Supporting Information

for

Isolation of Singlet Carbene Derived 2-Arsa-1,3-butadiene Radical Cations and Dications

Mahendra K. Sharma,^a Sebastian Blomeyer,^a Beate Neumann,^a Hans-Georg Stammler,^a Maurice van

Gastel,^b Alexander Hinz,^c Rajendra S. Ghadwal*,^a

^aMolecular Inorganic Chemistry and Catalysis Group, Chair of Inorganic and Structural Chemistry (ACS), Center for Molecular Materials (CM2), Faculty of Chemistry, Bielefeld University, Bielefeld, D-33615, Germany

^bMax-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, D-45470, Germany

^cInstitute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany. E-mail: rghadwal@uni-bielefeld.de Homepage: <u>www.ghadwalgroup.de</u>

Contents

Materials and Methods	2
Synthesis of (L)As(cAAC ^{Me}) 2a	2
Synthesis of (L)As(cAAC ^{Cy}) 2b	2
Synthesis of [(L)As(cAAC ^{Me})](GaCl ₄) 3a	3
Synthesis of [(L)As(cAAC ^{Cy})](GaCl ₄) 3b	3
Synthesis of [(L)As(cAAC ^{Me})](GaCl ₄) ₂ 4a	3
One-pot Synthesis of 4a	4
Synthesis of [(L)As(cAAC ^{Cy})](GaCl ₄) ₂ 4b	4
One-pot Synthesis of 4b	4
Plots of the NMR spectra	5
Plots of the IR spectra	9
Cyclic Voltammetry	12
UV-vis Spectroscopy	13
EPR Spectroscopy	16
Single Crystal X-Ray Crystallographic Details	18
Computational Details	23
References	50

Materials and Methods

All the experiments and manipulations were carried out under an inert gas (Ar or N₂) atmosphere using standard *Schlenk* techniques or an MBraun LABmaster Pro glovebox. THF (Na/K), *n*-hexane (Na/K), and diethyl ether (LiAlH₄) were dried by refluxing over appropriate drying agents, distilled prior to use, and stored over molecular sieve (3Å). Starting materials, {(IPr)C(Ph)}AsCl₂ (1)^[1] and cyclic alkyl amino carbenes (cAACs)^[2] were synthesized according to literature methods. GaCl₃ was purchased from ABCR and used without further purification. NMR spectra were recorded using a Bruker Avance III 500HD NMR spectrometer. Chemical shifts are given in δ ppm and are referenced to the solvent residual peaks.^[3] Melting points were measured using a Büchi B-545 melting point apparatus. UV-visible spectra were recorded using a Thermo Fisher Evolution 300 spectrophotometer. Infrared spectra were recorded using a Bruker Alpha-T FTIR spectrometer.

Synthesis of (L)As(cAAC^{Me}) 2a

To a Schlenk flask containing 1 (1.00 g, 1.60 mmol), cAACMe (0.71 g, 1.60 mmol), and Mg turnings (0.11 mg, 4.80 mmol) was added 20 mL THF at room temperature (rt). The resulting reaction mixture was stirred overnight at rt. During this period, the initially green solution resulted in an orange solution. The volatiles were removed in vacuo. The orange residue was extracted with 50 mL nhexane, filtered through a plug of Celite, and the filtrate was dried under vacuum to obtain 2a as an orange solid. Yield: 1.21 g, 90%. Mp: 132 °C (dec.). X-ray quality single crystals were grown by cooling a saturated *n*-pentane solution of 2a at -40 °C. Elemental analysis (%), calcd for 2a, C₅₄H₇₂AsN₃ (838.09): C, 77.39; H, 8.66; N, 5.01; found: C, 77.97; H, 8.97; N, 5.23. ¹H NMR $(500 \text{ MHz}, \text{C}_6\text{D}_6, 298 \text{ K}): \delta = 7.10-7.16 \text{ (m, 9H, C}_6H_3), 6.86 \text{ (br, 2H, C}_6H_5), 6.73 \text{ (t, } J = 7.5 \text{ Hz}, 2\text{H}, 2\text{H})$ C_6H_5), 6.62 (t, 1H, J = 7.2 Hz, C_6H_5), 5.81 (br, 1H, NCH), 5.70 (br, 1H, NCH), 3.73 (br, 2H, CH(CH₃)₂), 3.41 (br, 2H, CH(CH₃)₂), 2.82 (m, 2H, CH(CH₃)₂), 1.71 (s, 1H, CH₂), 1.38 (br, 12H, $CH(CH_3)_2$, 1.32 (br, 6H, $CH(CH_3)_2$), 1.23 (br, 6H, $CH(CH_3)_2$), 1.17 (d, J = 6.7 Hz, 6H, $CH(CH_3)_2$), 1.11 (d, J = 6.3 Hz, 6H, CH₃), 0.95 (s, 6H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, C₆D₆, 298 K): $\delta = 220.0 (C_{cAAC}); 148.5, 147.2, 147.0, 146.6, 146.2, 138.7, 135.4, 133.6 (C_6H_3); 126.2, 125.0, 124.8, 126.2, 126.$ 123.6, 122.3, 119.2, 118.2 (C₆H₅); 78.0 (CPh); 68.0, 56.9 (NC(CH₃)₂, C(CH₃)₂); 51.2 (CH₂); 29.5, 29.3, 29.1, 28.7 (CH(CH₃)₂; 26.1, 25.6, 24.5, 23.4, 22.6 (CH₃). UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 222 (23300), 268 (10300), 368 (10100), 438 (7750).

Synthesis of (L)As(cAAC^{Cy}) 2b

Compound **2b** was synthesized following a similar protocol as described for compound **2a**, using compound **1** (1.00 g, 1.60 mmol), $cAAC^{Cy}$ (0.77 g, 1.60 mmol), and Mg turnings (0.11 mg, 4.80 mmol). Yield: 1.3 g, 93%; orange solid. Mp: 129 °C (dec.). Elemental analysis (%), calcd for **2b**, $C_{57}H_{76}AsN_3$ (878.16): C, 77.96; H, 8.72; N, 4.79; found: C, 78.27; H, 8.97; N, 4.89. ¹H NMR

(500 MHz, C₆D₆, 298 K): $\delta = 7.27$ (d, J = 7.1 Hz, 2H, C₆H₃), 7.16–7.20 (m, 2H, C₆H₃), 7.12 (d, J = 7.4 Hz, 3H, C₆H₃), 7.07 (br, 2H, C₆H₃), 6.85 (br, 2H, C₆H₅), 6.78 (t, J = 7.2 Hz, 2H, C₆H₅), 6.58 (t, J = 7.0 Hz,1H, C₆H₅), 5.79 (br, 1H, NCH), 5.67 (br, 1H, NCH), 3.71 (br, 2H, CH(CH₃)₂), 3.47 (br, 2H, CH(CH₃)₂), 2.84 (m, 2H, CH(CH₃)₂), 1.74 (s, 1H, CH₂), 1.53 (br, 4H, Cy), 1.36 (br, 12H, CH(CH₃)₂), 1.22 (br, 12H, CH(CH₃)₂), 1.19 (d, J = 6.6 Hz, 12H, CH(CH₃)₂), 1.12 (br, 6H, CH₃), 0.95 (s, 6H, CH₃) ppm. ¹³C {¹H} NMR (125 MHz, C₆D₆, 298 K): $\delta = 219.8$ (C_{cAAC}); 149.3, 148.5, 147.3, 146.3, 145.1, 135.3, 133.7 (C₆H₃); 127.1, 125.1, 124.5, 123.6, 122.5, 119.1, 118.7 (C₆H₅); 79.7 (CPh); 68.0, 56.4 (NC(CH₃)₂, C(CH₃)₂); 49.2 (CH₂); 34.3, 29.6, 29.2, 28.8 (CH(CH₃)₂; 26.0, 25.5, 24.8, 24.3, 23.6, 22.8, 14.3 (CH₃). UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 238 (23040), 263 (16450), 321 (14960), 426 (16720).

Synthesis of [(L)As(cAAC^{Me})](GaCl₄) 3a

To a 20 mL diethyl ether solution of **2a** (200 mg, 0.24 mmol) was added GaCl₃ (84 mg, 0.48 mmol) at rt with constant stirring. After stirring overnight, the green precipitate was collected by filtration and dried in *vacuo* to afford **3a** as a dark green crystalline solid. Yield: 225 mg, 90%. Mp: 143 °C (dec.). Single crystals suitable for X-ray diffraction studies were grown by a slow diffusion of *n*-hexane into a saturated THF solution of **3a**. Elem. Anal. calcd. for **3a**, $C_{54}H_{72}AsCl_4GaN_3$ (1049.63): C, 61.79; H, 6.91; N, 4.00, found: C, C, 62.05; H, 7.22; N, 4.09. UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 223 (23180), 337 (5970), 448 (3790), 616 (11440), 749 (6380).

Synthesis of [(L)As(cAAC^{Cy})](GaCl₄) 3b

Compound **3b** was synthesized by following a similar protocol as described for compound **3a**, using compound **2b** (400 mg, 0.45 mmol), and GaCl₃ (160 mg, 0.90 mmol) as a dark green solid. Yield: 410 mg, 83%. Mp: 142 °C (dec.). Single crystals suitable for X-ray diffraction studies were grown by a slow diffusion of *n*-hexane into a saturated THF solution of **3b**. Elem. Anal. calcd. for **3b**, $C_{57}H_{76}AsCl_4GaN_3$ (1089.69): C, 62.83; H, 7.03; N, 3.86, found: C, 63.19; H, 7.45; N, 3.97. UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 235 (25770), 338 (9820), 452 (6810), 629 (18880), 757 (11010).

