Supporting Information

A General Platinum-catalyzed Alkoxycarbonylation of Olefins

Ji Yang, Jiawang Liu, Yao Ge, Weiheng Huang, Carolin Schneider, Ricarda Dühren,

Robert Franke, Helfried Neumann, Ralf Jackstell, and Matthias Beller*

* Corresponding author. Email: <u>matthias.beller@catalysis.de</u>

Contents

S1. General information: Materials and methods	2
S2. General procedure of platinum catalysed alkoxycarbonylation of alkenes	3
S3. Optimisation of reaction conditions	4
Table S3.1. The effect of ligand	4
Table S3.2. The effect of different metal catalyst precursors	5
Table S3.3. The effect of Pt precursors	5
Table S3.4. The effect of acid	6
Table S3.5. The effect of catalyst loading	6
Table S3.6. The effect of tempature	7
S4. Kinetic monitoring experiment	8
S5. Characterization of the products	9
S6. NMR, GC and GC-MS spectra	. 19

S1. General information: Materials and methods

All commercial reagents were ordered from Alfa Aesar, Aldrich, TCI or Strem. Unless otherwise stated, commercial reagents were used without purification. Air- and moisture-sensitive syntheses were performed under argon atmosphere in heating gun vacuum dried glassware. Analytical data of literature known compounds were in agree with reported data. NMR spectra were recorded on Bruker Avance 300 (300 MHz) or 400 (400 MHz) NMR spectrometers. Chemical shifts δ (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.16 ppm (¹³C NMR), for CD₂Cl₂ were 5.32 ppm (¹H NMR) and 53.84 ppm (¹³C NMR), for d₆-benzene were 7.16 ppm (¹H NMR) and 128.26 ppm (¹³C NMR), and for d₈-toluene were 2.08 ppm (¹H NMR) and 20.43 ppm (¹³C NMR). Signals were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). All measurements were carried out at room temperature unless otherwise stated. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HRMS) were recorded on Agilent 6210 Time-of-Flight LC/MS (Agilent) with electrospray ionization (ESI). The data are given as mass units per charge (m/z) and intensities of signals are given in brackets. For GC analyses, HP 6890 chromatograph with a 29 m HP5 column was used.

S2. General procedure of platinum catalysed alkoxycarbonylation of alkenes

A 4 mL screw-cap vial was charged with platinum salt, ligand, acid, and an oven-dried stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. Then, the vial was evacuated under vacuum and recharged with argon for three times. After MeOH and **1** were injected by syringe; the vial was fixed in an alloy plate and put into Paar 4560 series autoclave (300 mL) under argon atmosphere. At room temperature, the autoclave was flushed with carbon monoxide for three times and carbon monoxide was charged. The reaction was heated at the specified temperature. Afterwards, the autoclave was cooled to room temperature and the pressure was carefully released. Mesitylene was added into the reaction as internal standard. A sample of the mixture was analysed by gas chromatography. Pure products were obtained by column chromatography on silica gel.

S3. Optimisation of reaction conditions

Table S3.1. The effect of ligand ^[a]

[a]. Standard reaction conditions: 1-Octene (1.0 mmol), $PtCl_2$ (0.01 mmol, 1.0 mol%), ligands (for monodentate phosphine ligand: 0.04 mmol, 4.0 mol%; for bidentate phosphine ligand: 0.02 mmol, 2.0 mol%), $PTSA \cdot H_2O$ (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20 h; The selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

[a]. Reaction conditions: 1-Octene (1.0 mmol), metal precursor (refer to Fe or Cu, 0.05 mmol, 5.0 mol%), ligand (0.1 mmol, 10.0 mol%), PTSA·H₂O (20.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20 h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard. [b]. reaction conditions: 1-Octene (1.0 mmol), metal precursor (refer to Ru, Rh, Pd or Pt, 0.01 mmol, 1.0 mol%), ligand (0.02 mmol, 2.0 mol%), PTSA·H₂O (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20 h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

Table S3.3. The effect of Pt precursors

	Pt precurso ligand L17 PTSA:H ₂ C + CO + MeOH 12C	or (1.0 mol%), (2.0 mol%), 0 (5.0 mol%), ℃C, 20 h	OMe O
Entry	Pt precursor	Yield	Selectivity (n/iso)
1.	PtCl ₂	95	73/27
2.	PtBr ₂	58	68/32
3.	Pt(acac) ₂	98	79/21
4.	Pt(cod)Cl ₂	63	68/32

[a]. reaction conditions: 1-octene (1.0 mmol), Pt precursor (0.01 mmol, 1.0 mol%), ligand (0.02 mmol, 2.0 mol%), PTSA·H₂O (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

Table S3.4. The effect of acid [a]

	Pt(acad ligand L acid	c) ₂ (1.0 mol%), 17 (2.0 mol%), (5.0 mol%),	
	+ CO + MeOH 1	20 °C, 20 h	
Entry	Acid	Yield	Selectivity (n/iso)
1.	HCl, aqueous solution	65	70/30
2.	CF ₃ COOH	72	69/31
3.	MSA	93	77/23
4.	CSA	90	68/32
5.	PTSA	98	79/21
6.	H_2SO_4	67	71/29

[a]. reaction conditions: 1-octene (1.0 mmol), $Pt(acac)_2$ (0.01 mmol, 1.0 mol%), ligand (0.02 mmol, 2.0 mol%), acid (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20 h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

