Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

## *Para*-Selective Arylation and Alkenylation of Monosubstituted Arenes Using Thianthrene *S*-Oxide as a Transient Mediator

Xiao-Yue Chen<sup>†</sup>, Xiao-Xue Nie<sup>†</sup>, Yichen Wu<sup>†</sup>, and Peng Wang<sup>\*,†,‡</sup>

<sup>†</sup>State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China

<sup>\*</sup>CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China

## **Table of Contents**

| 1. General Information                                                       |      |
|------------------------------------------------------------------------------|------|
| 2. Experimental Section                                                      | S3   |
| 2.1 Preparation of Substrates                                                | S3   |
| 2.2 Experimental Optimization                                                | S5   |
| 2.2.1 Screening of Palladium Sources                                         | S5   |
| 2.2.2 Base Effects                                                           | S5   |
| 2.2.3 Solvent Effects                                                        | S6   |
| 2.2.4 Ni-Catalyzed thio-Suzuki Coupling                                      | S6   |
| 2.2.4 Control Experiments                                                    | S6   |
| 2.3 General Procedure for <i>para</i> -Selective Arylation of Toluene        | S8   |
| 2.4 General Procedure for <i>para</i> -Selective Alkenylation of Toluene     | S18  |
| 2.5 General Procedure for para-Selective Arylation of Monosubstituted Arenes | S22  |
| 2.6 Applications of <i>para</i> -Functionalization of Arenes                 | S33  |
| 3. References                                                                | \$37 |
| 4. NMR Spectra                                                               | S39  |

#### **1.** General Information

Thianthrene S-oxide was synthesized following the known procedure.<sup>1</sup> Trifluoromethanesulfonic anhydride (Tf<sub>2</sub>O) was purchased from Energy Chemical. Other reagents were purchased from TCI, Sigma-Aldrich, Acros, Adamasbeta, J&K, 9-Ding, Bidepharm and Energy Chemical of the highest purity grade and used without further purification, unless otherwise indicated. Dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>) and *N*,*N*-dimethylformamide (DMF) were dried using the solvent purification system. Acetone was distilled following the general purification methods. Other anhydrous solvents were purchased from J&K. The extent of reaction was monitored by thin–layer chromatography (TLC), performed on 0.25 mm silica gel HSGF254. The TLC plates were visualized by ultraviolet light (254 nm) or treatment with potassium permanganate stain followed by gentle heating if needed.

NMR spectra were recorded on Varian 400, Bruker 400 and Agilent 400 (400 Hz for <sup>1</sup>H; 375 Hz for <sup>19</sup>F; 100 Hz for <sup>13</sup>C) spectrometer. The chemical shifts ( $\delta$ ) were quoted in parts per million (ppm) referenced to TMS (0.0 ppm for <sup>1</sup>H NMR), CDCl<sub>3</sub> (77.0 ppm for <sup>13</sup>C NMR) and (CD<sub>3</sub>)<sub>2</sub>SO (39.52 ppm for <sup>13</sup>C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, h = heptet, m = multiplet, and br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). <sup>13</sup>C NMR spectra were fully decoupled by broad band proton decoupling. <sup>19</sup>F NMR spectra were recorded on Agilent 400 MR DD2 instrument (375 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for CFCl<sub>3</sub>. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI–TOF or CI/EI or on a Thermo Mass spectrometer using ESI–TOF.

## 2. Experimental Section

## 2.1 Preparation of Substrates



Benzyl alcohol (0.51 mL, 5.0 mmol) was treated with Ac<sub>2</sub>O (0.47 mL, 5.0 mmol) in the absence of solvent at room temperature for 6 h under magnetic stirring in the presence of Mg(ClO<sub>4</sub>)<sub>2</sub> (11.2 mg, 0.05 mmol, 1 mol%). After the reaction completed, H<sub>2</sub>O (10 mL) was added. The mixture was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were then washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. The resulting mixture was purified by silica gel chromatography (EtOAc/hexane = 1/20) to afford **6q** as a colorless liquid (678 mg, 90% yield).<sup>2</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40–7.30 (m, 5H), 5.11 (s, 2H), 2.10 (s, 3H).



To a suspension of S1 (6.0 mmol) and K<sub>2</sub>CO<sub>3</sub> (1.27 g, 12.0 mmol.) in water (14.0 mL) and DCM (6.0 mL) was added S2 (1.75 g, 8.0 mmol). The mixture was stirred at room temperature overnight. H<sub>2</sub>O (10 mL) was added. The mixture was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were then washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. The product was purified by flash column chromatography (EtOAc/hexane = 1/10).

**6r**: 1.22 g (86%). White solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.87–7.82 (m, 2H), 7.75–7.67 (m, 2H), 7.44 (d, *J* = 7.6 Hz 2H), 7.35–7.27 (m, 3H), 4.85 (s, 2H).

**6s**: 1.11 g (74%). White solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.85–7.81 (m, 2H), 7.73–7.67 (m, 2H), 7.32 – 7.19 (m, 5H), 3.96–3.90 (m, 2H), 3.02–2.97 (m, 2H).

**6t**: 1.49 g (94%). White solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86–7.76 (m, 2H), 7.75–7.65 (m, 2H), 7.30–7.11 (m, 5H), 3.75 (t, *J* = 7.2 Hz, 2H), 2.69 (t, *J* = 7.5 Hz, 2H), 2.10–1.96 (m, 2H).



A solution of **S3** (5.0 mmol) in MeOH (10 mL) was added hydrochloric acid aqueous solution (7.5 mL, w/w, 38%). The mixture was stirred at reflux for 12 h. The reaction mixture was allowed to cool to room temperature and neutralized by saturated aqueous solution of sodium bicarbonate (10 mL). After removal of MeOH under vacuum, the mixture was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were then washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. **6ab** was purified by flash column chromatography (EtOAc/hexane = 1/10) as a colorless liquid (1.01 g, 93% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41–7.37 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 3.64 (s, 3H), 2.52–2.45 (m, 2H), 1.76–1.59 (m, 5H), 1.53–1.41 (m, 2H), 1.32–1.24 (m, 1H).



The piperidone hydrochloride (2.78 g, 18.1 mmol) was dissolved in 20 mL of dry  $C_6H_6$ , and 10 mL of triflic acid was added. The solution was stirred at room temperature for 24 h. The reaction was quenched by addition of cold water (30 mL), the aqueous layer was extracted with DCM (3 × 20 mL). The combined organic portions were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuo to afford the diphenyl piperidine as a white solid.<sup>3</sup>

To a solution of the diphenyl piperidine (1.19 g, 5.0 mmol) and 4-nitrobenzenesulfonyl chloride (1.33 g, 6.0 mmol) in DCM (20.0 mL) was added pyridine (0.49 mL, 6.0 mmol) in an ice-water bath. The mixture was then stirred at the room temperature for 24 hours. Then the reaction mixture was quenched by addition of cold saturated sodium bicarbonate aqueous solution, and the aqueous layer was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (DCM/hexane = 2/1) to afford **6ag** as a white solid (1.81 g, 86% yield based on diphenyl piperidine). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (d, *J* = 8.4 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 4H), 7.16–7.11 (m, 6H), 3.25–3.19 (m, 4H), 2.57–2.49 (m, 4H).



An oven dried Schlenk tube was charged with *L*-(-)-3-phenyllactic acid (332.0 mg, 2 mmol), CuI (76.2 mg, 20 mol%), Cs<sub>2</sub>CO<sub>3</sub> (977.5 mg, 3.0 mmol) under nitrogen atmosphere, followed by the addition of dry DMF (10 mL) and PhI (0.44 mL, 4.0 mmol). The resulted reaction mixture was stirred at 130 °C in dark for 27 h. The reaction was monitored by TLC until the starting material was consumed. The reaction was then acidified by addition of HCl aqueous solution (1.0 M), and extracted with ethyl acetate (3 times). The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. Purification of the residue on a silica gel column chromatography using PE/EA/DCM(1/1/1) as eluent furnished the (*S*)-2-phenoxy-3-phenylpropanoic acid (368.0 mg, 76%) as a yellow solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>CO)  $\delta$  7.38 (d, *J* = 7.6 Hz, 2H), 7.32–7.19 (m, 5H), 6.95–6.86 (m, 3H), 4.94 (dd, *J* = 8.4, 4.8 Hz, 1H), 3.34–3.18 (m, 2H).

## 2.2 Experimental optimization 2.2.1 Screening of Palladium Sources



<sup>a</sup>10 mol% ligand was used. <sup>b</sup>The yield was determined by <sup>1</sup>H NMR using CH<sub>2</sub>Br<sub>2</sub> as the internal standard.