Synthesis of [(L)As(cAAC^{Me})](GaCl₄)₂4a

To a DCM solution (10 mL) of **3a** (50 mg, 0.05 mmol) was transferred GaCl₃ (17 mg, 0.10 mmol) at rt. The color of the solution turned green to yellow immediately, which was further stirred for 2h. The volatiles were removed in *vacuo* to afford **6** as a yellow solid. Yield: 60 mg, 99%. Mp: 139 °C (dec.). Single crystals of **4a** suitable for X-ray diffraction were grown by a slow diffusion of *n*-hexane into a saturated dichloromethane solution of **4a**. Elem. Anal. calcd. for **4a**, $C_{54}H_{72}AsCl_8Ga_2N_3$ (1261.16): C, 51.43; H, 5.75; N, 3.33; found: C, 51.73; H, 5.97; N, 3.49. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta = 7.95$ (s, 2H, NC*H*), 7.68–7.72 (m, 2H, C₆H₃), 7.60 (t, *J* = 7.8 Hz, 2H, C₆H₃), 7.43–7.50 (m, 5H, C₆H₃, C₆H₅), 7.28 (d, *J* = 7.8 Hz, 4H, C₆H₃, C₆H₅), 6.71 (d, *J* = 7.7 Hz, 2H, C₆H₅), 2.55 (m, 2H, CH(CH₃)₂), 2.35 (s, 2H, CH₂), 2.28 (m, 4H, CH(CH₃)₂), 1.57 (s, 6H, CH₃), 1.33 (d, *J* = 6.5 Hz, 6H,

CH(CH₃)₂), 1.18 (d, J = 6.7 Hz, 12H, CH(CH₃)₂), 1.14 (d, 6H, J = 6.6 Hz, CH(CH₃)₂), 0.98 (d, J = 6.7 Hz, 12H, CH(CH₃)₂), 0.63 (s, 6H, CH₃) ppm. ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 298 K): $\delta = 221.1$ (C_{cAAC}); 187.5, 147.4, 146.2, 145.2, 143.5, 135.3, 134.2, 131.8, 131.4 (C_{6} H₃); 129.0, 128.8, 128.0, 126.0 (C_{6} H₅); 87.2 (C(CH₃)₂; 74.2 (C(CH₃)₂; 58.2, 52.8 (CH₂); 30.5, 27.4, 26.7, 25.8, 25.4 (CH(CH₃)₂; 22.3 (CH₃) ppm. UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 241 (24940), 265 (20500), 330 (17300), 389 (18090).

One-pot Synthesis of 4a

To a DCM solution (5 mL) of 2a (0.15 g, 0.18 mmol), was transferred GaCl₃ (126 mg, 0.72 mmol) at rt. The color of the solution turned yellow immediately, which was further stirred for 2 h. Removal of volatiles afforded 4a as a yellow solid. Yield: 223 mg, 99%.

Synthesis of [(L)As(cAAC^{Cy})](GaCl₄)₂4b

Compound **4b** was synthesized following the similar protocol as described for compound **4a**, using compound **3b** (110 mg, 0.10 mmol), and GaCl₃ (36 mg, 0.20 mmol). Yield: 128 mg, 98%, yellow solid. Mp: 143 °C (dec.). Single crystals of **4b** suitable for X-ray diffraction were grown by a slow diffusion of *n*-hexane into a saturated dichloromethane solution of **7**. Elem. Anal. calcd. for **4b**, $C_{57}H_{76}AsCl_8Ga_2N_3$ (1301.23): C, 52.61; H, 5.89; N, 3.23; found: C, 52.93; H, 6.27; N, 3.37. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.99 (s, 2H, NC*H*), 7.73–7.68 (m, 2H, C₆*H*₃), 7.61 (t, *J* = 7.8 Hz, 2H, C₆*H*₅), 7.48 (t, *J* = 9.1 Hz, 4H, C₆*H*₃), 7.30 (d, *J* = 7.8 Hz, 4H, C₆*H*₅), 6.79 (d, *J* = 7.7 Hz, 2H, C₆*H*₅), 2.59 (br, 2H, C*H*(CH₃)₂), 2.34 (br, 6H, C*H*₂, C*H*(CH₃)₂), 1.58 (s, 6H, C*H*₃), 1.38-1.44 (m, 3H, C*H*₂), 1.33 (d, *J* = 6.4 Hz, 6H, CH(C*H*₃)₂), 1.18 (d, *J* = 6.4 Hz, 12H, CH(C*H*₃)₂), 1.12-1.14 (m, 3H, C*H*₂), 0.97 (br, 6H, CH(C*H*₃)₂), 0.92 (d, *J* = 6.4 Hz, 12H, CH(C*H*₃)₂), 0.33 (br, 3H, C*H*₃) ppm. ¹³C{¹H}</sup> NMR (125 MHz, CD₂Cl₂, 298 K): δ = 220.2 (*C*_{cAAC}); 186.6, 147.0, 146.4, 145.4, 142.9, 135.5, 134.0, 131.3, 131.1 (*C*₆H₃); 129.1, 128.7, 128.4, 126.1 (*C*₆H₅); 87.1 (*C*(CH₃)₂); 74.2 (*C*(CH₃)₂; 63.8, 46.2 (*C*H₂); 30.6, 30.4, 27.5 (CH(*C*H₃)₂; 26.2, 26.1, 25.8, 23.6, 22.5, 21.7 (*C*H₃) ppm. UV/vis (THF, λ (nm) (ε (M⁻¹ cm⁻¹)): 222 (20700), 265 (12740), 326 (6670), 402 (9501).

One-pot Synthesis of 4b

To a DCM solution (5 mL) of **2b** (0.15 g, 0.17 mmol), was transferred GaCl₃ (120 mg, 0.68 mmol) at rt. The color of the solution turned yellow immediately, which was further stirred for 2 h. Removal of volatiles afforded **4b** as a yellow solid. Yield: 217 mg, 98%.

Plots of the NMR spectra

Figure S1. ¹H NMR spectrum (C_6D_6 , 298 K, 500 MHz) of compound 2a.

Figure S2. ¹³C{¹H} NMR spectrum (C_6D_6 , 298 K, 125 MHz) of compound 2a.

Figure S3. ¹H NMR spectrum (C_6D_6 , 298 K, 500 MHz) of compound 2b.

Figure S4. ¹³C{¹H} NMR spectrum (C_6D_6 , 298 K, 125 MHz) of compound 2b.

Figure S5. ¹H NMR spectrum (CD₂Cl₂, 298 K, 500 MHz) of compound 4a.

Figure S6. ¹³C $\{^{1}H\}$ NMR spectrum (CD₂Cl₂, 298 K, 125 MHz) of compound 4a.

Figure S7. ¹H NMR spectrum (CD₂Cl₂, 298 K, 500 MHz) of compound 4b.

5.0

4.5

4.0 f1 (ppm) 3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

5.5

7.5

8.0

7.0

6.5

6.0

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 125 MHz) of compound 4b.

Plots of the IR spectra

Figure S9. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 2a.

Figure S10. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 2b.

Figure S11. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 3a.

Figure S12. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 3b.

Figure S13. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 4a.

Figure S14. Solution IR spectrum (CH₂Cl₂, 298 K) of compound 4b.

Cyclic Voltammetry

Figure S15. Cyclic voltammogram of **2a** in DCM (0.01 M *n*-Bu₄N[Al(OC(CF₃)₃]₄ as a supporting electrolyte, 100mVs⁻¹, *vs* Fc/Fc⁺). The cycle for Fc/Fc⁺ couple has been removed for clarity.

Figure S16. Cyclic voltammogram of **2b** in DCM (0.01 M *n*-Bu₄N[Al(OC(CF₃)₃]₄ as a supporting electrolyte, 100mVs⁻¹, *vs* Fc/Fc⁺). The cycle for Fc/Fc⁺ couple has been removed for clarity.

UV-vis Spectroscopy

Figure S17. UV-visible spectrum of 2a (10⁻⁴ M) recorded in THF.

Figure S18. UV-visible spectrum of 2b (10⁻⁴ M) recorded in THF.

Figure S19. UV-visible spectrum of 3a (10⁻⁴ M) recorded in THF.

Figure S20. UV-visible spectrum of 3b (10⁻⁴ M) recorded in THF.

Figure S21. UV-visible spectrum of 4a (10⁻⁴ M) recorded in THF.

Figure S22. UV-visible spectrum of 4b (10⁻⁴ M) recorded in THF.

EPR Spectroscopy

The continuous wave (CW) EPR experiments were performed at room temperature (298 K) as well as at 80 K on a Bruker standard ST9402 resonator and with a Bruker ELEXSY E500 spectrometer. The microwave frequency was 9.628 GHz and the modulation amplitude was 0.3 mT.

Figure S23. Experimental and simulated EPR spectrum of compound **3a** (1 mM THF solution) at 80 K. Microwave freq. 9.628 GHz, power = 2 mW, mod. freq. 100 KHz.

Figure S24. Experimental and simulated EPR spectrum of compound **3b** (1 mM THF solution) at 80 K. Microwave freq. 9.628 GHz, power = 2 mW, mod. freq. 100 KHz.

Simulation parameters (g-values, g_x , g_y and g_z ; linewidth parameters l_x , l_y and l_z [MHz] and hyperfine coupling constants A_x , A_y and A_z [MHz]) used in the EPR simulations at 80 K, and comparison to DFT calculations (M06-2X/def2TZVP).

	Simul	ation	DF	Т
	3 a	3 b	3 a	3 b
g _x	2.0237	2.0566	2.0238	2.0242
gy	2.0064	2.0058	2.0028	2.0028
g_z	1.9960	2.0000	1.9964	1.9959
$l_{\rm x}$	49	48		
ly	87	101		
lz	137	117		
$A_{\mathbf{x}}$	-76	-72	-78	-83
A_{y}	2	4	-70	-75
A_{z}	253	248	149	158

Single Crystal X-Ray Crystallographic Details

The single crystal data were examined on a Rigaku Supernova diffractometer using either MoK α ($\lambda = 0.71073$ Å) or CuK α ($\lambda = 1.54184$ Å) radiation. The crystals were kept at 100.0(1) K during data collection. Using Olex2^[4], the structure was solved with the ShelXT^[5] structure solution program using Intrinsic Phasing and refined with the ShelXL^[6] refinement package using Least Squares minimization. Hydrogen atoms were taken into account using a riding model. Details of the X-ray investigation are given in Table T1 and T2. CCDC 1966689-1966694 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.

