for 17 h . Isolated yield. ${ }^{\mathrm{b}} \mathrm{GC}$ yield of crude reaction mixture using mesitylene as an internal standard.

2d. Optimization of selective olefination

Table S4: Initial finding ${ }^{\text {a }}$

 1a	$\begin{array}{cc} \mathrm{CO}_{2} \mathrm{Et} & \xrightarrow{\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)} \mathrm{Cu(OAc)}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2 \text { equiv }), \\ 4 \mathrm{Ag} & \mathrm{AcOH}(0.5 \mathrm{ml}), 120^{\circ} \mathrm{C}, 30 \mathrm{~h} \end{array}$	 5a
Entry	Variations from standard condition	$5 \mathrm{a}(\%)^{\text {a }}$
1	None	75\%
2	No Pd(OAc) ${ }_{2}$	N.D
3	$\mathrm{No} \mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}$	N.D
4	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ instead of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$	N.D
5	O_{2} instead of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$	38\%
6	$\mathrm{Cu}(\mathrm{OAc})_{2}$ instead of $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}$	65\%
7	in Dioxane	10\%
8	in PivOH	40\%
9	in DMA	10\%
10	at $90{ }^{\circ} \mathrm{C}$	trace

${ }^{\text {a Reaction conditions: }} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{4 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}), \mathrm{AcOH}(0.5 \mathrm{~mL})$, under air at $120^{\circ} \mathrm{C}$ for 30 h . Isolated yield.

Table S5: Optimization of solvent

$\#$	solvent	Yield (\%) $^{\mathrm{a}}$
1	DMF	30%
2	DMA	10%
3	PivOH	40%
4	AcOH	75%
5	AcOH:DMA	47%
6	Dioxane	10%

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{4 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$, solvent $(0.5 \mathrm{~mL})$, under air at $120^{\circ} \mathrm{C}$ for 30 h . Isolated yield.

Table S6: Optimization of catalyst loading

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{4 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5-10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}), \mathrm{AcOH}(0.5 \mathrm{~mL})$, under air at $120^{\circ} \mathrm{C}$ for 30 h . Isolated yield.

Table S7: Optimization of Cu salt loading

$\#$	$\mathbf{C u}(\mathbf{O A c})_{2} . \mathbf{H}_{2} \mathbf{O}$	Yield (\%) $)^{\mathbf{a}}$
$\mathbf{1}$	2 equiv	$\mathbf{7 5 \%}$
2	1.5 equiv	43%
3	1 equiv	31%

${ }^{\text {a Reaction conditions: }} \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{4 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1-0.2 \mathrm{mmol}), \mathrm{AcOH}(0.5 \mathrm{~mL})$, under air at $120^{\circ} \mathrm{C}$ for 30 h . Isolated yield.

Table S8: Optimization of temperature

${ }^{\text {a }}$ Reaction conditions: 1a $(0.1 \mathrm{mmol}), 4 \mathrm{a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol})$, $\mathrm{AcOH}(0.5 \mathrm{~mL})$, under air at $90-120^{\circ} \mathrm{C}$ for 30 h . Isolated yield.

3. Characterisation of the synthesised compounds

3a. Characterisation of substrates

N-(tert-butyl)pyrimidin-2-amine (1a): ${ }^{\mathbf{3}}$ According to GP A in 5 mmol scale, $665 \mathrm{mg}, 88 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.23$ (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.46(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (s, $1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) δ 162.3, 157.6, 110.1, 50.9, 28.9.

\mathbf{N}-(pentan-3-yl)pyrimidin-2-amine (1b): According to GP A in 2 mmol scale, $280 \mathrm{mg}, 85 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.22(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 162.6,158.0,110.0,53.4,27.2$, 10.2. For $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{IN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 165.1266$. Found: 165.1265

N-isopropylpyrimidin-2-amine (1c): ${ }^{4}$ According to GP A in 2 mmol scale, $236 \mathrm{mg}, 86 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CHLOROFORM-D) $\delta 8.25$ (d, $J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.48 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.23 (d, $J=6.5 \mathrm{~Hz}, 13 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 161.9,158.2,110.3$, 42.9, 23.0.

N-cyclohexylpyrimidin-2-amine (1d): ${ }^{\mathbf{1}}$ According to GP A in 2 mmol scale, $276 \mathrm{mg}, \mathbf{7 8 \%}$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz, CHLOROFORM-D) $\delta 8.22(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=10.4,9.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.57$ $(\mathrm{m}, 1 \mathrm{H}), 1.39(\mathrm{dd}, J=20.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{dd}, J=16.9,8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $(126 \mathrm{MHz}$, CHLOROFORM-D) $\delta 161.9,158.1,110.2,49.7,33.4,25.9,25.0$.

\mathbf{N}-methylpyrimidin-2-amine (1e): ${ }^{\mathbf{5}}$ According to GP A in 2 mmol scale, $179 \mathrm{mg}, 82 \%$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (500 MHz, CHLOROFORM-D) $\delta 8.26(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 2.99$ $-2.96(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 163.1,158.1,110.4,28.4$.

N-butylpyrimidin-2-amine (1f): ${ }^{\mathbf{6}}$ According to GP A in 2 mmol scale, $230 \mathrm{mg}, 76 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.25(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.38$ (td, $J=7.2,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{dd}, J=15.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) δ 162.6, 158.1, 110.4, 41.3, 31.8, 20.2 13.9.

N-phenethylpyrimidin-2-amine (1g): ${ }^{7}$ According to GP A in 2 mmol scale, $310 \mathrm{mg}, 78 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, CHLOROFORM-D) $\delta 8.27(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $7 \mathrm{H}), 6.52(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.77-3.63(\mathrm{~m}, 5 \mathrm{H}), 2.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 162.4,158.2,139.4,129.0,128.7,126.5,110.7,42.7,35.9$. For $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 199.1109. Found: 199.1107.