## 2.2.2 Base Effects



| Entry | Base                            | <b>2</b> (%) | 3 (%) | Entry | Base                            | 2 (%) | 3 (%) |
|-------|---------------------------------|--------------|-------|-------|---------------------------------|-------|-------|
| 1     | K <sub>3</sub> PO <sub>4</sub>  | 0            | 86    | 8     | Li <sub>2</sub> CO <sub>3</sub> | 24    | 65    |
| 2     | K <sub>2</sub> HPO <sub>4</sub> | 9            | 82    | 9     | Na <sub>2</sub> CO <sub>3</sub> | 39    | 52    |
| 3     | KH <sub>2</sub> PO <sub>4</sub> | 92           | 0     | 10    | K <sub>2</sub> CO <sub>3</sub>  | 0     | 91    |
| 4     | LiOAc                           | 83           | 10    | 11    | $Cs_2CO_3$                      | 0     | 89    |
| 5     | NaOAc                           | 6            | 87    | 12    | NaHCO <sub>3</sub>              | 0     | 99    |
| 6     | KOAc                            | 58           | 34    | 13    | KHCO <sub>3</sub>               | 0     | 85    |
| 7     | CsOAc                           | 51           | 29    |       |                                 |       |       |

<sup>a</sup>The yield was determined by <sup>1</sup>H NMR using  $CH_2Br_2$  as the internal standard.

## 2.2.3 Solvent Effects



<sup>a</sup>The yield was determined by <sup>1</sup>H NMR using CH<sub>2</sub>Br<sub>2</sub> as the internal standard. <sup>b</sup>2.5 mol% Pd(P<sup>t</sup>Bu<sub>3</sub>)<sub>2</sub> was used.

## 2.2.4 Ni-Catalyzed thio-Suzuki Coupling

Atomsphere 1



Atomsphere 2

Those experimental results indicated that this reaction must be carried out with Schlenk technology.

## **2.2.5.2 Counteranion Effect**



The results above indicated the counteranion might affect the reaction outputs.

## 2.3 General Procedure for para-Selective Arylation of Toluene



**General Procedure for** *para***-Arylation:** A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv), CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and toluene (21.2  $\mu$ L, 0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44  $\mu$ L, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then arylboronic acid (0.3 mmol, 1.5 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (5.1 mg, 5.0 mol%), NaHCO<sub>3</sub> (50.4 mg, 0.6 mmol, 3.0 equiv) were added under nitrogen atmosphere, subsequently the acetone (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at room temperature for 12 hours. Upon completion, the reaction mixture was diluted with DCM, and passed through a pad of Celite with DCM as the eluent to remove the insoluble precipitate. The resulting solution was concentrated and purified by preparative thin-layer chromatography to afford the desired product **3** or **4**.



## 4-Methyl-1,1'-biphenyl<sup>4</sup>

**3a** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM(50/1/1) as the eluent, **3a** was obtained in 91% yield.

30.5 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.26–7.23 (m, 2H), 2.40 (s, 3H).



#### 4,4'-Dimethyl-1,1'-biphenyl<sup>3</sup>

**3b** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **3b** was obtained in 85% yield.

31.0 mg, colorless crystal. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48 (d, *J* = 8.0 Hz, 4H), 7.23 (d, *J* = 8.4 Hz, 4H), 2.39 (s, 6H).



## 4-(tert-Butyl)-4'-methyl-1,1'-biphenyl<sup>5</sup>

3c was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (50/1) as the eluent, 3c was obtained in 98% yield.

43.9 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.54–7.43 (m, 6H), 7.25–7.22 (m, 2H), 2.38 (s, 3H), 1.36 (s, 9H).



## 4-Methyl-1,1':4',1"-terphenyl<sup>6</sup>

**3d** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/DCM (9/1) as the eluent, **3d** was obtained in 97% yield.

47.7 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.66–7.61 (m, 6H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.35 (t, *J*= 7.4 Hz, 1H), 7.27–7.23 (m, 2H), 2.40 (s, 3H).



## Trimethyl(4'-methyl-[1,1'-biphenyl]-4-yl)silane<sup>7</sup>

**3e** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **3e** was obtained in 96% yield.

46.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60–7.55 (m, 4H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 2.39 (s, 3H), 0.30 (s, 9H).



4-Methoxy-4'-methyl-1,1'-biphenyl<sup>5</sup>

**3f** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (50/1/1) as the eluent, **3f** was obtained in 83% yield.

33.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.24–7.20 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.38 (s, 3H).



## Methyl(4'-methyl-[1,1'-biphenyl]-4-yl)sulfane<sup>8</sup>

**3g** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (50/1/1) as the eluent, **3g** was obtained in 93% yield.

40.0 mg, light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ7.56–7.48 (m, 4H), 7.37–7.33 (m, 2H), 7.29–7.25 (m, 2H), 2.52 (s, 3H), 2.39 (s, 3H).



## 4-Fluoro-4'-methyl-1,1'-biphenyl<sup>5</sup>

**3h** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **3h** was obtained in 91% yield.

42.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.55–7.50 (m, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.14–7.08 (m, 2H), 2.39 (s, 3H).



#### 4-Fluoro-4'-methyl-1,1'-biphenyl<sup>3</sup>

**3i** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (100/1/1) as the eluent, **3i** was obtained in 93% yield.

37.5 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.26–7.24 (m, 2H), 2.40 (s, 3H).



## 1-(4'-Methyl-[1,1'-biphenyl]-4-yl)ethanone9

3j was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (50/1) as the eluent, 3j was obtained in 91% yield.

38.4 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.30–7.26 (m, 2H)., 2.62 (s, 3H), 2.41 (s, 3H).



## Methyl 4'-methyl-[1,1'-biphenyl]-4-carboxylate<sup>10</sup>

3k was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 3k was obtained in 99% yield.

45.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.2 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 7.30–7.26 (m, 2H), 3.94 (s, 3H), 2.41 (s, 3H).



## 4-Methyl-4'-(trifluoromethoxy)-1,1'-biphenyl<sup>11</sup>

**31** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **31** was obtained in 97% yield.

49.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59–7.55 (m, 2H), 7.47–7.43 (m, 2H), 7.28–7.23 (m, 4H), 2.40 (s, 3H).



4-Methyl-4'-(trifluoromethyl)-1,1'-biphenyl<sup>8</sup>

**3m** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, **3m** was obtained in 90% yield.

42.5 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (s, 4H), 7.50 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 2.42 (s, 3H).



## 2,4'-Dimethyl-1,1'-biphenyl<sup>3</sup>

**3n** was synthesized following the general procedure using Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10 mol%). After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (100/1/1) as the eluent, **3n** was obtained in 96% yield. 35.2 mg, colorless crystal. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26–7.21 (m, 8H), 2.40 (s, 3H), 2.28 (s, 3H).



## 2-Chloro-4'-methyl-1,1'-biphenyl<sup>12</sup>

**30** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **30** was obtained in 82% yield.

33.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45 (d, *J* = 8.0 Hz, 1H), 7.35–7.20 (m, 7H), 2.40 (s, 3H).



## 3-Methoxy-4'-methyl-1,1'-biphenyl<sup>3</sup>

**3p** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (50/1/1) as the eluent, **3p** was obtained in 89% yield.

35.2 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.26–7.23 (m, 2H), 7.18–7.14 (m, 1H), 7.12–7.09 (m, 1H), 6.89–6.84 (m, 1H), 3.86 (s, 3H), 2.39 (s, 3H).



## Methyl 4'-methyl-[1,1'-biphenyl]-3-carboxylate<sup>13</sup>

3q was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 3q was obtained in 97% yield.

44.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.55–7.46 (m, 3H), 7.29–7.26 (m, 2H), 3.94 (s, 3H), 2.41 (s, 3H).



#### 4'-Methyl-3-nitro-1,1'-biphenyl<sup>14</sup>

3r

3r was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (50/1) as the eluent, 3r was obtained in 83% yield.

35.6 mg, light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.43 (t, J = 1.8 Hz, 1H), 8.18–8.14 (m, 1H), 7.91–7.87 (m, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H).



## 5-(p-Tolyl)benzo[d][1,3]dioxole<sup>15</sup>

3s

**3s** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **3s** was obtained in 74% yield.

32.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.06–7.01 (m, 2H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.98 (s, 2H), 2.38 (s, 3H).



## 2-(p-Tolyl)naphthalene<sup>5</sup>

3t was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, 3t was obtained in 87% yield.

38.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H), 7.92–7.83 (m, 3H), 7.76–7.72 (m, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.52–7.44 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H).



4'-Methyl-3,5-bis(trifluoromethyl)-1,1'-biphenyl<sup>16</sup>

3u was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (100/1/1) as the eluent, 3u was obtained in 91% yield.

55.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (s, 2H), 7.82 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H).



#### 2,4,6-Trimethoxy-4'-methyl-1,1'-biphenyl<sup>17</sup>

3v was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc/DCM (25/1/1) as the eluent, 3v was obtained in 97% yield.

50.0 mg, light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.76 (s, 2H), 3.92 (s, 6H), 3.89 (s, 3H), 2.40 (s, 3H).



## 2,3,4,5,6-Pentafluoro-4'-methyl-1,1'-biphenyl<sup>18</sup>

3w was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, 3w was obtained in 85% yield.

44.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) & 7.33-7.28 (m, 4H), 2.42 (s, 3H).



## 3-(p-Tolyl)furan<sup>19</sup>

**4a** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **4a** was obtained in 85% yield.

26.9 mg, yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 (s, 1H), 7.46 (t, *J* = 1.6 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.6 Hz, 2H), 6.70–6.68 (m, 1H), 2.36 (s, 3H).