	2a	2b	3 a	
Empirical formula	C ₅₄ H ₇₂ AsN ₃	C ₅₇ H ₇₆ AsN ₃	C ₅₄ H ₇₂ AsCl ₄ GaN ₃	
Formula weight	838.06	878.12	1049.58	
Temperature/K	100.0(1)	100.0(1)	100.0(1)	
Crystal system	monoclinic	monoclinic	triclinic	
Space group	P2 ₁ /n	P2 ₁ /c	P-1	
a/Å	12.59029(7)	18.8381(6)	11.4502(3)	
b/Å	15.93625(8)	11.9051(4)	19.3524(5)	
c/Å	23.78509(12)	22.8999(7)	25.1018(7)	
α/°	90	90	76.229(2)	
β/°	93.2310(5)	101.668(3)	89.254(2)	
γ/°	90	90	88.856(2)	
Volume/Å ³	4764.70(4)	5029.6(3)	5401.1(3)	
Ζ	4	4	4	
$\rho_{calc}g/cm^3$	1.168	1.160	1.291	
μ/mm ⁻¹	1.235	0.714	1.352	
F(000)	1800.0	1888.0	2196.0	
Crustal size/mm ³	$0.301 \times 0.147 \times 0.108$	0.229 × 0.089 ×	0 153 × 0 118 × 0 029	
	0.501 ~ 0.147 ~ 0.108	0.026	0.155 ^ 0.118 ^ 0.029	
Radiation/Å	$C_{11} K_{12} (\lambda = 1.54184)$	Mo K α (λ =	$M_0 K_\alpha (\lambda = 0.71073)$	
Kadiation/A	Cu Ku (X 1.34104)	0.71073)	Mora (<i>n</i> = 0.71075)	
20 range for data collection/°	6.68 to 153.038	3.632 to 64.312	3.034 to 64.308	
Index ranges	$-15 \leq h \leq 15, \ -20 \leq k \leq$	$-19 \le h \le 27, -16 \le k$	$-16 \le h \le 16, -28 \le k \le$	
Index ranges	$20, -29 \le 1 \le 29$	$\leq 17, -34 \leq l \leq 31$	28, $-37 \le 1 \le 37$	
Reflections collected	132664	41417	96628	
Independent reflections	9986 [$R_{int} = 0.0523$,	$15892 [R_{int} = 0.0567,$	$34476 [R_{int} = 0.0596,$	
	$R_{sigma} = 0.0195$]	$R_{sigma} = 0.0866$]	$R_{sigma} = 0.0807$]	
Reflections with $I > 2\sigma(I)$	9089	10560	23488	
Data/restraints/parameters	9986/0/811	15892/0/564	34476/0/1167	
Goodness-of-fit on F ²	1.026	1.036	1.041	
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0269, wR_2 =$	$R_1 = 0.0554, wR_2 =$	$R_1 = 0.0550, wR_2 =$	
[1 mar K mackes [1 > 20(1)]]	0.0677	0.1071	0.1135	
Final R indexes [all data]	$R_1 = 0.0307, wR_2 =$	$R_1 = 0.1008, wR_2 =$	$R_1 = 0.0956, wR_2 =$	
	0.0705	0.1247	0.1294	
Largest diff. peak/hole / e Å ⁻³	0.39/-0.41	0.45/-0.52	1.39/-0.69	
CCDC	1966689	1966690	1966691	

Table S1. Crystal data and structure refinement for compounds 2a, 2b, and 3a.

	3b	4a	4b	
Empirical formula	C ₅₇ H ₇₆ AsCl ₄ GaN ₃	C54H72AsCl8Ga2N3	C ₅₇ H ₇₆ AsCl ₈ Ga ₂ N ₃	
Formula weight	1089.64	1261.10	1301.16	
Temperature/K	100.0(1)	100.0(1)	100.0(1)	
Crystal system	monoclinic	orthorhombic	triclinic	
Space group	P2 ₁ /n	Pbca	P-1	
a/Å	12.6066(3)	18.8893(4)	13.7117(5)	
b/Å	23.8366(5)	26.1136(4)	24.2939(7)	
c/Å	18.7085(4)	24.2536(4)	24.8610(8)	
α/°	90	90	100.452(2)	
β/°	98.410(2)	90	98.045(3)	
γ/°	90	90	98.408(3)	
Volume/Å ³	5561.4(2)	11963.5(4)	7937.7(5)	
Ζ	4	8	4	
$\rho_{calc}g/cm^3$	1.301	1.400	1.089	
µ/mm ⁻¹	1.316	5.283	1.391	
F(000)	2284.0	5184.0	2680.0	
Crystal size/mm3	0.435 × 0.272 ×	0.244 × 0.160 × 0.045	0.167 × 0.11 × 0.042	
	0.169	0.244 × 0.169 × 0.045	0.107 × 0.11 × 0.043	
Radiation/Å	MoKα (λ = 0.71073)	Cu Ka (λ = 1.54184)	MoKα (λ = 0.71073)	
2Θ range for data collection/°	3.418 to 64.3	6.77 to 136.482	3.048 to 50.7	
Index ranges	$-18 \le h \le 18, -33 \le k$	-22 \leq h \leq 22, -30 \leq k \leq	$\textbf{-16} \leq \textbf{h} \leq \textbf{16}, \textbf{-29} \leq \textbf{k} \leq$	
index ranges	$\leq 29, -26 \leq l \leq 27$	$31, -29 \le 1 \le 29$	$29, -29 \le 1 \le 29$	
Reflections collected	58501	141043	97309	
Independent reflections	$17861 [R_{int} = 0.0446,$	$10879 [R_{int} = 0.1217,$	29076 [R _{int} = 0.0664,	
	$R_{sigma} = 0.0514]$	$R_{sigma} = 0.0466$]	$R_{sigma} = 0.0755$]	
Reflections with $I > 2\sigma(I)$	13268	8619	19032	
Data/restraints/parameters	17861/0/609	10879/92/661	29076/0/1344	
Goodness-of-fit on F ²	1.011	1.087	1.012	
Einal D indexes $[I > 2-(I)]$	$R_1 = 0.0403, wR_2 =$	$R_1 = 0.0676, wR_2 =$	$R_1 = 0.0498, wR_2 =$	
[I] = [I] = 20(I)	0.0850	0.1669	0.1177	
Final R indexes [all data]	$R_1 = 0.0661, wR_2 =$	$R_1 = 0.0850, wR_2 =$	$R_1 = 0.0829, wR_2 =$	
	0.0949	0.1792	0.1308	
Largest diff. peak/hole / e Å ⁻³	0.71/-0.61	1.25/-0.73	0.87/-0.47	
CCDC	1966692	1966693	1966694	

 Table S2. Crystal data and structure refinement for compounds 3b, 4a, and 4b.

Figure S25. Solid-state molecular structures of 2-arsa-1,3-butadienes **2b**. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): C2–As1 1.947(2), As1–C3 1.861(2), C1–C2 1.374(3), N1–C1 1.406(3), N2–C1 1.419(3), N3–C3 1.379(3); C2–As1–C3 109.0(1), C1–C2–As1 117.7(2), C2–C1–N1 128.5(2), C2–C1–N2 128.4(2), As1–C3–N3 115.9(1).

Figure S26. Solid-state molecular structures of radical cation 3b. Hydrogen atoms, second molecules, and the counter anions GaCl₄ have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): C2–As1 1.887(2), As1–C3 1.929(2), C1–C2 1.419(2), N1–C1 1.379(2), N2–C1 1.381(2), N3–C3 1.335(2); C2–As1–C3 109.2(1), C1–C2–As1 115.7(1), C2–C1–N1 128.6(2), C2–C1–N2 126.9(2), As1–C3–N3 115.2(1).

Figure S27. Solid-state molecular structures of dication **4b**. Hydrogen atoms and the counter anions GaCl₄ have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): C2–As1 1.826(4), C3–As1 2.001(4), C1–C2 1.459(5), N1–C1 1.357(5), N2–C1 1.345(4), N3–C3 1.287(5); C2–As1–C3 101.9(2), C1–C2–As1 116.3(3), C2–C1–N1 128.0(3), C2–C1–N2 124.8(3), As1–C3–N3 122.7(3).

Computational Details

All geometries were optimized with the Gaussian 16 program suite^[7] using the DFT functional M06-2X^[8] in combination with the Ahlrich's def2-SVP^[9] basis function as implemented. The stationary points were located with the Berny algorithm using redundant internal coordinates. Analytical Hessians were computed to determine the nature of stationary points (zero imaginary frequencies for minima).^[10] The electronic energies were improved by single point calculations at the M06-2X/def2-TZVPP level of theory.

The Wiberg Bond Indices (WBI)^[11] and NPA^[12] atomic partial charges were calculated at the M06-2X/def2-TZVPP//M06-2X/def2-SVP level of theory using the NBO 3.1 interface of Gaussian.^[13]

Time-dependent density functional theory (Full-TDDFT) was employed to calculate excitation energies as implemented in ORCA 4.0.1.^[14] We used the functional M06-2X in combination the def2-SVP basis sets. The solvent (THF) was described by the conductor-like polarizable continuum model, CPCM.^[15]

Table S3. Electronic energies of selected molecular orbitals of compounds **2a-b**, **3a-b**, and **4a-b** calculated at M06-2X/def2-TZVPP//M06-2X/def2-SVP level of theory. For the radical cations **3a** and **3b**, the value for both (α/β) spin orbitals are given

orbital	energy / eV						
orbital	2a	2b	3 a	3b	4 a	4b	
L+1	+0.29	+0.29	-2.49/-2.51	-2.46/-2.52	-5.97	-5.94	
L	+0.09	+0.06	-3.10/-4.57	-3.14/-4.53	-7.89	-7.82	
S/H	-4.89	-4.89	-7.98/-9.28	-7.94/-9.24	-12.72	-12.71	
S-1/H-1	-6.28	-6.25	-9.88/-9.94	-9.84/-9.90	-12.76	-12.73	
S-2/H-2	-6.94	-6.92	-1.01/-10.24	-9.98/-10.24	-12.87	-12.83	
S-3/H-3	-7.61	-7.65	-10.25/-10.30	-10.25/-10.28	-12.95	-12.92	
S-4// H-4	-7.76	-7.74	-10.33/-10.40	-10.31/-10.38	-13.03	-12.99	
SOMO-LUMO or	4.98	4.95	4.88/4.71	4.80/4.71	4.83	4.89	
HOMO-LUMO gap							
L = lowest unoccupied molecular orbital (LUMO); S = singly occupied molecular orbital (SOMO); H = highest							
occupied molecular of	rbital (HON	(ON					