N-(tert-butyl)-5-iodopyrimidin-2-amine (1i): ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.33$ (s, 2H), 5.17 ($\mathrm{s}, 1 \mathrm{H}$), $1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 162.5,160.3,75.9,51.2$, 28.8. For $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{IN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 277.0076 . Found: 277.0064.

methyl tert-butyl(5-iodopyrimidin-2-yl)carbamate ($\mathbf{1} \mathbf{j}):{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.91(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 164.2,159.8$, 154.6, 91.4, 58.2, 52.6, 28.8. HRMS calcd. For $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{IN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 336.0203. Found: 336.0201.

(D-1a): ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $0.3 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 162.3,157.6,110.2$, 50.9, 29.0. For $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{DN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 153.1245$. Found: 153.1255 .

4-(trifluoromethyl)benzyl acrylate (4e) ${ }^{\mathbf{8}}$: According to GP B in 3 mmol scale, $386 \mathrm{mg}, 56 \%{ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51-$ $6.44(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H})$.

4-chlorobenzyl acrylate (4f): According to GP B in 3 mmol scale, $306 \mathrm{mg}, 52 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 7.34$ (s, 1H), 7.27 (dd, $J=3.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21$ (m, 1H), 6.44 (dd, $J=17.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=17.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 165.9,138.3,137.4,137.1,131.5,130.4,128.2,127.4,94.4$, 77.4, 77.1, 76.9, 65.3.

[1,1'-biphenyl]-4-ylmethyl acrylate (4g) ${ }^{\mathbf{9}}$: According to GP B in 3 mmol scale, $421 \mathrm{mg}, 59 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 7.60$ (dd, $J=7.6,5.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.46 (d, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}$), 7.37
$(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=17.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.25$ ($\mathrm{s}, 2 \mathrm{H}$).

4-fluorobenzyl acrylate (4h) ${ }^{\mathbf{1 0}}$: According to GP B in 3 mmol scale, $330 \mathrm{mg}, 61 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 7.48-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=17.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H})$.

4-bromophenyl acrylate (5k): According to GP B in 3 mmol scale, 391 mg , 58%. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 7.59-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{dd}$, $J=17.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.2,149.7,133.1$, $132.5,127.7,123.4,119.0,77.4,77.1,76.9$.

3b. Characterisation of products

N-(tert-butyl)-5-phenylpyrimidin-2-amine (3a): According to GP C, $35 \mathrm{mg}, 77 \%$. IR: 2920.6, $1605.8,1521.9,1452.4,1383.0,801.6,757.2,694.7 .{ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.50$ (s, 2H), $7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}) 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 161.4,155.9,136,129.2,127.3,125.9,123.4,51.2,29.1$ HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 228.1495$. Found: 228.1495.

N-(pentan-3-yl)-5-phenylpyrimidin-2-amine (3b): According to GP C, $38 \mathrm{mg}, 79 \%$. IR: 2961.0, 1603.6, 1523.1, 1454.0, 1431.0, 1382.0, 1299.0, 800.2, 695.8. ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORMD) $\delta 8.50(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=27.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ $(\mathrm{d}, J=34.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=41.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=43.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 162.1,156.4,135.9,129.2,127.3,125.9,123.9,53.7,27.3$, 10.3. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 242.1652$. Found: 242.1656.

N-isopropyl-5-phenylpyrimidin-2-amine (3c): According to GP C, $31 \mathrm{mg}, 72 \%$. IR: 2926.7, $1603.0,1522.4,1454.5,1378.2,1236.2,1119.4,801.2,754.6,695.2,512.8 .^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, CHLOROFORM-D) $\delta 8.51(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{td}, J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CHLOROFORM-D) δ 161.2, 156.4, 135.8, 129.3, 127.4, 126.0, 123.7, 43.2, 23.1. HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 214.1339$. Found: 214.1334.

N-cyclohexyl-5-phenylpyrimidin-2-amine (3d): According to GP C, $32 \mathrm{mg}, 64 \%$. IR: 2922.4, 1607.3, 1522.4, 1554.5, 1297.6, 1236.2, 1166.0, 1072.7, 795.9, $754.5,695.2{ }^{1} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, CHLOROFORM-D) $\delta 8.51(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{dt}, J=15.1,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dd}, J=9.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{dd}, J=$ $9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 160.8,156,135.4,128.8,126.9,125.5,123.2,49.5,33,25.4,24.6$. HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 254.1652$. Found: 254.1657.

N-methyl-5-phenylpyrimidin-2-amine (3e): According to GP C, $16 \mathrm{mg}, 42 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.54(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 3.06$ (d, J $=5.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 162.4,156.4,135.8,129.3,127.5,126.1$, 123.9, 28.7. HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 186.1026 . Found: 186.1027.

N-butyl-5-phenylpyrimidin-2-amine (3f) $)^{6}$: According to GP C, $22 \mathrm{mg}, 48 \%$. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.52(\mathrm{~s}, 7 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 16 \mathrm{H}), 7.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.19(\mathrm{~s}$, $4 \mathrm{H}), 3.46(\mathrm{td}, J=7.0,5.9 \mathrm{~Hz}, 8 \mathrm{H}), 1.64(\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}, 10 \mathrm{H}), 1.44(\mathrm{dd}, J=15.1,7.4 \mathrm{~Hz}, 9 \mathrm{H})$, 0.97 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 161.9,156.4,135.8,129.3$, 127.4, 126.0, 123.8, 41.6, 31.9, 20.3, 13.9. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 228.1495$. Found: 228.1487.