## 3-(p-Tolyl)thiophene<sup>20</sup>

**4b** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (50/1) as the eluent, **4b** was obtained in 99% yield.

34.5 mg, light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 2.2 Hz, 1H), 7.37 (d, J = 2.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H).



## 3-(p-Tolyl)benzofuran<sup>21</sup>

**4c** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **4c** was obtained in 84% yield.

34.5 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, J = 8.0 Hz, 1H), 7.77 (s, 1H), 7.54 (d, J = 8.0 Hz, 3H), 7.36–7.28 (m, 4H), 2.42 (s, 3H).



## 2-(p-Tolyl)benzo[b]thiophene<sup>15</sup>

**4d** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **4d** was obtained in 94% yield.

42.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.50 (s, 1H), 7.36–7.27 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H).



## 8-(p-Tolyl)quinoline<sup>22</sup>

4e was synthesized following the general procedure using  $Pd(^{t}Bu_{3}P)_{2}$  (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, 4e was obtained in 89% yield. 36.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.95 (dd, J = 4.0, 1.6 Hz, 1H), 8.19 (dd, J = 8.4, 1.6 Hz, 1H), 7.80 (dd, J = 8.4, 1.6 Hz, 1H), 7.72 (dd, J = 7.2, 1.6 Hz, 1H), 7.61–7.56 (m, 3H), 7.40 (dd, J = 8.4, 4.0 Hz, 1H), 7.31 (d, J = 7.6 Hz, 2H), 2.43 (s, 3H).



## 3-(p-Tolyl)quinoline<sup>23</sup>

**4f** was synthesized following the general procedure using Pd('Bu<sub>3</sub>P)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, **4f** was obtained in 73% yield. 32.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.18 (d, J = 2.4 Hz, 1H), 8.29 (d, J = 2.0 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.73–7.68 (m, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H).



## 3-(p-Tolyl)pyridine<sup>19</sup>

4g

**4g** was synthesized following the general procedure using  $Pd({}^{T}Bu_{3}P)_{2}$  (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (1/5) as the eluent, **4g** was obtained in 75% yield. 25.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.84 (s, 1H), 8.57 (d, *J* = 4.8 Hz, 1H), 7.87–7.84 (m, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.35 (dd, *J* = 7.6, 4.8 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 2.41 (s, 3H).



## 2-Chloro-3-(p-tolyl)pyridine

**4h** was synthesized following the general procedure using Pd('Bu<sub>3</sub>P)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, **4h** was obtained in 92% yield. 37.4 mg, light yellow liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.38 (dd, *J* = 4.8, 2.0 Hz, 1H), 7.66 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.31–7.28 (m, 3H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.77, 148.13, 139.61, 138.24, 136.97, 134.56, 129.13, 129.04, 122.49, 21.25; HRMS (ESI-TOF) *m/z* Calcd for C<sub>12</sub>H<sub>11</sub>ClN [M+H]<sup>+</sup>: 204.0575, found: 204.0575.



2-Fluoro-3-(p-tolyl)pyridine

**4i** was synthesized following the general procedure using Pd('Bu<sub>3</sub>P)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, **4i** was obtained in 93% yield. 35.0 mg, light yellow liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18–8.16 (m, 1H), 7.88–7.83 (m, 1H), 7.47 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.29–7.24 (m, 3H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.44 (d, *J* = 239.0 Hz), 145.94 (d, *J* = 14.0 Hz), 140.45 (d, *J* = 5.0 Hz), 138.42, 130.93 (d, *J* = 5.0 Hz), 129.42, 128.63 (d, *J* = 3.0 Hz), 123.88 (d, *J* = 28.0 Hz), 121.75 (d, *J* = 4.0 Hz), 21.20; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -72.51; HRMS (ESI-TOF) m/z Calcd for C<sub>12</sub>H<sub>11</sub>FN [M+H]<sup>+</sup> 188.0870, found: 188.0869.

#### 2,6-Difluoro-3-(p-tolyl)pyridine

**4j** was synthesized following the general procedure using Pd('Bu<sub>3</sub>P)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (9/1) as the eluent, **4j** was obtained in 95% yield. 39.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (dd, *J* = 17.2, 8.0 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.90 (dd, *J* = 8.0, 2.8 Hz, 1H), 2.41 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.33 (dd, *J* = 231.3, 13.1 Hz), 157.74 (dd, *J* = 234.5, 13.7 Hz), 144.73 (dd, *J* = 7.0, 5.0 Hz), 138.50, 129.92 (d, *J* = 4.8 Hz), 129.51, 128.49 (d, *J* = 2.9 Hz), 120.61 (dd, *J* = 25.6, 5.9 Hz), 106.39 (ddd, *J* = 34.5, 5.7, 1.5 Hz), 21.20 (d, *J* = 2.2 Hz); <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -71.19, -71.71; HRMS (EI) m/z Calcd for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>N (M<sup>+</sup>) 205.0698, found: 205.0696.

#### 2.4 General Procedure for *para*-Selective Alkenylation of Toluene



General Procedure for *para*-Alkenylation: A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv), CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and toluene (21.2  $\mu$ L, 0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44  $\mu$ L, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then alkenylboronic acid pinacol ester (0.3 mmol, 1.5 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (5.1 mg, 5.0 mol%), NaHCO<sub>3</sub> (50.4 mg, 0.6 mmol, 3.0 equiv) were added under nitrogen atmosphere, subsequently the DMF (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at 50 °C for 12 hours. Upon completion, the reaction mixture was allowed to cool to room temperature, and diluted with DCM. Then water was added, and the organic phase was separated. The aqueous phase was extracted with DCM (3 times). The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The resulting solution was concentrated and purified by preparative thin-layer chromatography to afford the desired product **5**.



## (E)-1-Methyl-4-styrylbenzene<sup>24</sup>

**5a** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5a** was obtained in 72% yield.

28.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.29 (m, 5H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.43 (d, J = 1.2 Hz, 1H), 5.40 (d, J = 1.2 Hz, 1H), 2.37 (s, 3H).



## Ethyl (E)-3-(p-tolyl)acrylate<sup>25</sup>

**5b** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5b** was obtained in 79% yield.

30.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 16.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.39 (d, J = 16.0 Hz, 1H), 4.26 (q, J = 6.8 Hz, 2H), 2.37 (s, 3H) , 1.33 (t, J = 7.2 Hz, 3H).



## 1-(Cyclohexylidenemethyl)-4-methylbenzene<sup>26</sup>

**5c** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5c** was obtained in 83% yield.

22.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.14–7.04 (m, 4H), 6.19 (s, 1H), 2.40–2.35 (m, 2H), 2.33 (s, 3H), 2.27–2.22 (m, 2H), 1.66–1.58 (m, 4H), 1.55–1.50 (m, 2H).



5d

## 1-Methyl-4-(2-methylprop-1-en-1-yl)benzene<sup>27</sup>

**5d** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5d** was obtained in 76% yield.

22.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.12 (s, 4H), 6.23 (s, 1H), 2.33 (s, 3H), 1.89 (s, 3H), 1.85 (s, 3H).



#### 1-(Cyclopent-1-en-1-yl)-4-methylbenzene<sup>26</sup>

**5e** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5e** was obtained in 57% yield.

18.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.13–6.11 (m, 1H), 2.71–2.67 (m, 2H), 2.54–2.49 (m, 2H), 2.33 (s, 3H), 2.04–1.97 (m, 2H).



## 4'-Methyl-2,3,4,5-tetrahydro-1,1'-biphenyl<sup>28</sup>

**5f** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5f** was obtained in 90% yield.

31.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.10–6.05 (m, 1H), 2.42–2.36 (m, 2H), 2.32 (s, 3H), 2.22–2.16 (m, 2H), 1.81–1.73 (m, 2H), 1.68–1.62 (m, 2H).



## 8-(p-Tolyl)-1,4-dioxaspiro[4.5]dec-7-ene<sup>29</sup>

**5g** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (5/1) as the eluent, **5g** was obtained in 63% yield.

29.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.96–5.93 (m, 1H), 4.02 (s, 4H), 2.67–2.63 (m, 2H), 2.48–2.44 (m, 2H), 2.33 (s, 3H), 1.92 (t, *J* = 6.4 Hz, 2H).



## 4-(p-Tolyl)-3,6-dihydro-2H-pyran<sup>30</sup>

**5h** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane as the eluent, **5h** was obtained in 57% yield.

20.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.10–6.07 (m, 1H), 4.32 (q, *J* = 2.8 Hz, 2H), 3.93 (t, *J* = 5.2 Hz, 2H), 2.53–2.49 (m, 2H), 2.35 (s, 3H).



## tert-Butyl 4-(p-tolyl)-3,6-dihydropyridine-1(2H)-carboxylate<sup>31</sup>

**5i** was synthesized following the general procedure. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, **5i** was obtained in 50% yield.

27.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 5.99 (s, 1H), 4.06 (s, 2H), 3.63 (t, J = 5.6 Hz, 2H), 2.51 (s, 2H), 2.34 (s, 3H), 1.49 (s, 9H).