	Wiberg bond indices					
bond	2a	2b	3 a	3b	4a	4b
As-C(C-Ph)	0.90	0.90	1.13	1.13	1.56	1.57
C(C-Ph)-C(IPr) _{ipso}	1.53	1.53	1.25	1.25	1.09	1.09
C(IPr) _{ipso} –N(IPr) _{cis} ^a	1.07	1.07	1.18	1.18	1.25	1.25
C(IPr) _{ipso} -N(IPr) _{trans} ^a	1.06	1.06	1.17	1.17	1.25	1.25
N(IPr) _{cis} -C(IPr) _{cis}	1.06	1.06	1.11	1.10	1.16	1.16
N(IPr) _{trans} C(IPr) _{trans}	1.07	1.07	1.12	1.12	1.17	1.17
C(IPr)cis–C(IPr) _{trans}	1.73	1.73	1.66	1.66	1.59	1.59
As–C(pyrollidine)	1.50	1.49	1.11	1.09	0.87	0.87
C(pyrollidine) _{ipso} -	1.14	1.15	1.37	1.37	1.62	1.61
N(pyrollidine)						
C(pyrollidine) _{ipso} -	0.96	0.97	0.97	0.98	0.98	1.00
$C(Me_2)^{\beta}$						
$C(Me_2)^{\beta}$			NPA atom	nic charge		
C(Me ₂) ^β	2a	2b	NPA aton 3a	nic charge 3b	4a	4b
C(Me ₂) ^β atom As	2a +0.51	2b +0.50	NPA atom 3a +0.69	nic charge 3b +0.69	4a +0.94	4b +0.94
$C(Me_2)^{\beta}$ atom As $C(C-Ph)$	2a +0.51 -0.57	2b +0.50 -0,57	NPA atom 3a +0.69 -0.55	nic charge 3b +0.69 -0.55	4a +0.94 -0.45	4b +0.94 -0.46
$C(Me_2)^{\beta}$ atom As $C(C-Ph)$ $C(IPr)_{ipso}$	2a +0.51 -0.57 +0.42	2b +0.50 -0,57 +0.42	NPA atom 3a +0.69 -0.55 +0.45	nic charge 3b +0.69 -0.55 +0.45	4a +0.94 -0.45 +0.41	4b +0.94 -0.46 +0.41
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ \hline N(IPr)_{cis} \\ \end{array}$	2a +0.51 -0.57 +0.42 -0.45	2b +0.50 -0,57 +0.42 -0.45	NPA atom 3a +0.69 -0.55 +0.45 -0.37	nic charge 3b +0.69 -0.55 +0.45 -0.37	4a +0.94 -0.45 +0.41 -0.32	4b +0.94 -0.46 +0.41 -0.32
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ N(IPr)_{cis} \\ \hline N(IPr)_{trans} \\ \end{array}$	2a +0.51 -0.57 +0.42 -0.45 -0.45	2b +0.50 -0,57 +0.42 -0.45 -0.45	NPA atom 3a +0.69 -0.55 +0.45 -0.37 -0.37	nic charge 3b +0.69 -0.55 +0.45 -0.37 -0.37	4a +0.94 -0.45 +0.41 -0.32 -0.31	4b +0.94 -0.46 +0.41 -0.32 -0.32
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ N(IPr)_{cis} \\ \hline N(IPr)_{trans} \\ \hline C(IPr)_{cis} \\ \hline \end{array}$	2a +0.51 -0.57 +0.42 -0.45 -0.45 -0.09	2b +0.50 -0,57 +0.42 -0.45 -0.45 -0.09	NPA atom 3a +0.69 -0.55 +0.45 -0.37 -0.37 -0.06	nic charge 3b +0.69 -0.55 +0.45 -0.37 -0.37 -0.06	4a +0.94 -0.45 +0.41 -0.32 -0.31 -0.03	4b +0.94 -0.46 +0.41 -0.32 -0.32 -0.04
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ \hline N(IPr)_{cis} \\ \hline N(IPr)_{trans} \\ \hline C(IPr)_{cis} \\ \hline C(IPr)_{trans} \\ \hline C(IPr)_{trans} \\ \hline \end{array}$	2a +0.51 -0.57 +0.42 -0.45 -0.45 -0.09 -0.08	2b +0.50 -0,57 +0.42 -0.45 -0.45 -0.09 -0.08	NPA atom 3a +0.69 -0.55 +0.45 -0.37 -0.37 -0.06 -0.05	nic charge 3b +0.69 -0.55 +0.45 -0.37 -0.37 -0.06 -0.05	4a +0.94 -0.45 +0.41 -0.32 -0.31 -0.03	4b +0.94 -0.46 +0.41 -0.32 -0.32 -0.04
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ \hline N(IPr)_{cis} \\ \hline N(IPr)_{trans} \\ \hline C(IPr)_{cis} \\ \hline C(IPr)_{trans} \\ \hline C(C=As) \\ \hline \end{array}$	2a +0.51 -0.57 +0.42 -0.45 -0.45 -0.09 -0.08 -0.05	2b +0.50 -0,57 +0.42 -0.45 -0.45 -0.09 -0.08 -0.04	NPA atom 3a +0.69 -0.55 +0.45 -0.37 -0.06 -0.05 -0.09	nic charge 3b +0.69 -0.55 +0.45 -0.37 -0.37 -0.06 -0.05 +0.10	4a +0.94 -0.45 +0.41 -0.32 -0.31 -0.03 +0.24	4b +0.94 -0.46 +0.41 -0.32 -0.03 +0.25
$\begin{array}{c} C(Me_2)^{\beta} \\ \hline \textbf{atom} \\ \hline As \\ C(C-Ph) \\ \hline C(IPr)_{ipso} \\ N(IPr)_{cis} \\ \hline N(IPr)_{trans} \\ \hline C(IPr)_{cis} \\ \hline C(IPr)_{trans} \\ \hline C(C=As) \\ \hline N(N-C=As) \\ \hline \end{array}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	2b +0.50 -0,57 +0.42 -0.45 -0.45 -0.09 -0.08 -0.04 -0.50	NPA atom 3a +0.69 -0.55 +0.45 -0.37 -0.06 -0.05 -0.09 -0.41	nic charge 3b +0.69 -0.55 +0.45 -0.37 -0.37 -0.06 -0.05 +0.10 -0.41	$\begin{array}{r} \textbf{4a} \\ +0.94 \\ -0.45 \\ +0.41 \\ -0.32 \\ -0.31 \\ -0.03 \\ -0.03 \\ +0.24 \\ -0.35 \end{array}$	4b +0.94 -0.46 +0.41 -0.32 -0.03 -0.03 +0.25 -0.35

Table S4. Wiberg bond indices as well as natural population analysis (NPA) atomic charges of compounds **2a-b**, **3a-b**, and **4a-b** calculated at M06-2X/def2-TZVPP//def2-SVP level of theory.

^a This nomenclature is chosen to distinguish between the different C–N and N–C bonds within the IPr substituents. Herein, *cis* means that the nitrogen atom involved in the above-mentioned bonds is approximately *cis*-oriented with respect to the arsenic atom.

state no.	λ / nm	ſ	Assignment
1	413.0	0.1322	$H \rightarrow L \ (c = 0.9242)$
2	383.6	0.1983	$H \rightarrow L+1 \ (c = 0.8349)$
15	247.4	0.1043	$H \rightarrow L+11 \ (c = 0.2514)$
36	208.6	0.0909	H−2 → L+7 ($c = 0.2177$)
45	200.7	0.0726	$H-5 \rightarrow L (c = 0.2583)$

Table S5. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **2a**; threshold for printing excitations was chosen to be $f \ge 0.06$.

Figure S28. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **2a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
1	418.1	0.1422	$H \rightarrow L \ (c = 0.9347)$
2	384.1	0.1666	$H \rightarrow L+1 \ (c = 0.8349)$
15	249.3	0.0999	$H \rightarrow L+10 \ (c = 0.2537)$
45	202.1	0.0742	H−2 → L+6 ($c = 0.2490$)

Table S6. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **2b**; threshold for printing excitations was chosen to be $f \ge 0.06$.

Figure S29. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **2b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
1	681.3	0.1218	$S-1 \rightarrow S (c = 0.9139)$
2	557.4	0.1443	$S \rightarrow L (c = 0.8850)$
4	400.4	0.0363	$S \rightarrow L+1 \ (c = 0.7513)$
22	296.1	0.0378	$S-8 \rightarrow S (c = 0.5789)$
41	250.7	0.0484	$S \rightarrow L+12 (c = 0.2437)$
44	240.5	0.0388	$S-1 \rightarrow L+1 \ (c = 0.3335)$

Table S7. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **3a**; threshold for printing excitations was chosen to be $f \ge 0.03$.

Figure S30. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **3a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
1	684.8	0.1215	$S-1 \rightarrow S (c = 0.9151)$
2	574.1	0.1335	$S \rightarrow L (c = 0.8901)$
4	397.8	0.0371	$S \rightarrow L+1 \ (c = 0.7737)$
41	252.5	0.0540	$S \rightarrow L+12 (c = 0.2122)$
44	240.7	0.0313	$S-1 \rightarrow L+1 \ (c = 0.2839)$

Table S8. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **3b**; threshold for printing excitations was chosen to be $f \ge 0.03$.

Figure S31. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **3b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	419.2	0.1969	$H \rightarrow L \ (c = 0.6464)$
6	357.2	0.0569	H−6 → $L(c = 0.6671)$
8	326.9	0.0992	H−7 → L ($c = 0.9148$)
12	261.5	0.0429	$H \rightarrow L+1 \ (c = 0.3593)$
23	225.8	0.0898	$H \rightarrow L+2 \ (c = 0.3137)$
46	201.3	0.0677	H−6 → L+5 ($c = 0.0514$)
			$H \rightarrow L+8 \ (c = 0.0515)$

Table S9. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **4a**; threshold for printing excitations was chosen to be $f \ge 0.04$.

Figure S32. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **4a** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

state no.	λ / nm	f	Assignment
2	416.3	0.2042	$H \rightarrow L \ (c = 0.7401)$
8	325.7	0.0709	H−7 → L ($c = 0.8583$)
25	225.5	0.1265	$H \rightarrow L+2 \ (c = 0.4543)$
49	201.5	0.0721	H−9 → L ($c = 0.0761$)

Table S10. Wavelength (λ), oscillator strength (f) and main assignment of the TD-PCM(thf)/M06-2X/def2-SVP results for compound **4b**; threshold for printing excitations was chosen to be $f \ge 0.04$.

Figure S33. UV-visible spectrum (lines: top; Gaussian line broadening with a full width at half maximum (fwhm) of 50 cm⁻¹: bottom) of **4b** calculated at TD-PCM(thf)/M06-2X/def2-SVP.

Table S11. Calculated *g*-factor and hyperfine coupling constants (*A* in MHz), Löwdin and Mulliken (in parenthesis) spin densities for the arsabutadiene radical cations **3a** and **3b** calculated at the TPSS/decon-def2-TZVP//M06-2X/def2-SVP level of theory.