N-phenethyl-5-phenylpyrimidin-2-amine (3g): According to GP C, $21 \mathrm{mg}, 38 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.52$ (s, 2H), 7.45 (dt, $J=15.0,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=14.3,7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=13.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 161.7$ 156.3, 139.2, 135.7, 129.2, 128.9, 128.7, 127.3, 126.5, 125.9, 123.9, 42.8, 35.8. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 276.1495$. Found: 276.1494.

N-(tert-butyl)-5-(p-tolyl)pyrimidin-2-amine (3h): According to GP C, $33 \mathrm{mg}, \mathbf{6 8 \%}$. IR: 2965.0, 1610.8, 1531.8, 1512.4, 1445.0, 1355.6, 1284.3, 1224.7, 936.2, 817.9, 797.8, 741.7, 655.4, 638.3. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.47$ (d, $J=1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39-7.34$ (m, 2), $7.25(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORMD) $\delta 161.4,155.8,137.1,133.1,129.9,125.8,123.4,51.1,29.1,21.2$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 242.1652$. Found: 242.1650.

N-(tert-butyl)-5-(4-(tert-butyl)phenyl)pyrimidin-2-amine (3i): According to GP C, $39 \mathrm{mg}, 69 \%$. IR: 2964.8, 1607.3, 1509.7, 1361.2, 1225.5, 1157.6, 1115.2, 835.2, 801.2, 741.8, 572.0. ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.49$ (s, 2H), 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.22(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 161.4,155.8$, $150.3,133.1,126.2,125.6,123.3,51.1,34.7,31.5,29.1$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 284.2121$. Found: 284.2157.

\mathbf{N}-(tert-butyl)-5-(4-methoxyphenyl)pyrimidin-2-amine (3j): According to GP C, $31 \mathrm{mg}, 59 \%$. IR: $2964.6,1605.0,1596.4,1507.3,1453.7,1286,1247.6,1225.6,1178.9,1034.6,831.2,799.6 .{ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.44(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 166.3,159.2$, $155.6,128.5,127.1,123.2,114.7,55.5,51.1,29.1$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 258.1601$. Found: 258.1600.

N-(tert-butyl)-5-(3-methoxyphenyl)pyrimidin-2-amine (3k): According to GP C, $34 \mathrm{mg}, 66 \%$. IR: 2926.7, 1603.0, 1522.4, 1450.3, 1225.5, 1284.8, 1047.3, 801.2, 695.2. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.49(\mathrm{~s}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 161.6,160.3,155.9,137.4,130.3,123.2,118.4,112.6,111.7,55.4,51.2,29.1$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 258.1601$. Found: 258.1605 .

N-(tert-butyl)-5-(4-chlorophenyl)pyrimidin-2-amine (31): According to GP C, $30 \mathrm{mg}, 57 \%$. IR: $2965.3,1610.2,1531.3,1494.7,1445.2,1359.0,1283.0,1223.5,1093.4,798.6 .{ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.45(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 4 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 161.6,155.8,134.4,133.3,129.4,127.1,122.2,51.2,29.0$. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1106$. Found: 262.1109 .

N-(tert-butyl)-5-(3-chlorophenyl)pyrimidin-2-amine (3m): According to GP C, $35 \mathrm{mg}, 66 \%$. IR: $2962.8, \quad 1604.6, \quad 1524.5, \quad 1482.5,1439.4,1354.9,1217.3, \quad 762.9 .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$,

CHLOROFORM-D) $\delta 8.46(\mathrm{~s}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}$, 1 H), 1.48 (s, 9H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 161.7,155.9,137.9,135.1,130.5$, 127.3, 125.9, 123.9, 122.0, 51.3, 29.0. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1106$. Found: 262.1084 .

\mathbf{N}-(tert-butyl)-5-(3-fluorophenyl)pyrimidin-2-amine (3n): According to GP C, $33.1 \mathrm{mg}, 65 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.48(\mathrm{~s}, 2 \mathrm{H}), 7.42-7.36(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, 9H). ${ }^{13}$ C NMR (126 MHz, CHLOROFORM-D) $\delta 163.5(\mathrm{~d}, J=163.48 \mathrm{~Hz}), 161.7,155.92,138.2(\mathrm{~d}, J$ $=8.82 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=7.56), 122.2(\mathrm{~d}, 2.52 \mathrm{~Hz}), 121.4(\mathrm{~d}, 2.52 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=20.16 \mathrm{~Hz}), 112.7$ (d, 21.42 Hz), 51.2, 29.0. ${ }^{19}$ F NMR (471 MHz , CHLOROFORM-D) $\delta-112.3$. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 246.1401$. Found: 246.1400.

N-(tert-butyl)-5-(3,5-dimethylphenyl)pyrimidin-2-amine (3o): According to GP C, $33 \mathrm{mg}, 65 \%$. IR: $2922.4,1603.0,1516.2,1361.2,1280.6,1221.2,1157.6,1030.3,932.7,847.8,796.9,699.4{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.47$ (s, 2H), 7.08 (s, 2H), $6.98(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, 6H), 1.48 (s, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 161.5,155.9,138.8,135.9,128.9$, 123.9, 123.6, 51.1, 29.1, 21.5. HRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 256.1808$. Found: 256.1809.

N-(tert-butyl)-5-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (3p): According to GP C, 41 $\mathrm{mg}, 68 \%$. IR: $2926.7,1603.0,1564.8,1323.0,1221.2,1170.3,1072.7,839.4,741.8,652.7 .{ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.51(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.36(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 161.8,156.1,139.6,129.8$, $129.4(\mathrm{q}, J=33.3 \mathrm{~Hz}) 126.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 124.3(\mathrm{q}, J=273.7 \mathrm{~Hz}), 121.9,51.3,29.0 .{ }^{\mathbf{1}} \mathbf{F} \mathbf{N M R}(471$ MHz , CHLOROFORM-D) δ-62.4. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 296.1369. Found: 296.1382 .