## 1-Methyl-4-(p-tolyl)-1,2,3,6-tetrahydropyridine

5j was synthesized following the general procedure. After purification by preparative thin-layer chromatography

using DCM/MeOH (20/1) as the eluent, 5j was obtained in 53% yield.

20.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.02–6.00 (m, 1H), 3.13 (d, J = 3.2 Hz, 2H), 2.69 (t, J = 5.6 Hz, 2H), 2.62–2.58 (m, 2H), 2.43 (s, 3H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.01, 136.72, 134.57, 128.97, 124.82, 120.67, 54.91, 52.28, 45.62, 28.03, 21.04; HRMS (EI) m/z Calcd for C<sub>13</sub>H<sub>17</sub>N (M<sup>+</sup>) 187.1355, found: 187.1356.

#### 2.5 General Procedure for para-Selective Arylation of Monosubstituted Arenes



**General Procedure A for** *para*-Arylation of Monosubstituted Arenes: A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv),  $CH_2Cl_2$  (1.0 mL) and **6** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44 µL, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then 4-(methoxycarbonyl)benzeneboronic acid (54 mg, 0.3 mmol, 1.5 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (5.1 mg, 5.0 mol%), NaHCO<sub>3</sub> (50.4 mg, 0.6 mmol, 3.0 equiv) were added under nitrogen atmosphere, subsequently the acetone (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at room temperature for 12 hours. Upon completion, the reaction mixture was diluted with DCM, and passed through a pad of Celite with DCM as the eluent to remove the insoluble precipitate. The resulting solution was concentrated and purified by preparative thin-layer chromatography to afford the desired product **7**.

**General Procedure B for** *para*-Arylation of Monosubstituted Arenes: A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv),  $CH_2Cl_2$  (0.2 mL) and **6** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44 µL, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then 4-(methoxycarbonyl)benzeneboronic acid (54 mg, 0.3 mmol, 1.5 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (5.1 mg, 5.0 mol%), NaHCO<sub>3</sub> (50.4 mg, 0.6 mmol, 3.0 equiv) were added under nitrogen atmosphere, subsequently the DMF (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at 50 °C for 12 hours. Upon completion, the reaction mixture was diluted with DCM, and passed through a pad of Celite with DCM as the eluent to remove the insoluble precipitate. The resulting solution was concentrated and purified by preparative thin-layer chromatography to afford the desired product 7.



## Methyl 4'-ethyl-[1,1'-biphenyl]-4-carboxylate

7a was synthesized following the general procedure A. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7a was obtained in 92% yield.

44.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.94 (s, 3H), 2.71 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.05, 145.58, 144.44, 137.31, 130.05, 128.56, 128.45, 127.18, 126.80, 52.07, 28.54, 15.52; HRMS (EI) m/z Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>2</sub> (M<sup>+</sup>) 240.1145, found: 240.1142.



#### Methyl 4'-isopropyl-[1,1'-biphenyl]-4-carboxylate

7b

7b was synthesized following the general procedure A. After purification by preparative thin-layer chromatography

using hexane/EtOAc (20/1) as the eluent, 7b was obtained in 93% yield.

47.3 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J*= 8.4 Hz, 2H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 3.93 (s, 3H), 3.00–2.93 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.04, 149.04, 145.55, 137.43, 130.04, 128.54, 127.17, 127.00, 126.80, 52.07, 33.83, 23.93; HRMS (EI) m/z Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>2</sub> (M<sup>+</sup>) 254.1301, found: 254.1298.



## MeO<sub>2</sub>C

## Methyl 4'-(tert-butyl)-[1,1'-biphenyl]-4-carboxylate

7c

7c was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7c was obtained in 99% yield.

53.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 3.93 (s, 3H), 1.36 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.03, 151.31, 145.44, 137.01, 130.05, 128.58, 126.89, 126.80, 125.87, 52.06, 34.60, 31.29; HRMS (EI) m/z Calcd for C<sub>18</sub>H<sub>20</sub>O<sub>2</sub> (M<sup>+</sup>) 268.1458, found: 268.1460.



#### Methyl 4'-cyclohexyl-[1,1'-biphenyl]-4-carboxylate

7d was synthesized following the general procedure A. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7d was obtained in 98% yield.

57.6 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 3.93 (s, 3H), 2.58–2.52 (m, 1H), 1.93–1.83 (m, 4H), 1.77 (d, J = 12.8 Hz, 1H), 1.51–1.36 (m, 4H), 1.32–1.25 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.05, 148.28, 145.58, 137.43, 130.04, 128.55, 127.41, 127.15, 126.80, 52.07, 44.28, 34.40, 26.85, 26.12; HRMS (ESI-TOF) m/z Calcd for C<sub>20</sub>H<sub>22</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> 317.1512, found: 317.1517.



## Methyl 4'-benzyl-[1,1'-biphenyl]-4-carboxylate<sup>32</sup>

7e

7e was synthesized following the general procedure A. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7e was obtained in 84% yield.

51.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.33–7.27 (m, 4H), 7.23–7.18 (m, 3H), 4.03 (s, 2H), 3.93 (s, 3H).



## Methyl [1,1':4',1''-terphenyl]-4-carboxylate<sup>33</sup>

7f was synthesized following the general procedure A using  $Pd(P'Bu_3)_2$  (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7f was obtained in 80% yield.

46.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.13 (d, *J* = 8.0 Hz, 2H), 7.74–7.67 (m, 6H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 3.95 (s, 3H).



## Methyl 4'-methoxy-[1,1'-biphenyl]-4-carboxylate<sup>34</sup>

7g was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, 7g was obtained in 81% yield.

39.8 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 3.93 (s, 3H), 3.86 (s, 3H).



MeO<sub>2</sub>C

## Methyl 4'-acetoxy-[1,1'-biphenyl]-4-carboxylate

**7h** was synthesized following the general procedure **A** using Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, **7h** was obtained in 80% yield. 43.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, *J* = 8.8 Hz, 2H), 7.63 (dd, *J* = 8.8, 1.6 Hz, 4H), 7.19 (d, *J* = 8.8 Hz, 2H), 3.94 (s, 3H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.45, 166.93, 150.72, 144.71, 137.73, 130.13, 128.98, 128.34, 126.99, 122.07, 52.14, 21.14; HRMS (ESI-TOF) m/z Calcd for C<sub>16</sub>H<sub>15</sub>O<sub>4</sub> [M+H]<sup>+</sup> 271.0965, found: 271.0969.



#### Methyl 4'-phenoxy-[1,1'-biphenyl]-4-carboxylate

7i was synthesized following the general procedure A using Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/DCM (3/1) as the eluent, 7i was obtained in 82% yield. 50.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.37 (t, *J* = 8.4 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 8.4 Hz, 4H), 3.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.97, 157.68, 156.78, 144.90, 134.80, 130.12, 129.84, 128.60, 126.68, 123.63, 119.21, 118.95, 52.09; HRMS (ESI-TOF) m/z Calcd for C<sub>20</sub>H<sub>16</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> 327.0992, found: 327.0999.



7j

#### Methyl 4'-(difluoromethoxy)-[1,1'-biphenyl]-4-carboxylate

7j was synthesized following the general procedure A using Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10 mol%) at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7j was obtained in 62% yield. 34.7 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, *J* = 8.4 Hz, 2H), 7.62 (dd, *J* = 8.4, 2.4 Hz, 4H), 7.22 (d, *J* = 8.8 Hz, 2H), 6.56 (t, *J* = 73.8 Hz, 1H), 3.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.88, 151.16 (d, *J* = 2.8 Hz), 144.39, 137.29, 130.18, 129.08, 128.69, 126.90, 119.95, 115.78 (t, *J* = 258.8 Hz), 52.16; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -81.34, -81.54; HRMS (EI) m/z Calcd for C<sub>15</sub>H<sub>12</sub>F<sub>2</sub>O<sub>3</sub> (M<sup>+</sup>) 278.0749, found: 278.0751.



## Methyl 4'-(trifluoromethoxy)-[1,1'-biphenyl]-4-carboxylate

7k was synthesized following the general procedure **B** using TTSO (2.0 equiv), Tf<sub>2</sub>O (2.0 equiv) for thianthrenation, and using NaHCO<sub>3</sub> (4.0 equiv) and Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10 mol%) for thio-Suzuki coupling. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7k was obtained in 50% yield.

29.7 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, *J* = 8.8 Hz, 2H), 7.66–7.61 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 2H), 3.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.82, 149.21 (d, *J* = 1.6 Hz), 144.13, 138.68, 130.19, 129.26, 128.65, 127.00, 121.33, 120.44 (q, *J* = 255.8 Hz), 52.20; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -58.31; HRMS (EI) m/z Calcd for C<sub>15</sub>H<sub>11</sub>F<sub>3</sub>O<sub>3</sub> (M<sup>+</sup>) 296.0655, found: 296.0658.



## Methyl 4'-morpholino-[1,1'-biphenyl]-4-carboxylate

**7I** was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, **7I** was obtained in 47% yield.

28.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 3.93 (s, 3H), 3.89 (t, J = 4.0 Hz, 4H), 3.23 (t, J = 4.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.10, 151.16, 145.16, 131.00, 130.08, 127.98, 126.15, 115.57, 66.80, 52.04, 48.84; HRMS (EI) m/z Calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub> (M<sup>+</sup>) 297.1361, found: 297.1359.