	3 a	3b
g-factor	2.0060857	2.0061639
$A_{\rm iso}({\rm As})$	38.6512	41.9547
$A_{\rm iso}({ m N_{\rm IPr_cis}})$	3.2196	3.2070
$A_{\rm iso}({ m N}_{ m IPr_trans})$	4.6039	4.5099
$A_{\rm iso}(N_{\rm pyrollidine})$	6.8914	6.8262
$A_{\rm iso}({\rm H}_{\rm Ph-ortho})$	-1.2318	-1.0922
$A_{\rm iso}({\rm H}_{\rm Ph-ortho})$	-1.3052	-1.2064
A _{iso} (H _{Ph-para})	-0.6674	-0.5516
A _{iso} (H _{IPr})	-2.4688	-2.4866
A _{iso} (H _{IPr})	-1.7101	-1.7446
$\rho_{\rm spin}({\rm As})$	0.20(0.21)	0.21(0.23)
$ ho_{\rm spin}({ m C}_{ m vinylic})$	0.22(0.26)	0.21(0.25)
$ ho_{ m spin}({ m C}_{ m carb-ipso})$	0.04(0.02)	0.04(0.02)
$ ho_{ m spin}(m N_{ m IPr_cis})$	0.05(0.06)	0.05(0.06)
$ ho_{\rm spin}({ m N}_{\rm IPr_trans})$	0.05(0.07)	0.05(0.06)
$ ho_{ m spin}(m C_{ m IPr_cis})$	0.04(0.04)	0.04(0.04)
$ ho_{ m spin}(m C_{ m IPr_trans})$	0.03(0.02)	0.03(0.03)
$ ho_{ m spin}({ m C}_{ m Ph-\it ipso})$	0.02(0.00)	0.02(0.00)
$ ho_{ m spin}({ m C}_{ m Ph-ortho})$	0.01(0.01)	0.01(0.01)
$ ho_{ m spin}({ m C}_{ m Ph-ortho})$	0.01(0.02)	0.01(0.02)
$ ho_{ m spin}({ m C}_{ m Ph-para})$	0.01(0.01)	0.01(0.01)
$ ho_{ m spin}(m C_{ m pyrollidine-ipso})$	0.13(0.16)	0.13(0.16)
$ ho_{ m spin}({ m N}_{ m pyrollidine})$	0.11(0.13)	0.11(0.13)

Figure S34. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **2a**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

LUMO+1

Figure S35. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **2b**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

Figure S36. Selected molecular orbitals (from SOMO-4 to LUMO+1) and spin density plot of compound **3a**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04 for molecular orbitals and 0.004 for spin density. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

Figure S37. Selected molecular orbitals (from SOMO-4 to LUMO+1) and spin density plot of compound **3b**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04 for molecular orbitals and 0.004 for spin density. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

LUMO+1

Figure S38. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **4a**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

LUMO+1

Figure S39. Selected molecular orbitals (from HOMO–4 to LUMO+1) of compound **4b**, calculated at M06-2X/def2-TZVPP//def2-SVP. The isovalue was arbitrarily chosen to be 0.04. Hydrogen atoms, methyl groups as well as *iso*-propyl groups were omitted for clarity reasons.

<u>2a</u>		V _{mi}	$n = 14 \text{ cm}^{-1}$	E = -4498.2889419
	С	1.833868	0.687798	0.395966
	С	1.025734	-0.350871	-0.035483
	C	1.612818	-1.700348	-0.249997
	AS N	-0.886967	-0.207866	0.355433
	C	2 543001	2 662454	1 342322
	C	3.605651	1.848026	1.296819
	Ν	3.205548	0.650408	0.709563
	С	0.388259	2.833122	0.309299
	С	-0.638302	3.182541	1.205505
	С	-1.529300	4.189258	0.821461
	С	-1.397060	4.833646	-0.404016
	C	-0 382528	3.408/21 / /65591	-0.939931
	С	1.655063	3.080482	-1.892101
	H	-0.290984	4.975492	-2.242188
	Н	-2.095762	5.624837	-0.682092
	С	-0.755821	2.538270	2.575814
	Н	-2.332689	4.479281	1.501067
	H	2.440155	3.684919	1.689198
	H	4.625861	1.981523	1.641753
	C	4.10/0/2	-0.394064	1 561966
	C	5.371903	-2.303993	1.332919
	C	6.122885	-2.330413	0.167920
	С	5.904973	-1.373424	-0.821069
	С	4.917433	-0.403253	-0.664914
	С	4.629117	0.598243	-1.775101
	H	6.495410	-1.404476	-1.737309
	Н	6.880070	-3.102818	0.024019
	н	5.762704	-1.321828	2.953529
	C	-0.189864	3.460212	3.662413
	Н	0.870563	3.691290	3.487575
	Н	-0.274316	2.983966	4.650617
	Н	-0.744487	4.411094	3.693320
	H	-0.147482	1.622458	2.558637
	C	-2.196219	2.135884	2.893767
	п	-2.839184	3.UI3381 1 532003	3.000209
	Н	-2.626022	1.538791	2.077532
	Н	2.468137	2.649086	-1.286897
	С	2.242633	4.272694	-2.647955
	С	1.167643	1.999265	-2.863234
	Н	0.774166	1.131734	-2.315269
	H	1.989704	1.660449	-3.514441
	H	U.364618 2 551703	2.396444	-3.504/45
	Н	1.524194	4,694290	-3.366747
	Н	3.123787	3.952793	-3.223312
	С	4.915761	0.040675	-3.171288
	С	5.401276	1.909374	-1.579622
	Н	3.552734	0.829210	-1.724802
	H	5.996958	-0.054535	-3.353112
	п	4.518548	-0 9/8517	-3.935768
	Н	6.484954	1.714967	-1.568782
	Н	5.130890	2.411033	-0.641762
	Н	5.187583	2.604511	-2.405912
	С	2.430227	-0.603734	3.185776
	С	4.796920	-0.801076	3.964888
	H	3.589861	-2.388438	3.1/6341
	п	5 743158	-1 356772	3 908683
	Н	4.405838	-0.881033	4.989941
	Н	2.543811	0.490320	3.191177
	Н	2.051117	-0.896150	4.176395
	Н	1.669092	-0.864966	2.442198
	С	-1.843239	-1.303087	-0.797000
		-3.194656 _1 /70553	-1.406440 -2 122022	-0.30//13
	C	-1.470353	-3.456823	-1.702905
	C	-0.605811	-1.308154	-3.009194
	С	-2.856902	-2.378105	-2.679979
	С	-3.851295	-2.420459	-1.517999
	С	-5.252389	-1.971066	-1.917060

С	-3.963164	-3.846502	-0.960231
Н	-2.873694	-3.299175	-3.279647
Н	-3.115531	-1.542445	-3.349008
Н	0.325338	-3.355213	-1.763905
Н	-1.066031	-4.235343	-2.419333
Н	-0.995657	-3.807060	-0.688880
н	0 360759	-1 061242	-2 554889
н	-1 106551	-0 367925	-3 286824
н	-0 420527	-1 893650	-3 924047
C	-3 946279	-0 513491	0 205008
u u	-1 103197	-1 193193	-1 732863
п u	-4.403497	-3 979334	-1.752803
п	2 000552	4 265204	-0.001047
п	-2.909000	-4.203204	2 401422
п	-J.244011	-0.990626	-2.401433
н	-5.918414	-1.924165	-1.042574
H	-5.668614	-2.699339	-2.62/432
C	-4.353986	-0./64/88	1.533/48
C	-5.117678	0.217369	2.188141
С	-5.450078	1.419415	1.588073
С	-5.008438	1.673525	0.294456
С	-4.263516	0.730633	-0.413957
С	-3.845970	1.101982	-1.832467
Н	-6.035476	2.163715	2.130195
Н	-5.251507	2.625099	-0.182470
С	-4.097163	-2.008707	2.387488
Н	-5.437255	0.022604	3.214945
С	-2.834782	-2.826659	2.126655
С	-5.358600	-2.883632	2.439938
Н	-3.971456	-1.602019	3.404440
Н	-5.642114	-3.245842	1.442217
Н	-6.215149	-2.317505	2.832818
Н	-5.196104	-3.757503	3.088417
Н	-2.879389	-3.393079	1.192212
Н	-2.703494	-3.545518	2.949340
Н	-1.948377	-2.180067	2.086184
С	-2.806220	2.225200	-1.840122
C	-5.042979	1.538194	-2.692246
H	-3.386208	0.219949	-2.294247
Н	-5.398685	2.533310	-2.386441
н	-5.897375	0.851534	-2.622238
н	-4.741678	1,612695	-3.747876
н	-3 246683	3 154633	-1 449898
н	-2 465821	2 424013	-2 869039
н	-1 930792	1 979050	-1 224174
C	2 /31763	_1 988257	_1 351723
c	1 361000	-2 7/0001	0 655073
c	1 036157	-2.749091	0.000070
c	1.330137 3 015377	-3 2/3030	_1 501/55
c	3.ULJ3// 2.772/1/	-3.243039	-1.321433
U U	2.//3414	-4.2J9232 5 040500	-0.399091
п	3.22/030	-3.242300	-0./2943/
H	1.121913	-4./94265	1.214380
Н	2.6121/9	-1.200256	-2.085812
H	3.662202	-3.426811	-2.382154
Н	0.691112	-2.568132	1.498283

2h	Veis	$= 10 \text{ cm}^{-1}$	<i>E</i> = -	-4614.8816778
<u>20</u> С	1.874012	0.962004	0.300754	1014.0010770
C	1.042714	-0.142155	0.217384	
С	1.593135	-1.503605	0.458226	
As	-0.879593	0.124021	0.484142	
N	1.533851	2.327948	0.282430	
C	2.699968	2.288674	0.760170	
N	3.255166	0.982876	0.572114	
С	0.447170	3.035497	-0.335718	
С	-0.543810	3.602026	0.485391	
С	-1.444916	4.497781	-0.098203	
C	-1.551679	4.029902	-1.706958	
C	-0.373516	4.246848	-2.245535	
С	1.615747	2.701500	-2.577024	
Н	-0.316766	4.509398	-3.302803	
Н	-2.054871	5.542450	-1.880994	
Н	-2.222635	4.951833	0.518339	
H	2.581164	4.190391	0.617120	
Н	4.735154	2.490046	1.016165	
С	4.194999	-0.092245	0.646800	
C	4.489670	-0.682872	1.884392	
c	6.096594	-2.110762	0.735547	
C	5.813161	-1.481907	-0.475465	
С	4.850568	-0.477351	-0.545309	
С	4.482824	0.159994	-1.878789	
H	6.3316/5 6.833210	-1.801275	-1.380031	
C	3.946384	-0.264763	3.251355	
Н	5.659212	-2.217881	2.836900	
С	0.042098	4.433615	2.781899	
Н	1.097578	4.573053	2.507582	
н	-0.483564	4.208254 5 385984	2 610423	
Н	-0.023414	2.387990	2.147080	
С	-2.037740	3.041021	2.442531	
Н	-2.649264	3.956916	2.421508	
Н	-2.033892	2.672240	3.479570	
н	2.462678	2.439141	-1.922834	
C	2.154163	3.633716	-3.662244	
С	1.075679	1.402102	-3.185536	
Н	0.705267	0.728200	-2.400225	
Н	1.862192	0.880324 1 619555	-3./54348	
Н	2.496085	4.589878	-3.240381	
Н	1.394172	3.848126	-4.428475	
Н	3.003764	3.159762	-4.175197	
C	4.668171	-0.787453	-3.066627	
Н	3.412241	0.418328	-1.825277	
Н	5.733439	-0.960992	-3.281546	
Н	4.224315	-0.344444	-3.970118	
Н	4.194295	-1.765327	-2.894933	
н	5 077495	2 208422	-1 356821	
Н	4.981687	1.888997	-3.101348	
С	2.647076	0.541629	3.339721	
С	5.052535	0.480011	4.016154	
Н	3./63542 5.283460	-1.21/2/4	3.///141 3.51300/	
Н	5.980572	-0.105599	4.071963	
Н	4.723481	0.709581	5.040396	
H	2.787183	1.588835	3.034293	
H	2.319153	0.549748	4.389977	
п	-1.842690	-1.262086	-0.305373	
Ň	-3.195400	-1.310148	-0.038867	
С	-1.500758	-2.425905	-1.252598	
C	-0.837774	-3.632929	-0.546772	
C	-U.5344UU -2 001061	-1.983342 -2 793655	-2.3/6498 -1 805655	
c	-3.906954	-2.441630	-0.708936	
С	-5.265198	-2.036682	-1.275404	