N-(tert-butyl)-5-(3-(trifluoromethyl)phenyl)pyrimidin-2-amine (3q): According to GP C, 38 mg , 65\%. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.50(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) 161.9, $156.0,137.0,131.7(\mathrm{q}, J=32.8), 129.7,129.1,124.2(\mathrm{q}, J=272.2), 123.9(\mathrm{q}, J=3.8), 122.6(\mathrm{q}, J=$ 3.8), 122.1, 51.3, 29.0. ${ }^{19}$ F NMR (471 MHz, CHLOROFORM-D) $\delta-62.74$ (s). HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 296.1369$. Found: 296.1372 .

\mathbf{N}-(tert-butyl)-5-(4-nitrophenyl)pyrimidin-2-amine (3r): According to GP C, $38 \mathrm{mg}, 69 \%$. IR: $2924.5,1595.0,1518.0,1441.6,1343,1303.8,1221.1,851.6,800.9,751.9,695.8 .{ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.56(\mathrm{~s}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}$, 1H), 1.48 (s, 9H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) δ 162.0, 156.2, 146.9, 142.6, 125.9, 124.7, 120.9, 51.5, 29. HRMS calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 273.1346$. Found: 273.1345.

ethyl 4-(2-(tert-butylamino)pyrimidin-5-yl)benzoate (3s): According to GP C, $40 \mathrm{mg}, 66 \%$. IR: $2969.0,1713.3,1603.0,1526.7,1446.0,1361.2,1276.4,1221.2,1102.2,1026,852.1,703.6 .{ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.54(\mathrm{~s}, 2 \mathrm{H}), 8.11-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 166.5,161.8,156.1,140.4,130.5,129.2,125.4,122.2,61.1,51.3,29.0,14.5$. HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 300.1707$. Found: 300.1718 .

\mathbf{N}-(tert-butyl)-5-(4-(tert-butyl)-2-nitrophenyl)pyrimidin-2-amine (3t): According to GP C, 39 mg , 60\%. IR: 2964.8, 1603.0, 1518.2, 1433.3, 1361.2, 1276.4, 1225.5, 835.2, 741.8. ${ }^{1}$ H NMR (400 MHz , CHLOROFORM-D) $\delta 8.21(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) δ 161.5, 156.7, 152.7, 148.8, 131.7, 130.1, 128.2, 121.8, 120.1, 51.3, 35.1, 31.2, 29.0. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 329.1972$. Found: 329.1978.

(E)-ethyl 3-(4-(2-(tert-butylamino)pyrimidin-5-yl)phenyl)acrylate (5a): According to GP D, 37.5 mg, 75\%. IR: 2969.0, 1637.0, 1598.8, 1526.7, 1314.5, 1263.6, 1217.0, 1174.5, 1034.5, 754.6. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CHLOROFORM-D) $\delta 8.41$ (s, 2H), 7.47 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) δ 167.1, $162.3,157.5,139.2,117.4,114.8,60.6,51.6,28.9,14.5$. HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 250.1550$. Found: 250.1560.

(E)-butyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5b): According to GP D, $42 \mathrm{mg}, 76 \%$. Yield 76% ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$). IR: 2960.6, 1713.3, $1598.8,1522.4,1454.5,1276.4,1221.2,1170.3$, 763.0. ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.41(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28$ (dd, $J=16.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=6.8,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 9 \mathrm{H}), 1.44-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, CHLOROFORM-D) $\delta 167.2,162.2,157.4,139.2,117.4,114.85,64.5,51.6,30.9,28.9,19.3,13.9$. HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 278.1863$. Found: 278.1896.

(E)-methyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5c): According to GP D, $36 \mathrm{mg}, 77 \%$. IR: $2960.6,1721.8,1632.7,1603,1531,1361.2,1318.8,1221.2,1170.3,979.4,796.9,750.3,652.7$. ${ }^{1}$ H NMR (500 MHz, CHLOROFORM-D) $\delta 8.41$ ($\mathrm{s}, 2 \mathrm{H}$), 7.48 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.28 (d, $J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.48(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CHLOROFORM-D) $\delta 167.5$, 162.3, 157.5, 139.5, 117.4, 114.3, 51.8, 51.6, 28.9. HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 236.1394$. Found : 236.1407.

(E)-benzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5d): According to GP D, $47 \mathrm{mg}, 76 \%$. IR: $2965.0,1712.7,1633.6,1597.7,1523.9,1455.3,1218,1166.3,962.3,749.3 .{ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.41(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 166.9$, 162.2, 157.5, 139.8, 136.2, 128.7, 128.5, 128.4, 117.3, 114.3, 66.5, 51.6, 28.9. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 312.1707$. Found: 312.1752.

(E)-4-(trifluoromethyl)benzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5e): According to GP D, $62 \mathrm{mg}, 82 \%$. IR: 2926.7, 1713.3, 1598.8, 1522.4, 1323.0, 1212.7, 1157.6, 1068.5, 1017.6, 983.6, 754.6. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $(\mathrm{t}, J=11.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 166.7,162.4,157.6,140.4,130.5$ (q, $J=31.5$), 128.3, 125.7 ($\mathrm{q}, ~ J=$ 3.78), 124.2 ($\mathrm{q}, ~ J=272.16$), 117.2, 113.7, $65.4,51.7,29.1 .{ }^{19}$ F NMR (471 MHz, CHLOROFORM-D) δ-62.6. HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 380.1580$. Found: 380.1634.