## Methyl 4'-(2-oxopyrrolidin-1-yl)-[1,1'-biphenyl]-4-carboxylate

7**m** was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using DCM as the eluent, **7m** was obtained in 73% yield.

43.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.67–7.62 (m, 4H), 3.95–3.88 (m, 5H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.24–2.16 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  174.36, 166.97, 144.82, 139.44, 135.77, 130.11, 128.69, 127.57, 126.67, 120.07, 52.10, 48.66, 32.75, 17.96; HRMS (ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>18</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 296.1281, found: 296.1285.



#### Methyl 4'-(N-methylacetamido)-[1,1'-biphenyl]-4-carboxylate

7n was synthesized following the general procedure A. After purification by preparative thin-layer chromatography

using DCM as the eluent, 7n was obtained in 64% yield.

36.2 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 8.0, 2.0 Hz, 4H), 7.30 (d, J = 8.4 Hz, 2H), 3.95 (s, 3H), 3.31 (s, 3H), 1.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.50, 166.82, 144.45, 144.27, 139.41, 130.20, 129.31, 128.53, 127.51, 126.97, 52.18, 37.16, 22.48; HRMS (ESI-TOF) m/z Calcd for C<sub>17</sub>H<sub>18</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 284.1281, found: 284.1288.

## Methyl 4'-fluoro-[1,1'-biphenyl]-4-carboxylate

**70** was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, **70** was obtained in 65% yield.

30.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, *J* = 8.4 Hz, 2H), 7.63–7.56 (m, 4H), 7.15 (t, *J* = 8.8 Hz, 2H), 3.94 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.91, 164.16, 161.70, 144.58, 136.11 (d, *J* = 4.0 Hz), 130.15, 128.91 (d, *J* = 8.0 Hz), 126.87, 115.86 (d, *J* = 21.0 Hz), 52.14; <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$  -114.75; HRMS (EI) m/z Calcd for C<sub>14</sub>H<sub>11</sub>FO<sub>2</sub> (M<sup>+</sup>) 230.0738, found: 230.0737.



## Methyl 4'-chloro-[1,1'-biphenyl]-4-carboxylate<sup>35</sup>

7p was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7p was obtained in 33% yield.

16.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 3.94 (s, 3H).



## Methyl 4'-(acetoxymethyl)-[1,1'-biphenyl]-4-carboxylate

7q was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7q was obtained in 54% yield.

30.7 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 5.16 (s, 2H), 3.94 (s, 3H), 2.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.86, 166.92, 145.02, 139.96, 135.89, 130.12, 129.06, 128.82, 127.45, 127.00, 65.88, 52.13, 21.00; HRMS (EI) m/z Calcd for C<sub>17</sub>H<sub>16</sub>O<sub>4</sub> (M<sup>+</sup>) 284.1043, found: 284.1046.



### Methyl 4'-((1,3-dioxoisoindolin-2-yl)methyl)-[1,1'-biphenyl]-4-carboxylate

7r was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/DCM (3/2) as the eluent, 7r was obtained in 51% yield.

37.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 (d, J = 8.4 Hz, 2H), 7.88–7.84 (m, 2H), 7.74–7.69 (m, 2H),

7.62-7.52 (m, 6H), 4.90 (s, 2H), 3.93 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 168.02, 166.93, 145.05, 139.55, 136.29, 134.04, 132.07, 130.07, 129.18, 128.94, 127.56, 126.96, 123.39, 52.11, 41.24; HRMS (EI) m/z Calcd for C<sub>23</sub>H<sub>17</sub>NO<sub>4</sub> (M<sup>+</sup>) 371.1156, found: 371.1152.



#### Methyl 4'-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-[1,1'-biphenyl]-4-carboxylate

7s was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using DCM as the eluent, 7s was obtained in 66% yield.

51.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.4 Hz, 2H), 7.85–7.80 (m, 2H), 7.73–7.68 (m, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 3.99–3.91 (m, 5H), 3.05 (t, J = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.14, 166.97, 145.21, 138.26, 138.10, 133.93, 132.02, 130.04, 129.42, 128.74, 127.37, 126.83, 123.23, 52.08, 39.07, 34.22; HRMS (EI) m/z Calcd for C<sub>24</sub>H<sub>20</sub>NO<sub>4</sub> [M+H]<sup>+</sup> 386.1387, found: 386.1389.



## Methyl 4'-(3-(1,3-dioxoisoindolin-2-yl)propyl)-[1,1'-biphenyl]-4-carboxylate

7t was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, 7t was obtained in 97% yield.

78.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, *J* = 8.4 Hz, 2H), 7.84–7.78 (m, 2H), 7.70–7.65 (m, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.93 (s, 3H), 3.77 (t, *J* = 7.2 Hz, 2H), 2.74 (t, *J* = 7.8 Hz, 2H), 2.12–2.03 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.36, 166.97, 145.32, 141.16, 137.56, 133.83, 132.04, 129.98, 128.84, 128.58, 127.17, 126.75, 123.09, 52.04, 37.72, 32.80, 29.54; HRMS (EI) m/z Calcd for C<sub>25</sub>H<sub>21</sub>NO<sub>4</sub> (M<sup>+</sup>) 399.1471, found: 399.1465.



## Methyl 4'-(3-chloropropyl)-[1,1'-biphenyl]-4-carboxylate

7u was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, 7u was obtained in 68% yield.

39.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.94 (s, 3H), 3.56 (t, *J* = 6.4 Hz, 2H), 2.84 (t, *J* = 7.4 Hz, 2H), 2.16–2.09 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.98, 145.32, 140.83, 137.85, 130.08, 129.12, 128.72, 127.33, 126.81, 52.08, 44.13, 33.88, 32.38; HRMS (EI) m/z Calcd for C<sub>17</sub>H<sub>17</sub>ClO<sub>2</sub> (M<sup>+</sup>) 288.0912, found: 288.0914.



#### Methyl 4'-(2-methoxyethyl)-[1,1'-biphenyl]-4-carboxylate

7v was synthesized following the general procedure A at 50 °C. After purification by preparative thin-layer

chromatography using hexane/EtOAc (10/1) as the eluent, 7v was obtained in 87% yield.

47.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.94 (s, 3H), 3.65 (t, J = 7.2 Hz, 2H), 3.38 (s, 3H), 2.94 (t, J = 7.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.00, 145.44, 139.20, 137.90, 130.05, 129.41, 128.67, 127.23, 126.83, 73.38, 58.71, 52.09, 35.84; HRMS (ESI-TOF) m/z Calcd for C<sub>17</sub>H<sub>19</sub>O<sub>3</sub> [M+H]<sup>+</sup> 271.1329, found: 271.1335.



#### 3-(4'-(Methoxycarbonyl)-[1,1'-biphenyl]-4-yl)propanoic acid

7w was synthesized following the general procedure **B** using NaHCO<sub>3</sub> (67.2 mg, 0.8 mmol, 4.0 equiv). The reaction mixture was quenched by adding 1 M HCl (5.0 mL). The organic phase was separated, and the aqueous layer was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. After purification by preparative thin-layer chromatography using DCM/MeOH (20/1) as the eluent, 7w was obtained in 85% yield.

46.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.02 (d, *J* = 8.4 Hz, 2H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 3.87 (s, 3H), 2.87 (t, *J* = 7.2 Hz, 2H), 2.58–2.53 (m, 2H). <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  173.91, 166.11, 144.59, 141.55, 136.50, 129.82, 129.07, 128.20, 126.91, 126.75, 52.19, 35.35, 30.74; HRMS (ESI-TOF) m/z Calcd for C<sub>17</sub>H<sub>15</sub>O<sub>4</sub> [M-H]<sup>-</sup> 283.0976, found: 283.0981.



## Methyl 4'-(3-methoxy-3-oxopropyl)-[1,1'-biphenyl]-4-carboxylate

7x was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7x was obtained in 68% yield.

40.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 3.94 (s, 3H), 3.69 (s, 3H), 3.01 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.21, 167.00, 145.32, 140.65, 138.00, 130.08, 128.88, 128.74, 127.37, 126.84, 52.10, 51.68, 35.52, 30.55; HRMS (EI) m/z Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub> (M<sup>+</sup>) 298.1203, found: 298.1200.



MeO<sub>2</sub>C

2-(4'-(Methoxycarbonyl)-[1,1'-biphenyl]-4-yl)acetic acid

7y was synthesized following the general procedure **B** using NaHCO<sub>3</sub> (67.2 mg, 0.8 mmol, 4.0 equiv). The reaction mixture was quenched by adding 1 M HCl (5.0 mL). The organic phase was separated and the aqueous layer was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. After purification by preparative thin-layer chromatography using DCM/MeOH (20/1) as the eluent, 7y was obtained in 80% yield.