С	-4.151252	-3.639562	0.219687
11	2 005266	2 046242	2 000410
п	-2.99000	-3.040242	-2.090410
Н	-3.109/42	-2.182941	-2.698/06
H	0.186063	-3.346141	-0.295019
С	-0.785855	-4.865201	-1.465704
н	-1 320243	-3 867924	0 411244
11	0 202050	1 202201	1 0/210/
п	0.202039	-1.292201	-1.943104
Н	-1.101//4	-1.403322	-3.123078
С	0.211872	-3.159077	-3.040554
С	-3.907588	-0.175304	0.484567
н	-4 663408	-4 428538	-0 349904
11	4 707020	2 257700	1 050000
н	-4./9/232	-3.357782	1.059800
H	-3.224644	-4.063685	0.618944
Н	-5.175884	-1.255472	-2.034044
Н	-5.941191	-1.684810	-0.481840
ц.	-5 722630	-2 916317	-1 7/0803
11 G	3.722030	2.010014	1.042561
C	-4.280593	-0.0/5/05	1.843561
С	-5.018406	1.052535	2.242886
С	-5.357354	2.066917	1.364856
С	-4.944373	1.979831	0.040162
c	-1 22/331	0 979131	-0 422061
C a	-4.224551	0.070131	-0.422001
C	-3.829530	0.881896	-1.895431
H	-5.923013	2.932417	1.713424
Н	-5.189145	2.784188	-0.656294
C	-3 990506	-1 045527	2 994478
	5.00000	1 1 2 2 0 0 1	2.0000004
п	-3.309249	1.133001	3.293204
C	-2.788300	-1.980142	2.891697
С	-5.264706	-1.804072	3.394887
Н	-3.762573	-0.372844	3.838066
н	-5 617102	-2 458282	2 585443
11	C 004227	1 111070	2.000440
п	-0.084337	-1.1119/9	3.634080
Н	-5.074643	-2.430780	4.278894
H	-2.946551	-2.796797	2.181867
Н	-2.606837	-2.428341	3.880142
н	-1 885463	-1 435764	2 587102
	2 704100	1 0505704	2.007102
C	-2./84196	1.958570	-2.195852
С	-5.040015	1.112749	-2.815507
H	-3.381440	-0.091218	-2.134413
С	2.369856	-2.174231	-0.495372
C	1 322993	-2 183795	1 661594
c	1 022001	2 151100	1 007722
C	1.033001	-3.434400	1.907723
C	2.893057	-3.444211	-0.253004
С	2.627777	-4.092524	0.951644
Н	3.031356	-5.087953	1.143473
Н	1,608129	-3,953550	2,852029
ц.	2 556585	-1 679646	-1 450132
п	2.550505	-1.0/9040	-1.450152
Н	3.50/480	-3.929653	-1.014853
H	0.683496	-1.704298	2.405290
Н	-4.768362	0.895240	-3.859374
Н	-5.359088	2.164904	-2.777541
ц.	-5 910042	0 /00120	-2 546467
11	0 40710042	1 000540	2.040001
н	-2.46/162	1.898549	-3.249261
H	-1.896672	1.858110	-1.557395
Н	-3.210644	2.959277	-2.032626
С	-0.548571	-4.480998	-2.940307
н	-1 706750	-5 463856	-1 375331
 TT	1.700700	5.30000 E E10007	1 115001
п	0.033195	-3.31200/	-1.115231
H	-1.505805	-4.388811	-3.477114
Н	0.009173	-5.278432	-3.452996
Н	1.186240	-3.294172	-2.547042
Н	0.427847	-2.916838	-4.091664

<u>3a</u>		V _{min} :	$= 17 \text{ cm}^{-1}$	E = -4498.1186375
	C	1.825849	0.809267	0.28/4/3
	c	1.636700	-1.424628	-0.859194
	As	-0.819498	0.015278	0.102882
	Ν	1.514240	2.134972	0.455743
	С	2.483503	2.751249	1.231236
	C	3.424278	1.823988	1.514069
	IN C	0 509649	2 955315	-0 184739
	C	-0.419467	3.611049	0.639947
	С	-1.233097	4.584732	0.049875
	С	-1.153352	4.856554	-1.308788
	С	0.605751	3.197142	-1.571563
	C	-0.262308	4.148343 2.490680	-2.112926
	Н	-0.224248	4.362525	-3.180522
	Н	-1.797220	5.617238	-1.752505
	С	-0.584389	3.296291	2.119014
	H	-1.950794	5.126147	0.669417
	H H	2.423504 4 346273	3.808367	2 081095
	C	3.789677	-0.578962	1.080520
	С	3.588816	-1.378506	2.217253
	С	4.331043	-2.565317	2.292579
	С	5.228690	-2.926405	1.298021
	C	5.440531	-2.0855/3	0.083201
	C	5.050036	0.086771	-1.048222
	H	6.167092	-2.368352	-0.553439
	Η	5.782596	-3.862752	1.378037
	С	2.724787	-1.037590	3.430040
	н	4.1944/2	-3.213/38	3.160/04
	Н	0.853310	4.804098	2.820743
	Н	-0.283726	4.227273	4.061644
	Η	-0.833577	5.352063	2.801039
	H	0.072451	2.448200	2.363522
	С	-2.020017	2.856032	2.426422
	H	-2.106509	2.554611	3.480808
	Н	-2.320147	2.002850	1.801864
	Η	1.654267	1.439861	-2.115152
	С	3.042465	3.074972	-2.237039
	C u	1.2/8440	2.4893/3	-3.925194
	Н	1.967747	1.829872	-4.472017
	Н	1.373198	3.492238	-4.367493
	Η	3.388228	2.992435	-1.196256
	H	3.058224	4.138971	-2.517010
	H	3.767924	2.545933	-2.8/4044
	c	5.995650	1.200495	-0.570817
	Н	4.100264	0.555459	-1.354980
	Η	6.714192	-0.875302	-2.077078
	H	5.697501	0.134754	-3.112046
	л Н	5.119030 6 941996	0 764901	-0 217232
	Н	5.573216	1.800784	0.243655
	Η	6.224843	1.882747	-1.402559
	С	1.363026	-0.384084	3.188486
	Ч	3.541326 2.517501	-0.226869	4.446605
	H	3.760378	0.780250	4.062209
	Н	4.495097	-0.719888	4.678896
	Η	2.975390	-0.108906	5.381965
	H	1.448228	0.680170	2.920292
	н ч	U.//5421 N 79N762	-0.430903	4.110/12 2 403114
	C	-1.861486	-1.181829	-0.977933
	Ν	-3.098137	-1.452651	-0.560747
	С	-1.642759	-1.777215	-2.371006
	С	-0.804316	-3.076725	-2.343877
	C	-U.99/8U1 -3 102071	-0.141281 -2.053671	-3.304037 -2.807775
	č	-3.887755	-2.320868	-1.524081
	С	-5.353476	-1.915567	-1.613784

C	-3 833067	-3 796453	-1 119460
н	-3 171588	-2 889562	-3 516426
и и	-3 511656	-1 159/15	-3 303103
п п	0 254907	-2 966432	-2 517101
п	1 146427	2 740124	-Z.JI/191 2 1/2207
п 	-1.140437	-3.749124	-3.143207
Н	-0.8//206	-3.611/95	-1.388279
Н	0.015427	-0.489964	-2.969355
Н	-1.595390	0.176441	-3.343540
Н	-0.931435	-1.165026	-4.320221
С	-3.720954	-0.777999	0.561781
Н	-4.430030	-4.373086	-1.838930
Н	-4.269692	-3.945261	-0.125381
Н	-2.816953	-4.202945	-1.127318
Н	-5.485908	-0.901897	-2.000488
Н	-5.852395	-1.996204	-0.637144
н	-5.854140	-2.604498	-2.307629
C	-3 697242	-1 300689	1 873344
C	-4 350046	-0 556704	2 870143
C	-1 995/83	0.530/04	2 605917
C	4.070510	1 140020	1 212726
C	-4.970319	1.149029	1.313720
C	-4.330818	0.4/1329	0.2/6869
C	-4.323884	1.154167	-1.088/31
Н	-5.496233	1.183201	3.407907
Н	-5.461958	2.104716	1.104803
С	-3.064650	-2.593593	2.401415
H	-4.338065	-0.944040	3.891369
С	-1.866669	-3.187326	1.665263
С	-4.144649	-3.649220	2.682872
Н	-2.674553	-2.297285	3.388441
Н	-4.647747	-3.980681	1.764829
Н	-4.919498	-3.253874	3.353599
Н	-3.696974	-4.532346	3.160716
н	-2.124578	-3.599784	0.684762
н	-1.453984	-4.008571	2.268743
н	-1 075033	-2 439110	1 528267
C	-3 418402	2 390756	-1 089025
C	-5 73/23/	1 570944	-1 53/289
ц ц	-3 017595	0 153000	_1 030033
п	-3.917303	2 450625	-1.030933
п 11	-0.077130	2.430023	1 207045
н	-0.4/8030	0.///02/	-1.38/845
H	-5.726876	1.852116	-2.59/245
Н	-3./56524	3.119969	-0.336260
Н	-3.451231	2.884805	-2.072131
Н	-2.370672	2.144763	-0.869374
С	2.285196	-1.422606	-2.103307
С	1.594150	-2.628576	-0.136911
С	2.182627	-3.786655	-0.635403
С	2.844173	-2.592039	-2.620480
С	2.801493	-3.775830	-1.886724
Н	3.246902	-4.687013	-2.288028
Н	2.154004	-4.704689	-0.046365
Н	2.331987	-0.500454	-2.687826
Н	3.314327	-2.576849	-3.605139
Н	1.108327	-2.643274	0.841004