(E)-3-chlorobenzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5f): According to GP D, 41 $\mathrm{mg}, 60 \%$. IR: $2965.5,1711.5,1597.8,1523.6,1457.6,1276.0,1215.8,1167.8,750.3 .{ }^{1} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 166.7,162.3,157.6,140.2,138.3,134.6,130.0,128.5,128.4$, 126.3, 117.3, 113.9, 65.5, 51.7, 28.9. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 346.1317$. Found: 346.1309.

(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5g): According to GP D, $37 \mathrm{mg}, 48 \%$. IR: $2969.0,1709.0,1603.0,1522.4,1454.5,1393.6,1317.7,1218.6,1168.0$, 984.6. 824.3, 803.2, 761.1, 697.8. 653.5. ¹H NMR (500 MHz, CHLOROFORM-D) $\delta 8.42$ (s, 2H),
$7.60(\mathrm{t}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CHLOROFORM-D) $\delta 166.9,162.3,157.5,141.4,140.9,139.9,135.2,129,127.6,127.5$, 127.3, 117.3, 114.3, 66.2, 51.7, 28.9. HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 388.2020$. Found: 388.2021 .

(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5h): According to GP D, $45 \mathrm{mg}, 68 \%$. IR: 2969.0, 1709,. 0 1632.7, 1598.8, 1526.7, 1454.5, 1433.3, 1395.2, 1221.2, 1170.3, 1013.3, 856.4, 720.6, 652.7. ${ }^{1} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.41(\mathrm{~s}, 2 \mathrm{H}), 7.51$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.5,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CHLOROFORM-D) $\delta 166.9,162.8(\mathrm{~d}$, $J=247.5 \mathrm{~Hz}), 162.2,157.5,140,132.1,130.4(\mathrm{~d}, J=8 \mathrm{~Hz}), 117.2,115.7(\mathrm{~d}, J=21.2), 114.1,65.7$, 51.6, 28.9. ${ }^{19}$ F NMR (471 MHz , CHLOROFORM-D) $\delta-73.69$ (s). HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{FN}_{3} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 330.1612$. Found: 330.1612.

(E)-phenyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5i): According to GP D, $41 \mathrm{mg}, 68 \%$. IR: $2964.0,1730.8,1597.2,1525.4,1216.8,1196.6,1136.1,1317.0,1283.6 .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, CHLOROFORM-D) $\delta 8.48(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}) 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{D}$) $\delta 165.5,162.4,157.8,151,141.2,129.6,125.9,121.8,117.2,113.6$, 51.7, 28.9. HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 298.1550 . Found: 298.1551.

(E)-p-tolyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5j): According to GP D, $34 \mathrm{mg}, 54 \%$. IR: $2966.5,1726.4,1632.8,1597.2,1524.4,1507.3,1197.5,1019.2,962.2,652.2 .{ }^{1} \mathbf{H}$ NMR (500 MHz, CHLOROFORM-D) $\delta 8.47$ (s, 2H), 7.65 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126

MHz, CHLOROFORM-D) $\delta 165.7,162.4,157.7,148.7,141.1,135.5,130.1,121.4,117.3,113.7$, 51.7, 28.9, 21.0. HRMS calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 312.1707. Found: 312.1707.

(E)-4-bromobenzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate (5k): According to GP D, 47 $\mathrm{mg}, 62 \%$. IR: $2926.7,1628.5,1526.7,1480.0,1200.0,1132.1,1009.0,1068.5 .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , CHLOROFORM-D) $\delta 8.48(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CHLOROFORM-D) $\delta 165.3,162.5,157.9,150.0,141.7,132.6,123.6,118.9,117.0,113.0,51.7$, 28.9. HRMS calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 376.0655 . Found: 376.0653.

4f: Deprotection of tert-butyl group ${ }^{12}$

3u, 84%

An oven-dried 10 mL round bottom flask was charged with a magnetic stir-bar, 3a (0.2 mmol) and benzotrifluoride (1.5 mL) were taken under nitrogen atmosphere. Subsequently, TFA (1.0 mL) was added. The round bottom flask was placed on a preheated oil bath at $80^{\circ} \mathrm{C}$ and refluxed for 24 h . The reaction mixture was allowed to cool at room temperature and was then basified with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to pH 9 and extracted with DCM. The organic layer was dried with sodium sulfate, filtered and concentrated under reduced pressure. The purification was carried out by column chromatography over silica gel (hexane/EtOAc) to give 3u in 84% yield.

5-phenylpyrimidin-2-amine (3u) ${ }^{\mathbf{1 1}}: 29 \mathrm{mg}, 84 \%$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CHLOROFORM-D) $\delta 8.53$ $(\mathrm{s}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , CHLOROFORM-D) $162.36,156.63,135.38,129.30,127.73,126.19,125.14$.

4. Mechanistic Study

4a. Role of \mathbf{N}-H proton in 2-aminopyrimidine

An oven-dried screw cap reaction tube was charged with a magnetic stir-bar, $\mathbf{1 h}(0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 2.3 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}, 2$ equiv, 21 mg$), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.2$ $\mathrm{mmol}, 2$ equiv, 55.2 mg) and pyridine ($20 \mathrm{~mol} \%, 0.02 \mathrm{mmol}, 2 \mu \mathrm{~L}$) were taken in air. Subsequently, Dioxane (0.5 mL) and aryl halide $2(0.3 \mathrm{mmol}, 3$ equiv, $33 \mu \mathrm{~L}$) were added. The reaction tube was capped tightly and placed on a preheated oil bath at $120^{\circ} \mathrm{C}$. The reaction mixture was stirred vigorously for 17 h . After that the resulting mixture was diluted with EtOAc, filtered through a plug of Celite and concentrated under reduced pressure. The purification was carried out by column chromatography over silica gel (hexane/EtOAc) to give 3h in trace amount. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 255.1735$. Found: 255.1726.