# 43.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO) $\delta$ 8.04 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 3.88 (s, 3H), 3.64 (s, 2H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO) $\delta$ 172.58, 166.08, 144.47, 137.12, 135.43, 130.19, 129.82, 128.33, 126.86, 126.83, 52.18, 40.28; HRMS (ESI-TOF) m/z Calcd for C<sub>16</sub>H<sub>13</sub>O<sub>4</sub> [M-H]<sup>-</sup> 269.0819, found: 269.0824.



## Methyl 4'-(2-methoxy-2-oxoethyl)-[1,1'-biphenyl]-4-carboxylate

7z was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7z was obtained in 79% yield.

45.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 3.94 (s, 3H), 3.72 (s, 3H), 3.69 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.86, 166.99, 145.17, 138.87, 133.98, 130.10, 129.86, 128.90, 127.46, 126.94, 52.15, 52.12, 40.81; HRMS (EI) m/z Calcd for C<sub>17</sub>H<sub>16</sub>O<sub>4</sub> (M<sup>+</sup>) 284.1043, found: 284.1043.



## 2-(4'-(Methoxycarbonyl)-[1,1'-biphenyl]-4-yl)propanoic acid

7aa was synthesized following the general procedure B using NaHCO<sub>3</sub> (67.2 mg, 0.8 mmol, 4.0 equiv). The reaction mixture was quenched by adding 1 M HCl (5.0 mL). The organic phase was separated and the aqueous layer was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. After purification by preparative thin-layer chromatography using DCM/MeOH (20/1) as the eluent, 7aa was obtained in 79% yield.

45.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  8.02 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 3.88 (s, 3H), 3.65 (dd, *J* = 14.0, 7.0 Hz, 1H), 1.36 (d, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  175.69, 166.07, 144.59, 143.04, 136.77, 129.78, 128.22, 128.20, 126.78, 127.74, 52.14, 45.53, 18.90; HRMS (EI) m/z Calcd for C<sub>17</sub>H<sub>16</sub>O<sub>4</sub> (M<sup>+</sup>) 284.1045, found: 284.1043.



## Methyl 4'-(1-(methoxycarbonyl)cyclohexyl)-[1,1'-biphenyl]-4-carboxylate

7ab was synthesized following the general procedure A at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7ab was obtained in 63% yield.

44.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 3.94 (s, 3H), 3.67 (s, 3H), 2.55–2.48 (m, 2H), 1.79–1.65 (m, 5H), 1.55–1.45 (m, 2H), 1.32–1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.56, 167.00, 145.06, 143.91, 138.31, 130.08, 128.85, 127.28, 126.88, 126.54, 52.11, 50.80, 34.68, 25.53, 23.64; HRMS (EI) m/z Calcd for C<sub>22</sub>H<sub>24</sub>O<sub>4</sub> (M<sup>+</sup>) 352.1669, found: 352.1672.



Methyl (R)-4'-(2-(1,3-dioxoisoindolin-2-yl)-3-methoxy-3-oxopropyl)-[1,1'-biphenyl]-4-carboxylate

7ac was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/EtOAc (5/1) as the eluent, 7ac was obtained in 61% yield.

54.6 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, *J* = 8.8 Hz, 2H), 7.82–7.78 (m, 2H), 7.72–7.67 (m, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 5.21 (dd, *J* = 10.8, 6.0 Hz, 1H), 3.92 (s, 3H), 3.80 (s, 3H), 3.69–3.58 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.24, 167.46, 166.93, 144.99, 138.36, 136.82, 134.15, 131.54, 129.99, 129.40, 128.75, 127.36, 126.76, 123.52, 53.06, 52.94, 52.07, 34.30; HRMS (EI) m/z Calcd for C<sub>26</sub>H<sub>22</sub>NO<sub>6</sub> [M+H]<sup>+</sup> 444.1442, found: 444.1443.



#### Methyl (S)-4'-((3-acetyl-2-oxooxazolidin-4-yl)methyl)-[1,1'-biphenyl]-4-carboxylate

**7ad** was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/EtOAc (2/1) as the eluent, **7ad** was obtained in 57% yield.

40.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.75–4.69 (m, 1H), 4.28–4.19 (m, 2H), 3.94 (s, 3H), 3.36 (dd, J = 13.2, 3.2 Hz, 1H), 2.85 (dd, J = 13.6, 9.6 Hz, 1H), 2.58 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  170.59, 167.13, 153.65, 144.91, 139.14, 135.18, 130.17, 130.01, 128.98, 127.83, 126.94, 66.18, 54.96, 52.24, 37.50, 23.82; HRMS (ESI-TOF) m/z Calcd for C<sub>20</sub>H<sub>19</sub>NNaO<sub>5</sub> [M+Na]<sup>+</sup> 376.1155, found: 376.1161.



## Methyl 4'-(oxiran-2-ylmethoxy)-[1,1'-biphenyl]-4-carboxylate

7ae was synthesized following the general procedure A at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, 7ae was obtained in 82% yield.

47.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 4.29 (dd, J = 10.8, 3.2 Hz, 1H), 4.01 (dd, J = 10.8, 5.6 Hz, 1H), 3.93 (s, 3H), 3.41–3.36 (m, 1H), 2.93 (t, J = 4.4 Hz, 1H), 2.79 (dd, J = 4.8, 2.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.03, 158.70, 145.05, 132.97, 130.10, 128.40, 128.34, 126.49, 115.06, 68.84, 52.07, 50.10, 44.69; HRMS (ESI-TOF) m/z Calcd for C<sub>17</sub>H<sub>17</sub>O<sub>4</sub> [M+H]<sup>+</sup> 285.1121, found: 285.1126.



Methyl 4"-chloro-[1,1':4',1"-terphenyl]-4-carboxylate

7af was synthesized following the general procedure A at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (2/1) as the eluent, 7af was obtained in 62% yield.

40.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, *J* = 8.4 Hz, 2H), 7.73–7.68 (m, 4H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 3.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.95, 144.89, 139.73, 139.17, 138.85, 133.68, 130.17, 129.02, 128.27, 127.74, 127.46, 126.89, 52.15; HRMS (EI) m/z Calcd for C<sub>20</sub>H<sub>15</sub>ClO<sub>2</sub> (M<sup>+</sup>) 322.0755, found: 322.0756.



## Methyl 4'-(1-((4-nitrophenyl)sulfonyl)-4-phenylpiperidin-4-yl)-[1,1'-biphenyl]-4-carboxylate

**7ag** was synthesized following the general procedure **B**. After purification by preparative thin-layer chromatography using hexane/DCM (1/1) as the eluent, **7ag** was obtained in 97% yield.

108.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (d, J = 8.8 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.29–7.26 (m, 2H), 7.25–7.21 (m, 2H), 7.19–7.13 (m, 3H), 3.92 (s, 3H), 3.34–3.28 (m, 2H), 3.23–3.18 (m, 2H), 2.62–2.51 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.88, 150.02, 145.94, 145.04, 144.60, 143.12, 137.84, 130.11, 128.97, 128.82, 128.51, 127.46, 127.29, 126.78, 126.73, 126.51, 124.32, 52.13, 44.17, 43.16, 35.53; HRMS (ESI-TOF) m/z Calcd for C<sub>31</sub>H<sub>28</sub>O<sub>6</sub>N<sub>2</sub>SNa [M+Na]<sup>+</sup> 579.1560, found: 579.1565.



## Methyl 4'-(4-bromophenoxy)-[1,1'-biphenyl]-4-carboxylate

7**ah** was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using hexane/EtOAc (10/1) as the eluent, **7ah** was obtained in 91% yield.

70.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 9.2 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 9.2 Hz, 2H), 3.95 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.12, 156.12, 144.80, 135.36, 132.81, 130.18, 128.76, 128.67, 126.75, 120.76, 119.16, 116.09, 52.20; HRMS (ESI-TOF) m/z Calcd for C<sub>20</sub>H<sub>15</sub>BrNaO<sub>3</sub> [M+Na]<sup>+</sup> 405.0097, found: 405.0102.



## Methyl 4'-(4-(2-(pyridin-2-yloxy)propoxy)phenoxy)-[1,1'-biphenyl]-4-carboxylate

**7ai** was synthesized following the general procedure **A** at 50 °C. After purification by preparative thin-layer chromatography using hexane/EtOAc (20/1) as the eluent, **7ai** was obtained in 70% yield.

64.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 5.2, 1.2 Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.59–7.53 (m, 3H), 7.03–6.98 (m, 4H), 6.97–6.93 (m, 2H), 6.89–6.84 (m, 1H), 6.75 (d, J = 8.4 Hz, 1H), 5.63–5.56 (m, 1H), 4.23–4.18 (m, 1H), 4.11–4.06 (m, 1H), 3.93 (s, 3H), 1.49 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.02, 163.13, 158.90, 155.49, 149.81, 146.76, 144.99, 138.70, 134.07, 130.11, 128.49, 126.62, 121.00, 117.75, 116.77, 115.87, 111.67, 109.97, 71.05, 69.23, 52.09, 16.99; HRMS (ESI-TOF) m/z Calcd for C<sub>28</sub>H<sub>26</sub>NO<sub>5</sub> [M+H]<sup>+</sup> 456.1805, found: 456.1818.