<u>3b</u>	$v_{min} = 16 \text{ cm}$	-1	E = -4614.7129614
С	1.897778	0.993220	0.060274
С	1.034747	-0.137263	-0.065929
C As	1.619932	-1.5050/1	-0.083961
N	1.625160	2.284584	-0.315793
C	2.644038	3.123160	0.109690
С	3.574718	2.353847	0.714825
N	3.127280	1.048518	0.672901
С	0.613555	2.817863	-1.201146
C	-0.250994	3./9/5/5	-0.685657
C	-1.034477	4.187013	-2.948924
C	0.647045	2.471371	-2.568424
С	-0.211812	3.166700	-3.422715
С	1.607843	1.420994	-3.105797
H	-0.219750	2.927099	-4.485678
н	-0.357211	4./30915	-3.643349
Н	-1.724206	5.273444	-1.226673
Н	2.618744	4.186684	-0.102366
Н	4.523357	2.609686	1.174208
С	3.862723	-0.032660	1.280928
C	3.695588	-0.298524	2.649278
C	4.412300 5.253020	-2 150885	2 379212
C	5.431636	-1.831018	1.035151
С	4.755456	-0.754890	0.459748
С	5.025327	-0.340230	-0.980667
Н	6.112824	-2.427274	0.428551
Н	5.787912	-2.997328	2.812128
н	4.301278	-1.621784	4.233017
C	0.099673	5.541072	1.109940
Н	1.133186	5.727012	0.784642
Н	0.042594	5.734643	2.190489
H	-0.544007	6.275893	0.603572
н С	-1 786034	3.414133	1 301734
H	-2.494494	4.578455	0.833500
Н	-1.835746	4.031573	2.389745
Н	-2.123518	2.853409	1.086112
Н	1.623399	0.603217	-2.370936
C	1 157471	0 811686	-4 433060
H	0.114040	0.467086	-4.387924
Н	1.793538	-0.051136	-4.679724
Н	1.249535	1.527719	-5.263244
H	3.433624	2.324107	-2.265514
н	3.05/906	2.819781	-3.933385 -3.610995
C	5.569351	-1.471985	-1.852901
C	6.016230	0.833293	-1.037555
Н	4.069675	-0.000601	-1.413902
Н	6.612135	-1.705592	-1.590929
H	2.262489 1 978870	-1.161920	-2.907781
H	6.971439	0.542004	-0.575935
H	5.649148	1.728487	-0.521702
Н	6.214114	1.109596	-2.083643
С	1.539974	1.094404	3.202876
С	3.774341	L.650660	4.226922
н	4 005629	2 406822	3 462165
H	4.722744	1.252596	4.612669
Н	3.251810	2.159738	5.049645
Н	1.643039	1.961505	2.532612
H	0.991600	1.443412	4.089733
Н	U.920163 -1 885901	0.339009	2./01142
N	-3.111548	-1.240176	0.260209
C	-1.753282	-2.333942	-1.315350
С	-0.940986	-3.563797	-0.843083
С	-1.065404	-1.794850	-2.597612
C	-3.244075	-2.696640	-1.551863
C	-5.430242	-1.932799	-0.493383

С	-4.011343	-3.543248	0.714972
н	-3 394266	-3 747642	-1 824033
11	2 611500	2 000711	2 272272
п	-3.044309	-2.060711	-2.3/22/2
Н	0.108523	-3.268//1	-0./93984
С	-1.076134	-4.730973	-1.836209
Н	-1.211959	-3.876096	0.174203
н	-0.269594	-1.092099	-2.305940
u u	_1 001065	-1 206021	-3 169911
п	-1.001905	-1.200021	-3.100011
C	-0.45/343	-2.909778	-3.4/0004
С	-3.653288	-0.153704	1.053097
Н	-4.676174	-4.315251	0.304578
н	-4,413600	-3.236083	1.687390
11	2 026500	2 006707	1.007000
п	-5.020590	-3.990707	1.0004030
Н	-5.5211/3	-1.1680/6	-1.268358
H	-5.897913	-1.567003	0.432167
Н	-5.992562	-2.814010	-0.830851
C	-3 583201	-0 131083	2 463220
c	-1 169627	0 069271	2 11227/
C a	-4.100027	0.900271	0.107001
C	-4.791512	1.996740	2.427031
С	-4.817874	1.968165	1.038313
С	-4.243598	0.915794	0.325390
С	-4.270188	1.019538	-1.198017
11	E 220500	2 0 2 0 0 2 2	2 071241
п	-3.239360	2.020922	2.9/1341
Н	-5.281957	2.790156	0.490885
С	-2.951961	-1.137554	3.434102
Н	-4.119742	1.006014	4.203888
С	-1.823807	-2.040578	2,943189
C	-4 035176	-1 036540	1 174633
	-4.033170	-1.930340	4.1/4033
Н	-2.488231	-0.489791	4.195649
Н	-4.588283	-2.604884	3.501572
Н	-4.768131	-1.269844	4.648678
н	-3 577762	-2 554693	4 960255
u u	-2 156071	-2 705065	2 223800
п	-2.1309/1	-2.793003	2.225000
Н	-1.400495	-2.574695	3.806064
H	-1.017492	-1.457127	2.480871
С	-3.330522	2.119516	-1.703210
С	-5.685980	1.297325	-1.727644
11	2 016226	0 071201	1 625022
п	-3.910330	0.071201	-1.023032
C	2.183138	-2.035781	-1.252557
С	1.595327	-2.310985	1.067105
С	2.112040	-3.602279	1.049867
С	2.675315	-3.342296	-1.278756
c	2 611097	_1 120100	-0 120253
	2.044907	-4.120400	-0.129255
Н	3.035244	-5.146880	-0.1498//
H	2.095295	-4.204087	1.959816
Н	2.205781	-1.431838	-2.163418
н	3 080976	-3 748392	-2 207400
11	1 176010	1 005177	1 000152
п	1.1/0010	-1.9031//	1.990132
Н	-5./20211	1.140046	-2.815392
H	-5.971480	2.343338	-1.544647
Н	-6.448572	0.661982	-1.258183
н	-3 398549	2 200983	-2 798770
 U	-2 280511	1 927907	-1 111260
11	2.200311	1.92/90/	1 070750
н	-3.610082	3.095489	-1.2/6/59
С	-1.176095	-4.246459	-3.295309
Н	-1.941847	-5.363574	-1.585640
н	-0.189517	-5.371945	-1.717185
ц.	-2 220030	-/ 130350	-3 507500
11	2.223033	4.000000	2.070400
п	-0./49311	-4.999220	-3.9/2402
H	0.598961	-3.051125	-3.194055
Н	-0.464472	-2.598536	-4.524252

49		-17 cm^{-1}	F -	-1197 8266086
<u>+a</u>	1 812563	0 790389	0 374673	4407.0200000
C	0.929093	-0.161392	-0.324738	
C	1.556362	-1.319778	-1.017004	
As	-0.831660	0.178690	-0.049348	
Ν	1.594952	2.119644	0.546010	
С	2.578639	2.646024	1.346978	
С	3.422192	1.628099	1.667996	
N	2.953059	0.498233	1.049365	
C	0.61/280	2.992352	-0.081101	
C	-1 191671	J.J/2012 / 535361	0.139960	
C	-1.054616	4.867519	-1.202535	
C	0.791423	3.305825	-1.443412	
С	-0.086382	4.245182	-1.989170	
С	1.924156	2.715401	-2.267498	
Н	0.007000	4.520663	-3.039719	
Н	-1.706654	5.622019	-1.644846	
C	-0.553357	3.213433	2.199889	
п ц	2 600909	3 703365	1 593665	
H	4.319428	1.608129	2.277938	
C	3.656715	-0.769177	1.130039	
С	3.374622	-1.645305	2.189294	
С	4.063804	-2.865744	2.185221	
С	4.988218	-3.175531	1.196244	
С	5.282766	-2.252467	0.195112	
C	4.636897	-1.015889	0.145067	
U U	5.055771	-2 496069	-0.8/3115	
н	5 505804	-4 135468	1 218300	
C	2.498593	-1.351755	3.405518	
Н	3.874276	-3.577756	2.991144	
С	-0.121928	4.370469	3.109184	
Н	0.922688	4.666543	2.938743	
Н	-0.229198	4.088731	4.165807	
H	-0.748597	5.256775	2.931442	
н	-1 997933	2.344107	2.424521 2.499544	
н	-2.692391	3.643659	2.364998	
Н	-2.085966	2.467243	3.543676	
Н	-2.330326	1.977928	1.849565	
Н	2.125739	1.704461	-1.881248	
С	3.209170	3.537271	-2.090449	
С	1.576909	2.564540	-3.748268	
H	0.619909	2.041599	-3.891/09	
п	2.303000	3 539596	-4.201321	
H	3.523734	3.592185	-1.037906	
Н	3.058509	4.564933	-2.451928	
Н	4.031642	3.089885	-2.667646	
С	5.653519	-0.549715	-2.152946	
С	6.090919	0.998550	-0.261643	
H	4.160803	0.625097	-1.149388	
H U	5.004071 5.752406	-0.942541	-2.969605	
H	5.043215	-1.360710	-2.566382	
H	6.984223	0.436714	0.047420	
Н	5.717687	1.540579	0.615268	
Н	6.401340	1.743661	-1.007891	
С	1.164457	-0.636992	3.179483	
С	3.321688	-0.632333	4.483655	
H	2.248384	-2.344451	3.809909	
H U	3.5825/5 A 253366	U.389313 _1 171000	4.168827	
н н	4.2000 2 743863	-1.1/1092	4./U⊥⊥∠U 5.415349	
H	1.287885	0.438811	2.976773	
H	0.559169	-0.714236	4.093873	
Н	0.587869	-1.089859	2.360729	
С	-1.914653	-1.150317	-1.109126	
N	-3.086299	-1.402601	-0.614923	
С	-1.778075	-1.678675	-2.532618	
C ~	-0.876980	-2.926854	-2.636491	
C	-1.242272	-0.565223	-3.441103	
C C	-3.230091 -3.952592	-2.003123	-2.0000001 -1 534990	
c	-5.421795	-1.892723	-1.507713	