4b. Deuteriation exchange experiment:

1a (0.05 mmol) was taken in a 15 mL screw cap vial and dissolved in $0.25 \mathrm{~mL} \mathrm{CD}{ }_{3} \mathrm{COOD}$. Then $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ were added to the reaction mixture and it was allowed to stir at $120^{\circ} \mathrm{C}$ for 5 h . After that the reaction mixture was neutralized with NaHCO_{3} and extracted with ethyl acetate. Organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Then ${ }^{1} \mathrm{H}$ NMR of the crude sample was taken and the amount of D-exchange was measured. The D-exchange was found to be 20% at C5-position and 100% D-exchange was found at NH proton of pyrimidine.

1a $(0.05 \mathrm{mmol})$ was taken in a 15 mL screw cap vial and dissolved in $0.25 \mathrm{~mL} \mathrm{D}_{2} \mathrm{O}$. Then $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(10 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ were added to the reaction mixture and it was allowed to stir at $120{ }^{\circ} \mathrm{C}$ for 5 h . After that the reaction mixture was neutralized with NaHCO_{3} and extracted with ethyl acetate. Organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Then ${ }^{1} \mathrm{H}$ NMR of the crude sample was taken and the amount of D-exchange was measured. No D-exchange was found at C5-position.

4c. Homocoupling reaction of $\mathbf{1 b}$

In a NMR tube $\mathbf{1 b}(0.1 \mathrm{mmol}, 16.5 \mathrm{mg}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.1 \mathrm{mmol}, 22.4 \mathrm{mg}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol}, 21 \mathrm{mg})$ were dissolved in DMSO- d_{6} and then the NMR tube was heated at $120^{\circ} \mathrm{C}$ for 5 h . The NMR tube was then brought to room temperature and ${ }^{1} \mathrm{H}$ NMR of the mixture was immediately taken. Initially we intended to trapped the C5-palladated species forming during the reaction but from ${ }^{1} \mathrm{H}$ NMR it was analysed that homocoupling of 1b has occurred to give 6. Later HRMS of the crude mixture was taken to confirm the formation of $\mathbf{6}$.

Figure S1: HRMS data

4d. Kinetic isotope Experiments:

To two oven dried 15 mL sealed tubes were added $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$, $\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol})$ and $1,2,4,5$-tetramethylbenzene ($0.05 \mathrm{mmol}, 6.7 \mathrm{mg}$) as internal standard. In one tube, dioxane (0.25 mL), 1a (0.05 mmol), iodobenzene (3 equiv) and pyridine ($20 \mathrm{~mol} \%$) were added subsequently. In the other tube, dioxane (0.25 mL), D-1a (0.05 mmol), iodobenzene (3 equiv) and pyridine ($20 \mathrm{~mol} \%$) were added. Then the reactions were stirred at $120{ }^{\circ} \mathrm{C}$ and yield of 3 a was determined by GC using 1,2,4,5-tetramethylbenzene as internal standard. The yield (\%) vs time (h) plot was found to be linear plot and from the slop of such plot the KIE value $k_{\mathrm{H}} / k_{\mathrm{D}}=4.6$ was determined.

Figure S2: KIE Measurement by GC analysis

4e. Hammett analysis

In three different 15 mL screw cap vials, $\mathbf{1 a}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ and iodobenzene $(17 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ were dissolved in 0.5 mL 1,4-dioxane. Next $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(21 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.2 \mathrm{mmol})$, pyridine ($2 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) and iodobenzene derivatives $\mathbf{2 b}, \mathbf{2 e}$, $\mathbf{2 g}(0.15 \mathrm{mmol})$ were added to the three different vials, respectively. The vials containing the reaction mixture were heated at $120^{\circ} \mathrm{C}$ and at three different intervals of time ($5 \mathrm{hr}, 7 \mathrm{hr}$ and 9 hr) the yields of the products were measured using GC by taking out $10 \mu \mathrm{~L}$ of the reaction mixture from the respective vials, passed through a bed of celite and diluted with ethyl acetate. The ratios of yields (3a:3h), ($\mathbf{3 a} \mathbf{a} \mathbf{3 j}$) and (3a: 3m) were estimated by GC analysis using 1,2,4,5-tetramethylbenzene as an internal standard. The measured average value of the slope was found to be 1.67.

Time	Conversion of (1a)	GC Yield
5 hr	34\%	3a (22\%), 3h (11\%)
	35\%	3a (25\%), 3j (7\%)
	36\%	3a 10.4%, 3m (21\%)
7 hr	42\%	3a (28.8\%), 3h (14.8\%)
	40\%	3a (29\%), 3j (8.5\%)
	50\%	3a (14.9\%), 3m (32.8)
9 hr	63\%	3a (36\%), 3h (19\%)
	65\%	3a (38\%), 3j (12.8\%)
	60\%	3a (18\%), 3m (38\%)

\mathbf{X}	$\boldsymbol{\sigma}$	\log $\left(\boldsymbol{k}_{\mathbf{X}} / \boldsymbol{k}_{\mathbf{H}}\right)(5$ $\mathrm{hr})$	\log $\left(\boldsymbol{k}_{\mathbf{X}} / \boldsymbol{k}_{\mathbf{H}}\right)(6$ $\mathrm{hr})$	\log $\left(\boldsymbol{k}_{\mathbf{X}} / \boldsymbol{k}_{\mathbf{H}}\right)(7$ $\mathrm{hr})$	\log $\left(\boldsymbol{k}_{\mathbf{X}} / \boldsymbol{k}_{\mathbf{H}}\right)(9$ $\mathrm{hr})$	\log $\left(\boldsymbol{k}_{\mathbf{X}} / \boldsymbol{k}_{\mathbf{H}}\right)$ average	Standard deviation
$p-\mathrm{OMe}$	-0.27	-0.55	-0.52	-0.53	-0.48	-0.52	0.029
$p-\mathrm{Me}$	-0.17	-0.3	-0.30	-0.29	-0.27	-0.29	0.014
H	0	0	0	0	0	0	0
$P-\mathrm{Cl}$	0.23	0.31	0.36	0.35	0.32	0.33	0.024