## Methyl 4'-(2-(methylsulfonamido)-5-nitrophenoxy)-[1,1'-biphenyl]-4-carboxylate

7aj was synthesized following the general procedure **A**. After purification by preparative thin-layer chromatography using DCM as the eluent, 7aj was obtained in 99% yield.

87.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, *J* = 8.4 Hz, 2H), 8.04 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.80 (d, *J* = 9.2 Hz, 1H), 7.74 (d, *J* = 2.4 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.41 (s, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 3.96 (s, 3H), 3.20 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.84, 154.23, 146.01, 144.10, 143.69, 137.84, 134.06, 130.25, 129.52, 129.28, 126.98, 120.05, 119.67, 117.37, 112.10, 52.20, 40.65; HRMS (ESI-TOF) m/z Calcd for C<sub>21</sub>H<sub>17</sub>O<sub>7</sub>N<sub>2</sub>S [M-H]<sup>-</sup> 441.0762, found: 441.0768.



2-(2-Fluoro-4"-(methoxycarbonyl)-[1,1':4',1"-terphenyl]-4-

#### yl)propanoic acid

7ak was synthesized following the general procedure **B** using NaHCO<sub>3</sub> (67.2 mg, 0.8 mmol, 4.0 equiv). The reaction mixture was quenched by adding 1 M HCl (5.0 mL). The organic phase was separated, and the aqueous layer was extracted with DCM ( $3 \times 10$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. After purification by preparative thin-layer chromatography using hexane/EtOAc (2/1) as the eluent, **7ak** was obtained in 76% yield.

57.0 mg, white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO) δ 12.51 (s, 1H), 8.07 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.57 (t, J = 8.2 Hz, 1H), 7.30–7.23 (m, 2H), 3.89 (s, 3H), 3.80 (q, J = 7.0 Hz, 1H), 1.42 (d, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO) δ 174.85, 166.03, 160.20, 157.75, 144.04, 143.42 (d, J = 8.0 Hz), 138.11, 134.90, 130.58 (d, J = 4.0 Hz), 129.85, 129.39 (d, J = 3.0 Hz), 128.59, 127.08 (d, J = 27.0 Hz), 125.92 (d, J = 13.0 Hz), 124.14 (d, J = 3.0 Hz), 115.27 (d, J = 23.0 Hz), 52.18, 44.12, 18.27;<sup>19</sup>F NMR (375 MHz, (CD<sub>3</sub>)<sub>2</sub>SO) δ -117.89; HRMS (ESI-TOF) m/z Calcd for C<sub>23</sub>H<sub>20</sub>FO<sub>4</sub> [M+H]<sup>+</sup> 379.1340, found: 379.1339.

## 2.6 Applications of para-Functionalization of Arenes

## 2.6.1 Synthesis of Tetriprofen



A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv), CH<sub>2</sub>Cl<sub>2</sub> (0.2 mL) and **6aa** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44  $\mu$ L, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then alkenylboric acid pinacol ester (0.4 mmol, 2.0 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10.2 mg, 10 mol%), NaHCO<sub>3</sub> (84.0 mg, 1.0 mmol, 5.0 equiv) were added under nitrogen atmosphere, subsequently the DMF (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at 50 °C for 12 hours. Upon completion, 0.25 M HCl (5.0 mL) was added to the mixture. The organic phase was separated, and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. The resulting mixture was purified by silica gel chromatography (DCM/MeOH = 25/1) to afford **Tetriprofen** in 52% yield.



24.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.26–7.23 (m, 2H), 6.12–6.07 (m, 1H), 3.72 (q, *J* = 7.2 Hz, 1H), 2.41–2.35 (m, 2H), 2.23–2.17 (m, 2H), 1.80–1.74 (m, 2H), 1.69–1.62 (m, 2H), 1.50 (d, *J* = 7.2 Hz, 3H).

## 2.6.2 Synthesis of Ibuprofen



A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (55.7 mg, 0.24 mmol, 1.2 equiv), CH<sub>2</sub>Cl<sub>2</sub> (0.2 mL) and **6aa** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (44  $\mu$ L, 0.24 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then alkenylboric acid pinacol ester (0.4 mmol, 2.0 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10.2 mg, 10 mol%), NaHCO<sub>3</sub> (84.0 mg, 1.0 mmol, 5.0 equiv) were added under nitrogen atmosphere, subsequently the DMF (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at 50 °C for 12 hours. Upon completion, 0.25 M HCl (5.0 mL) was added to the mixture. The organic phase was separated, and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. The resulting mixture was purified by silica gel chromatography (DCM/MeOH = 25/1) to afford **9** in 71% yield.

To a solution alkenylated 2-phenylpropanoic acid **9** (42 mg, 0.2 mmol) in ethanol (5.0 mL) was added palladium on activated carbon (4.2 mg, 10 wt%). Then the flask was back-filled with hydrogen gas five times. A hydrogen balloon

was left on the flask and the reaction mixture was stirred for 4 hours at 50 °C. Upon completion, the reaction mixture was filtered through a pad of Celite, and the pad was washed with EtOH. The resulting solution was concentrated. The crude product was purified by silica gel chromatography using DCM/MeOH (20/1) as the eluent to afford **Ibuprofen** in 86% yield.

#### 2-(4-(2-Methylprop-1-en-1-yl)phenyl)propanoic acid<sup>36</sup>

29.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.28–7.25 (m, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.23 (s, 1H), 3.72 (q, *J* = 7.2 Hz, 1H), 1.89 (s, 3H), 1.85 (s, 3H), 1.51 (d, *J* = 7.2 Hz, 3H).



#### Ibuprofen<sup>37</sup>

36.0 mg, colorless liquid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 3.70 (q, *J* = 7.2 Hz, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.89–1.79 (m, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 0.89 (d, *J* = 6.8 Hz, 6H).

## 2.6.3 Synthesis of Bifonazole



An oven-dried 100 mL Schlenk tube was charged with thianthrene *S*-oxide (1.67 g, 7.2 mmol, 1.2 equiv), CH<sub>2</sub>Cl<sub>2</sub> (30 mL) and diphenylmethane (1.00 g, 6 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (1.2 mL, 7.2 mmol, 1.2 equiv). The reaction mixture was stirred at the same temperature for 30 min, and then allowed to stir at room temperature for another 1 hour. Then PhBPin (1.10 g, 9.0 mmol, 1.5 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (153.0 mg, 5.0 mol%), NaHCO<sub>3</sub> (1.51 g, 18 mmol, 3.0 equiv) were added under nitrogen atmosphere, subsequently DMF (30 mL) was added to wash the Schlenk tube. The reaction mixture was diluted with DCM, and passed through a pad of Celite with DCM as the eluent to remove the insoluble precipitate. The filtrate was concentrated, and the resulting residue was purified via silica gel chromatography (toluene/hexane = 1/40) to afford the desired product **11** (1.24 g, 84% yield) as a white solid. Meanwhile, thianthrene was isolated in 92% yield (1.42 g).

# Notably, TTSO could be readily recovered in 89% total yield (1.492 g) after oxidation of thianthrene using the known procedure<sup>1</sup>

A suspension of **11** (48.9 mg, 0.2 mmol, 1.0 equiv), NBS (35.6 mg, 0.2 mmol, 1.0 equiv), AIBN (3.3 mg, 0.02 mmol, 10 mol%) in CCl<sub>4</sub> (2.5 mL) was refluxed for 50 min under nitrogen atmosphere. After cooling to room temperature, the reaction mixture was filtered and the solid was washed with hexane ( $2 \times 2$  mL). The filtrate was concentrated, followed by addition of imidazole (106.5 mg, 1.57 mmol, 7.85 equiv), K<sub>2</sub>CO<sub>3</sub> (84.7 mg, 0.61 mmol, 3.05 equiv) and MeCN (4.3 mL). The mixture was then allowed to reflux for 1 h. After cooling to room temperature, the mixture was passed through a pad of Celite with DCM as the eluent to remove the insoluble precipitate. The resulting solution

was concentrated and purified by preparative thin-layer chromatography (hexane/EtOAc = 5/3) to afford the desired **12** (47.9 mg, 77% yield) as a white solid.



#### 4-benzyl-1,1'-biphenyl<sup>38</sup>

1.24 g, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59–7.54 (m, 2H), 7.54–7.50 (m, 2H), 7.45–7.39 (m, 2H), 7.35–7.19 (m, 8H), 4.03 (s, 2H).



## **Bifonazole**39

47.9 mg, white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.58 (d, *J* = 8.1Hz, 4H), 7.49–7.42 (m, 3H), 7.41–7.33 (m, 4H), 7.22–7.10 (m, 5H), 6.90 (s, 1H), 6.57 (s, 1H).