С	-3.840084	-3.748963	-1.105827
Н	-3.343513	-2.854817	-3.555447
Н	-3.726551	-1.134381	-3.349002
н	0 174816	-2 649168	-2 740288
н	-1 164062	-3 487831	-3 536216
11	0.062645	2 506071	1 771010
п	-0.903043	-3.390971	-1.//1919
н	-0.19913/	-0.323237	-3.195225
н	-1.850256	0.350102	-3.364/18
Н	-1.2/4/25	-0.908466	-4.485549
С	-3.641054	-0.777456	0.583646
Н	-4.497821	-4.340674	-1.755994
Н	-4.184818	-3.881351	-0.073868
Н	-2.826549	-4.150203	-1.205640
Н	-5.601007	-0.884071	-1.887718
Н	-5.847215	-1.985435	-0.498517
Н	-5.959207	-2.591428	-2.163141
С	-3.498992	-1.336233	1.871039
С	-4.131746	-0.650850	2.922525
C	-4.863237	0.507795	2,725058
C	-4.951832	1.051807	1.448297
C	-4 339615	0 439578	0 355594
C	-4 426769	1 161062	-0.989286
	F 240074	0 000404	2 569051
п	-J.J49974	1 000000	1 207075
н	-5.500298	1.982638	1.29/6/5
C	-2./485/4	-2.592488	2.326424
Н	-4.036242	-1.057521	3.931497
С	-1.605397	-3.112871	1.460829
С	-3.721368	-3.716249	2.714920
Н	-2.274332	-2.269424	3.267233
Н	-4.277017	-4.103421	1.850785
Н	-4.459044	-3.368847	3.449964
Н	-3.168084	-4.554323	3.160896
Н	-1.942562	-3.576654	0.527812
Н	-1.054311	-3.880687	2.022427
Н	-0.892687	-2.313522	1.214624
С	-3.531715	2.407026	-1.014597
С	-5.866434	1.577460	-1.328127
Н	-4.070937	0.488609	-1.782708
Н	-6.176553	2.442231	-0.724806
Н	-6.593537	0.774332	-1.150102
Н	-5.932198	1.881661	-2.382088
н	-3 812279	3 102245	-0 208592
н	-3 647782	2 936407	-1 972016
и и	-2 163156	2 1787/3	_0 888849
	2.166763	_1 155110	-2 269369
C	1 554(20	-1.133119	-2.200309
C	1 . 3 3 4 0 2 9	-2.JOUL03	-0.414048
C	2.10UZZ/ 0.700550	-3.00/428	-1.049030 2.010207
	2.132333	-2.231946	-2.910380
C	2./40/65	-3.505//5	-2.30/640
Н	3.198444	-4.356820	-2.813496
Н	2.1/4084	-4.642238	-0.559575
Н	2.173861	-0.176529	-2.753488
Н	3.174518	-2.122885	-3.907427
Н	1.111217	-2.716416	0.573617

<u>4b</u>	$v_{min} = 9 \text{ cm}^{-1}$		E = -4614.4227557
С	1.910962	0.983294	0.117699
C	0.964912	-0.129588	-0.080972
	1.518817	-1.5011/3	-0.243/3/
N	1.756822	2.262039	-0.310872
C	2.801287	3.028460	0.146022
С	3.617401	2.208252	0.861509
Ν	3.070741	0.951356	0.820787
С	0.785698	2.818904	-1.235790
C	-0.143844	3.746239	-0./38862
C	-0.874619	4.079991	-3.030622
C	0.913063	2.491806	-2.599863
С	0.040775	3.131291	-3.483677
С	2.003024	1.562658	-3.108663
H	0.099826	2.911134	-4.549818
H	-1.522522	4.589747	-3.745074
Н	-1.683175	5.130284	-1.337471
Н	2.878348	4.083301	-0.100297
Н	4.542752	2.406082	1.392649
С	3.721459	-0.192293	1.433723
С	3.447479	-0.500944	2.775088
C	4.079849	-2 404558	2 519078
c	5.235816	-2.029716	1.209199
С	4.642997	-0.903423	0.635734
С	5.054664	-0.433492	-0.754615
H	5.944229	-2.619806	0.628182
H	5.420311 2.641150	-3.287546	2.948794
н	3.894023	-1.917716	4.330805
C	0.236703	5.503258	1.022276
Н	1.279995	5.642015	0.705439
Н	0.172928	5.726047	2.096347
H	-0.371645	6.247183	0.487150
H	U.351592 _1 711249	3.3//039	1.308171 1.233642
Н	-2.388112	4.640366	0.756194
Н	-1.759298	4.087984	2.318516
Н	-2.095540	2.905130	1.031423
Н	2.239408	0.847800	-2.306030
C	3.284995	2.354824	-3.403694
Н	0.627175	0.215183	-4.153424
H	2.351233	-0.005714	-4.560469
Н	1.463451	1.368248	-5.221172
Н	3.644970	2.898029	-2.517619
H	3.105297	3.091249	-4.200512
C	5 557390	-1 563363	-1 655936
C	6.160569	0.631596	-0.660466
Н	4.172176	0.023955	-1.237588
H	6.560009	-1.894081	-1.348437
H	5.645546	-1.202197	-2.690211
п	4.092020 7.043016	-2.434639	-0 157696
H	5.856133	1.526882	-0.105579
Н	6.464853	0.949857	-1.667688
С	1.322684	0.954167	3.273231
С	3.538557	1.425058	4.380237
H	2.3/6531 3.818303	-0.350087	4.56/510
Н	4.460778	0.990849	4.788388
H	3.008831	1.937059	5.195921
Н	1.472882	1.820219	2.609153
Н	0.759717	1.322711	4.142544
Н	0.692403	0.215302	2.758461
C N	-1.90031/ -3 101366	-1.2258/4	-U.319544 0 286436
C	-1.925424	-2.306428	-1.391611
C	-1.059442	-3.536637	-1.023820
С	-1.360624	-1.717064	-2.714536
C	-3.432799	-2.669639	-1.481390
C	-4.055043 -5 504412	-2.305271	-U.133U51 -0 225154
0	0.001112	T.000000	0.220101

C	-3 979923	-3 448482	0 879197
	2 500010	2 700050	1 707200
н	-3.599612	-3.728959	-1.707300
H	-3.910116	-2.081201	-2.279977
Н	-0.013558	-3.228195	-1.061455
C	_1 275316	-1 673092	_2 030227
C	1.2/3310	4.073002	2.030227
H	-1.241725	-3.882250	0.002560
Н	-0.551836	-1.006618	-2.476366
ц	-2 153347	-1 133738	-3 210169
	2.133347	1.133730	0.210100
C	-0.805109	-2./9993/	-3.658502
С	-3.555053	-0.073514	1.131500
н	-4 701310	-4 217036	0 572049
11	4.000010	2 104007	1 070000
н	-4.265/15	-3.104207	1.8/9909
H	-2.992332	-3.918663	0.924638
Н	-5.667736	-1.095463	-0.998150
U	-5 973555	_1 /73/02	0 730250
п	-3.0/3333	-1.4/3402	0.739230
H	-6.105481	-2.729583	-0.492896
С	-3.348222	-0.046153	2.526589
C	-3 888363	1 053277	3 216107
ĉ	3.000303	1.033277	0.570707
C	-4.592846	2.060773	2.5/9/29
С	-4.746270	2.021193	1.197962
С	-4.226393	0.972356	0.440947
C C	1 275652	1 064649	1 077057
C	-4.373032	1.004040	-1.077837
H	-5.007400	2.888578	3.156117
Н	-5.272274	2.832079	0.692196
С	-2.609024	-1.033707	3,436677
11	2 740040	1 104424	4 207010
п	-3.740040	1.104434	4.297019
C	-1.546355	-1.939368	2.822089
С	-3.587819	-1.828133	4.314815
Н	-2.060937	-0.370756	4.125635
U	-1 207369	_2 510705	3 7 7 7 9 / 9
п	-4.207309	-2.510705	3.727040
Н	-4.26/131	-1.160553	4.860/05
H	-3.031651	-2.422323	5.053051
Н	-1,961215	-2.731957	2.190633
11	0 006070	2 420721	2 621050
п	-0.900979	-2.430721	5.051050
H	-0.822427	-1.365897	2.226848
С	-3.440335	2.127120	-1.669369
С	-5.818824	1.385953	-1,495739
11	4 005002	0 101422	1 527520
п	-4.093992	0.101433	-1.JZ/JZ0
C	2.025933	-1.911643	-1.483770
С	1.528831	-2.396001	0.836209
C	2 041542	-3 680422	0 678134
0	2.011012	2 212505	1 CAAAOE
C	2.303200	-3.212303	-1.044403
С	2.521300	-4.095778	-0.565546
Н	2.908607	-5.107494	-0.693134
н	2 062407	-4 361995	1 529623
11	2.000000	1 0001000	2.220000
н	2.009648	-1.229650	-2.336900
H	2.872720	-3.534391	-2.620458
Н	1.162658	-2.073839	1.811764
н	-5 943932	1 220600	-2 574970
11	6 056520	2 441601	1 202444
п	-0.030329	2.441091	-1.303444
H	-6.560608	0.778654	-0.960645
H	-3.605559	2.213657	-2.753560
н	-2.374752	1,903686	-1.514248
 U	-3 636200	2 111666	_1 217060
п ~	-3.0303030	2.111000	-1.21/909
С	-1.506098	-4.143084	-3.465260
Н	-2.108555	-5.322532	-1.730882
Н	-0.376768	-5.307486	-2.015528
н	-2 581877	-4 021811	-3 668840
11	1 142200	1.021011	1 201510
п	-1.143389	-4.8/2248	-4.201519
Н	0.270484	-2.935795	-3.463658
Н	-0.893368	-2.457364	-4.698462

References

- Sharma, M. K.; Blomeyer, S.; Neumann, B.; Stammler, H.-G.; Ghadwal, R. S. *Chem. Eur. J.* 2019, 25, 8249–8253.
- Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 5705–5709.
- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179.
- 4. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.
- 5. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
- 6. Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT, 2016.
- 8. Zhao, Y., Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.* **2008**, *120*, 215–241.
- Weigend, F., Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.
- McIver, J. W., Komornic. A, Structure of transition states in organic reactions. General theory and an application to the cyclobutene-butadiene isomerization using a semiempirical molecular orbital method, J. Am. Chem. Soc. 1972, 94, 2625–2633.
- Wiberg, K. B., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, *Tetrahedron* 1968, 24, 1083–1096.

- (a) Reed, A. E., Weinhold, F., Natural localized molecular orbitals, *J. Chem. Phys.* 1985, *83*, 1736–1740;
 (b) Reed, A. E., Weinstock, R. B., Weinhold, F., Natural population analysis, *J. Chem. Phys.* 1985, *83*, 735–746.
- 13. Glendening, E. D., Reed, A. E., Carpenter, J. E., Weinhold, F., NBO Version 3.1.
- Neese, F., Software update: the ORCA program system, version 4.0, *WIREs Comput. Mol. Sci.* 2017, 8, e1327.
- 15. Barone, V., Cossi, M., Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, *J. Phys. Chem. A* **1998**, *102*, 1995.