Figure S3: Hammett Plot

4g. Mechanism

Mechanism of Arylation

In the presence of aryl halide, $\mathrm{Pd}(\mathrm{II})$ species underwent oxidative addition to form $\mathrm{Pd}(\mathrm{IV})$ intermediate $\mathbf{I n t} \mathbf{- 1}$. Then the base mediated deprotonation and delocalisation of electron density afforded the electrophilic palladation step Int-2. Rearomatization at the rate-determining step gave the corresponding C5-palladated species Int-3, which undergo subsequent the reductive elimination to provide the desired arylated product 3. Finally, ligand dissociation from Int-4 and halide abstraction by silver carbonate regenerated the active $\operatorname{Pd}(\mathrm{II})$-species for the next cycle.

Mechanism of olefination

We suggested a detailed catalytic cycle of the dehydrogenative olefination reaction (Figure S3). The key intermediates are as follows: (1) At first base mediated deprotonation of $\mathbf{1 a}$ formed the palladated species A. (2) The alkene $\mathbf{4}$ underwent coordination with \mathbf{A} to form intermediate \mathbf{B} and further migratory insertion led to the formation of intermediate \mathbf{C}. (3) β-Hydride syn-elimination afforded the the final product 5 along with the generation of palladium hydride intermediate \mathbf{D}. (4) The reductive elimination releases HOAc to form $\mathrm{Pd}(0)$, which is then reoxidized by Cu -salt to regenerate the $\mathrm{Pd}(\mathrm{II})$ catalyst.

Figure S4: Detailed mechanism of the dehydrogenative olefination of the 2-aminopyrimidine 1a.

5. Copies of NMR Spectra

1b
N -(pentan-3-yl)pyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

-162.59
-158.06
8
$\stackrel{8}{7}$
$\stackrel{1}{7}$
$\stackrel{\sim}{\infty} \underset{\sim}{\sim}$

1c
N -isopropylpyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$\stackrel{+}{m}$
$\stackrel{\rightharpoonup}{-}$
$\stackrel{1}{1}$