## 2.6.4 Synthesis of LJ570



A 25 mL Schlenk tube was charged with thianthrene *S*-oxide (139.2 mg, 0.6 mmol, 3.0 equiv), CH<sub>2</sub>Cl<sub>2</sub> (0.3 mL) and **14** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. The reaction mixture was then cooled to -40 °C, followed by the dropwise of Tf<sub>2</sub>O (110  $\mu$ L, 0.6 mmol, 3.0 equiv). The reaction mixture was stirred at -40 °C for 30 min, and then allowed to stir at room temperature for 1 hour. Then benzeneboronic acid (73.2 mg, 0.6 mmol, 3.0 equiv), Pd(P'Bu<sub>3</sub>)<sub>2</sub> (10.2 mg, 10 mol%), NaHCO<sub>3</sub> (100.8 mg, 1.2 mmol, 6.0 equiv) were added under nitrogen atmosphere, subsequently the DMF (1.0 mL) was added to wash the Schlenk tube. The reaction mixture was stirred at 50 °C for 12 hours. Upon completion, 0.25 M HCl (10.0 mL) was added to the mixture. The organic phase was separated, and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under vacuum. The resulting mixture was purified by silica gel chromatography (PhMe/isopropanol/AcOH = 100/10/1) to afford **15** (LJ570) and mono-arylated **15**'.



#### (S)-3-([1,1'-Biphenyl]-4-yl)-2-([1,1'-biphenyl]-4-yloxy)propanoic acid<sup>40</sup>

57.0 mg (72%), white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59–7.27 (m, 16H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.96–4.91 (m, 1H), 3.40–3.33 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.34, 156.88, 140.75, 140.45, 140.04, 135.32, 135.01, 129.92, 128.74, 128.73, 128.36, 127.24, 127.03, 126.90, 126.80, 115.65, 77.42, 38.42; HRMS (ESI-TOF) m/z Calcd for C<sub>27</sub>H<sub>21</sub>O<sub>3</sub> [M-H]<sup>-</sup> 393.1496, found: 393.1504.



## (S)-2-([1,1'-Biphenyl]-4-yloxy)-3-phenylpropanoic acid<sup>41</sup>

8.0 mg (13%), white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53–7.25 (m, 12H), 6.91 (d, J = 8.8 Hz, 2H), 4.89 (t, J = 6.4 Hz, 1H), 3.35–3.26 (m, 2H).
## 3. References

- <sup>1</sup> a) Amani, K.; Zolfigol, M. A.; Ghorbani-Choghamarani, A.; Hajjami, M. *Monatsh Chem.* 2009, *140*, 65. b) Berger, F.; Plutschack, M.B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. *Nature* 2019, *567*, 223.
- <sup>2</sup> Chakraborti, A. K.; Sharma, L.; Gulhane, R.; Shivani. *Tetrahedron.* 2003, 59, 7661.
- <sup>3</sup> Klumpp, D. A.; Garza, M.; Jones, A.; Mendoza, S. J. Org. Chem. 1999, 64, 6702.
- <sup>4</sup> Grasa, G. A.; Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077.
- <sup>5</sup> Guan, Z.-H.; Hu, J.-L.; Gu, Y.-L.; Zhang, H.-J.; Li, G.-X.; Li, T. Green Chem. 2012, 14, 1964.
- <sup>6</sup> Kuriyama, M.; Shimazawa, R.; Shirai, R. Tetrahedron 2007, 63, 9393.
- <sup>7</sup> Song, H.-J.; Jiang, W.-T.; Zhou, Q.-L.; Xu, M.-Y.; Xiao, B. ACS Catal. 2018, 8, 9287.
- <sup>8</sup> Hatakeyama, T.; Nakamura, M. J. Am. Chem. Soc. 2007, 129, 9844.
- <sup>9</sup> Iwai, T.; Tanaka, R.; Harada, T.; Sawamura, M. Chem. Eur. J. 2014, 20, 1057.
- <sup>10</sup> So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795.
- <sup>11</sup> Tang, J.; Biafora, A.; Goossen, L. J. Angew. Chem. Int. Ed. 2015, 54, 13130.
- <sup>12</sup> Jin, M.-J.; Taher, A.; Kang, H.-J.; Choi, M.; Ryoo, R. Green Chem. 2009, 11, 309.
- <sup>13</sup> Xu, C.-F.; Yin, L.; Huang, B.; Liu, H.-Y.; Cai, M.-Z. *Tetrahedron* 2016, 72, 2065.
- <sup>14</sup> Wang, J.-Y.; Song, G.-H.; Peng, Y.-Q. *Tetrahedron Lett.* **2011**, *52*, 1477.
- <sup>15</sup> Savarin, C.; Liebeskind, L. S. Org. Lett. 2001, 3, 2149.
- <sup>16</sup> Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997.
- <sup>17</sup> Dai, J.-J.; Liu, J.-H.; Luo, D.-F.; Liu, L. Chem. Commun. 2011, 47, 677.
- <sup>18</sup> Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.
- <sup>19</sup> Nanayakkara, P.; Alper, H. Adv. Synth. Catal. 2006, 348, 545.
- <sup>20</sup> Chen, X.; Zhou, L.-M.; Li, Y.-M.; Xie, T.; Zhou, S.-L. J. Org. Chem. 2014, 79, 230.
- <sup>21</sup> Yang, D.-J.; Zhu, Y.-F.; Yang, N.; Jiang, Q.-Q.; Liu, R.-H. Adv. Synth. Catal. 2016, 358, 1731.
- <sup>22</sup> Pschierer, J.; Plenio, H. Eur. J. Org. Chem. 2010, 2934
- <sup>23</sup> Nishimura, M.; Ueda, M.; Miyaura, N. *Tetrahedron* **2002**, *58*, 5779.
- <sup>24</sup> McLaughlin, M. G.; McAdam, C. A.; Cook, M. J. Org. Lett. 2015, 17, 10.
- <sup>25</sup> Huang, Z.-Z.; Tang, Y. J. Org. Chem. **2002**, 67, 5320.
- <sup>26</sup> Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem. Int. Ed., 2007, 46, 5587.
- <sup>27</sup> Liu, N.; Wang, Z.-X. J. Org. Chem., **2011**, 76, 10031.
- <sup>28</sup> Shirakawa, E.; Watabe, R.; Murakami, T.; Hayashi, T. Chem. Commun. 2013, 49, 5219.
- <sup>29</sup> Vilums, M.; Zweemer, A. J. M.; Dekkers, S.; Askar, Y.; de Vries, H.; Saunders, J.; Stamos, D.; Brussee, J.; Heitman, L. H.; Ijzerman, A. P. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 5377.
- <sup>30</sup> Zhao, R.; Feng, G.-D.; Xin, X.-D.; Guan, H.-H.; Hua, J.; Wan, R.-Z.; Li, W.; Liu, L. Chin. Chem. Lett. 2019, 30, 1432.
- <sup>31</sup> Larsen, U. S.; Martiny, L.; Begtrup, M. Tetrahedron Lett. 2005, 46, 4261.
- <sup>32</sup> Zhao, G.-K.; Yuan, L.-Z.; Alami, M.; Provot, O. Adv. Synth. Catal. 2018, 360, 2522.
- <sup>33</sup> Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S.; Wang, X.; Mo, F.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 11581.
- <sup>34</sup> Keaveney, S. T.; Kundu, G.; Schoenebeck, F. Angew. Chem., Int. Ed. 2018, 57, 12573.
- <sup>35</sup> Wang, J.-K.; Zong, Y.-X.; Wang, X.-C.; Hu, Y.-L.; Yue, G.-R.; Pan, Y. Green Chem. **2016**, *18*, 967.
- <sup>36</sup> Moriconi, A.; Cesta, M. C.; Cervellera, M. N.; Aramini, A.; Coniglio, S.; Colagioia, S.; Beccari, A. R.; Bizzarri, C.; Cavicchia, M. R.; Locati, M.; Galliera, E.; Di Benedetto, P.; Vigilante, P.; Bertini, R.; Allegretti,

M. J. Med. Chem. 2007, 50, 3984.

- <sup>37</sup> He, Z.-T.; Hartwig, J. F. J. Am. Chem. Soc. 2019, 141, 11749.
- <sup>38</sup> He, Z.; Song, F.; Sun, H.; Huang, Y., J. Am. Chem. Soc. **2018**, 140, 2693.
- <sup>39</sup> Cuevas-Yañez, E.; Serrano, J. M.; Huerta, G.; Muchowski, J. M.; Cruz-Almanza, R., *Tetrahedron* 2004, 60, 9391.
- <sup>40</sup> Laghezza, A.; Piemontese, L.; Cerchia, C.; Montanari, R.; Capelli, D.; Giudici, M.; Crestani, M.; Tortorella, P.; Peiretti, F.; Pochetti, G.; Lavecchia, A.; Loiodice, F. J. Med. Chem. 2018, 61, 8282.
- <sup>41</sup> Montanari, R.; Saccoccia, F.; Scotti, E.; Crestani, M.; Godio, C.; Gilardi, F.; Loiodice, F.; Fracchiolla, G.; Laghezza, A.; Tortorella, P.; Lavecchia, A.; Novellino, E.; Mazza, F.; Aschi, M.; Pochetti, G. *J. Med. Chem.* **2008**, *51*, 7768.

















S46











































S67




























40 -20 -50 f1 (ppm) -70 -90 -1 60 30 20 10 0 -10 -30 -40 -60 -80 -100 -110 -120 -130 -140













































-30 -50 -1 20 10 0 -10 -20 -40 -60 -70 fl (ppm) -80 -90 -100 -110 -120 -130 -140













\_ 110 100 fl (ppm)