N -isopropylpyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$


```
~~~
```


1 g

$8 I^{\prime} 8 \mathrm{SII}-$
It'29I-

$\overrightarrow{\hat{N}}$
$\stackrel{\rightharpoonup}{\mathrm{O}}$
$\stackrel{1}{1}$

1 g
N -phenethylpyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

methyl tert-butyl(5-iodopyrimidin-2-yl)carbamate ${ }^{1} \mathrm{H} \mathrm{NMR}$ in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

ع9'เSI-
28.6SI-
$\angle I^{\prime} \downarrow 9 I-$
\hat{M}
$\stackrel{y}{3}$
$\begin{array}{lll}\stackrel{0}{0} & \stackrel{\infty}{0} \\ \infty & \underset{\sim}{\infty} \\ \sim & 1 & \sim\end{array}$

methyl tert-butyl(5-iodopyrimidin-2-yl)carbamate

3-chlorobenzyl acrylate ${ }^{1} \mathrm{H}$ NMR, CDCl_{3}, (400 MHz)

3-chlorobenzyl acrylate ${ }^{13} \mathrm{C}$ NMR in CDCl_{3}, (126 MHz)
$\left.\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

3a
N -(tert-butyl)-5-phenylpyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

ๆ $๊$	
-i	
$\stackrel{\rightharpoonup}{1}$	二-7

3a
N -(tert-butyl)-5-phenylpyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

3b
N -(pentan-3-yl)-5-phenylpyrimidin-2-amine
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

3b
N -(pentan-3-yl)-5-phenylpyrimidin-2-amine
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

N -cyclohexyl-5-phenylpyrimidin-2-amine

3d
N-cyclohexyl-5-phenylpyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

 かへべヘベヘベヘ
$\stackrel{7}{i}$
ヘi．

3e
N －methyl－5－phenylpyrimidin－2－amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

$\stackrel{0}{\infty}$

N－methyl－5－phenylpyrimidin－2－amine
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

N -phenethyl-5-phenylpyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR IN CDCl ${ }_{3}$ (500 MHz)

3 g
N-phenethyl-5-phenylpyrimidin-2-amine

 $\stackrel{\stackrel{\rightharpoonup}{3}}{1}$

3h
N-(tert-butyl)-5-(p-tolyl)pyrimidin-2-amine
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

3h
N -(tert-butyl)-5-(p-tolyl)pyrimidin-2-amine
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

 $\underset{\sim}{N}$
$3 i$
N-(tert-butyl)-5-(4-(tert-butyl)phenyl)pyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

$3 i$
N-(tert-butyl)-5-(4-(tert-butyl)phenyl)pyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

$\stackrel{\infty}{\sim}{ }_{\sim}^{\circ}$	N゙ッツํ
ঢิ \％	かべ
$1 / 1$	1

$\begin{array}{cc}\circ & 0 \\ \text { ing } \\ \text { in } \\ 1 & 1 \\ 1\end{array}$

3j
N －（tert－butyl）－5－（4－methoxyphenyl）pyrimidin－2－amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

$\stackrel{\circ}{\stackrel{M}{n}}$
$\stackrel{\sim}{\infty}$

3k
N -(tert-butyl)-5-(3-methoxyphenyl)pyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

$\stackrel{1}{\circ}$

$\stackrel{\sim}{\sim}$

31

$\begin{array}{cc}\underset{\sim}{N} & \text { N } \\ \underset{1}{\sim} & \text { ৷ }\end{array}$

31
N -(tert-butyl)-5-(4-chlorophenyl)pyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

ஸ̀ ì

3m
N-(tert-butyl)-5-(3-chlorophenyl)pyrimidin-2-amine
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

$\stackrel{\sim}{\sim}$

	 		Fi $\stackrel{n}{\sim}$ $\stackrel{\sim}{\sim}$ \sim

30
N -(tert-butyl)-5-(3,5-dimethylphenyl)pyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

N
$\stackrel{m}{n}$

$3 p$
N -(tert-butyl)-5-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$3 q$
N－（tert－butyl）－5－（3－（trifluoromethyl）phenyl）pyrimidin－2－amine
${ }^{19} \mathrm{~F} \mathrm{NMR}$ in $\mathrm{CDCl}_{3}(417 \mathrm{MHz})$

20	10	0	－10	－20	－30	－40	－50	－60	－70	－80	－90	$\begin{gathered} -100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	-110	－120	－130	－140	－150	－160	－170	－180	－190	－200	－210	－22

華

がゥ ターデ

3s
ethyl 4－（2－（tert－butylamino）pyrimidin－5－yl）benzoate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

n in

N -(tert-butyl)-5-(4-(tert-butyl)-2-nitrophenyl)pyrimidin-2-amine
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

$\stackrel{\text { N}}{\text { N }}$
 ๕9.9¢!

3u
5-phenylpyrimidin-2-amine ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

(E)-ethyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

우ำ	\cdots	F				N
¢ ¢	-	㦴	O		∞	$\stackrel{1}{ \pm}$
111	1	1,	1		।	1

5a
(E)-ethyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate

 ஸ்
LI'6\&I-

${ }^{\mathrm{n}} \mathrm{BuO}_{2} \mathrm{C}$

5b
(E)-butyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

5c
(E)-methyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$\underset{\sim}{N}$
$\underset{\sim}{\sim}$
1

$\stackrel{+}{\underset{\sim}{\infty}} \underset{\sim}{\text { । }}$

5c
(E)-methyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0

5d
(E)-benzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

5d
(E)-benzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

5e
(E)-4-(trifluoromethyl)benzyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$\stackrel{\infty}{+}$

 $\stackrel{\leftrightarrow}{1} \stackrel{1}{1}$
$5 f$
(E)-3-chlorobenzyl 3-(2-(tert-butylamino)pyrimidin-5yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

$5 f$
(E)-3-chlorobenzyl 3-(2-(tert-butylamino)pyrimidin-5-
yl)acrylate
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

5 g
(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino)
pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

ก	$\begin{aligned} & \stackrel{\leftrightarrow}{0} \\ & \stackrel{i}{i} \\ & \hline \end{aligned}$			
¢				

(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino) pyrimidin-5-yl)acrylate
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(126 \mathrm{MHz})$

5h
(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino)
pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino) pyrimidin-5-yl)acrylate
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

(E)-[1,1'-biphenyl]-4-ylmethyl 3-(2-(tert-butylamino) pyrimidin-5-yl)acrylate
${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{in} \mathrm{CDCl}_{3}(417 \mathrm{MHz})$

$5 i$
(E)-phenyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(400 \mathrm{MHz})$

(E)-phenyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate
${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}(101 \mathrm{MHz})$

5j
(E)-p-tolyl 3-(2-(tert-butylamino)pyrimidin-5-yl)acrylate ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3}(500 \mathrm{MHz})$

6. References

1. K. Walsh, H. F. Sneddon and C. J. Moody, ChemSusChem, 2013, 6, 1455-1460.
2. P. Rai, K. Maji and B. Maji, Org. Lett., 2019, 21, 3755-3759.
3. C. Brahms, P. Tholen, W. Saak and S. Doye, Eur. J. Org. Chem., 2013, 2013, 7583-7592.
4. J. M. P. L. P. C. S. A. E. J. P. J. P. Laurent, J. Lab. Com. Radio, 19, 195-201, doi.org/110.1002/jlcr. 2580190205.
5. G. Meng, R. Lalancette, R. Szostak and M. Szostak, Org. Lett., 2017, 19, 4656-4659.
6. F. Li, L. Chen, Q. Kang, J. Cai and G. Zhu, New J. Chem., 2013, 37, 624-631.
7. A. S. Hogendorf, A. Hogendorf, R. Kurczab, J. Kalinowska-Tluscik, P. Popik, A. Nikiforuk, M. Krawczyk, G. Satala, T. Lenda, J. Knutelska, R. Bugno, J. Staron, W. Pietrus, M. Matloka, K. Dubiel, R. Moszczynski-Petkowski, J. Pieczykolan, M. Wieczorek, B. Pilarski, P. Zajdel and A. J. Bojarski, Eur. J. Med. Chem., 2019, 179, 1-15.
8. Y. Odanaka, T. Kanemitsu, K. Iwasaki, Y. Mochizuki, M. Miyazaki, K. Nagata, M. Kato and T. Itoh, Tetrahedron, 2019, 75, 209-219.
9. S. L. Jinbo Zhao, Nadia Marino and Daniel A. Clark, Chem. Sci., 2013, 4, 1547-1551.
10. S. Maity, S. Agasti, A. M. Earsad, A. Hazra and D. Maiti, Chemistry, 2015, 21, 11320-11324.
11. C. Liu, N. Han, X. Song and J. Qiu, Eur. J. Org. Chem., 2010, 2010, 5548-5551.
12. A. J. Smith, E. D. Kalkman, Z. W. Gilbert and I. A. Tonks, Organometallics, 2016, 35, 24292432.