Table S3.5. The effect of catalyst loading ^[a]

	Pt(acac ligand L1 acid()₂ (X mol%), 7 (2X mol%), 5X mol%),	OMe
	+ CO + MeOH 12	0 °C, 20 h	
Entry	Catalyst loading (Pt)	Yield	Selectivity (n/iso)
1.	0.1 mmol%	54	79/21
2.	0.2 mmol%	57	79/21
3.	0.5 mmol%	95	74/26
4.	1.0 mmol%	98	79/21

[a]. reaction conditions: 1-octene (1.0 mmol), Pt $(acac)_2 (0.001-0.01 \text{ mmol}, 0.1-1.0 \text{ mol}\%)$, ligand (0.02 mmol, 2.0 mol%), PTSA H₂O (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 120 °C, 20 h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

Table S3.6. The effect of tempature [a]

[a]. reaction conditions: 1-octene (1.0 mmol), $Pt(acac)_2$ (0.005 mmol, 0.5 mol%), ligand (0.02 mmol, 2.0 mol%), PTSA H₂O (5.0 mol%), MeOH (2.0 mL), CO (40 atm), 20 h; the selectivity and yield were determined by GC analysis with mesitylene as the internal standard.

S4. Kinetic monitoring experiment

In order to understand the process in more detail, kinetic monitoring experiments were conducted. In general, all catalytic experiments an excess of ligand was used to ensure stability of the active complex at low metal concentration. By comparison, we observe that the Pd catalysed reaction is basically completed in about 2.5 hours; the rate of Pt-catalysed reaction is slower. It takes about 5.5 hours to complete the reaction. However, for 1-octene, the final yield of the product is the same for both catalysts.

Figure S4. Kinetic monitoring experiment.

The *X*-axis represents the reaction time and the *Y*-axis represents the reaction yield. Reaction conditions: 1-octene (20 mmol), $Pd(acac)_2$ or $Pt(acac)_2$ (0.02 mmol, 0.1 mol%), ligand (0.04 mmol, 0.2 mol%), PTSA·H₂O (0.5 mol%), MeOH (30 mL), CO (40 atm), 120 °C; the GC yield were determined by GC analysis with mesitylene as the internal standard.

S5. Characterization of the products

Colorless oil, 95% yield, n/iso = 74/26.

¹H NMR (300 MHz, CDCl₃) δ 3.66 (s, 3H), 2.34-2.24 (m, 2H), 1.67-1.54 (m, 2H), 1.34-1.19 (m, 10H), 0.92-0.79 (m, 3H) ppm;

¹³C NMR (75 MHz, CDCl₃) δ 174.5, 51.6, 34.2, 32.0, 29.4, 29.3, 29.3, 25.1, 22.8, 14.2.

DEPT135-¹³C NMR (75 MHz, CDCl₃) δ 51.6 (-), 34.3, 31.9, 29.4, 29.3, 29.3, 25.1, 22.8, 14.2 (-).

Colorless oil, 93% yield, n/iso > 99/1.

¹H NMR (300 MHz, CDCl₃) δ 3.65 (s, 3H), 2.31-2.21 (m, 2H), 1.58-1.48 (m, 2H), 0.88 (s, 9H) ppm;

¹³C NMR (75 MHz, CDCl₃) δ 175.0, 51.6, 38.7, 30.2, 30.0, 29.1.

DEPT135-¹³C NMR (75 MHz, CDCl₃) δ 51.6, 38.7 (-), 30.0 (-), 29.1.

Colorless oil, 87% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 2.62-2.52 (m, 2H), 2.51-2.32 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.7, 120.7, 118.8, 118.1, 116.0, 113.8, 111.4, 111.1, 108.9, 108.5, 106.2, 52.0, 26.7, 25.3.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 52.0, 26.7 (-), 25.3 (-).

COOMe CI 3g methyl 7-chloroheptanoate Chemical Formula: C₈H₁₅ClO₂ Exact Mass: 178.08

Colorless oil, 87% yield, n/iso = 66/34.

¹H NMR (400 MHz, CDCl₃) δ 3.59 (s, 3H), 3.49-3.39 (t, *J* = 6.7 Hz, 2H), 2.30-2.19 (m, 2H), 1.76-1.25 (m, 8H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.0, 51.4, 44.9, 33.9, 32.4, 28.4, 26.5, 24.7.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.4, 44.9 (-), 33.9 (-), 32.4 (-), 28.4 (-), 26.5 (-), 24.7 (-).

Colorless oil, 82% yield, n/iso = 99/1.

¹H NMR (400 MHz, CDCl₃) δ 3.64 (s, 3H), 2.32-2.18 (m, 2H), 1.02-0.77 (m, 11H), 0.58-0.44 (q, *J* = 7.9 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 175.6, 51.6, 28.6, 7.3, 6.6, 3.1.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.6, 28.6 (-), 7.3, 6.6 (-), 3.1 (-).

White solid, 77% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 7.83-7.70 (m, 2H), 7.70-7.58 (m, 2H), 3.96-3.84 (t, *J* = 7.2 Hz, 2H), 3.60 (s, 3H), 2.73-2.60 (t, *J* = 7.2 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.2, 167.9, 134.0, 132.0, 123.3, 51.9, 33.8, 32.8.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 134.0, 123.3, 51.9, 33.8 (-), 32.8 (-).

Colorless oil, 66% yield, n/iso = 68/32.

¹H NMR (300 MHz, CDCl₃) δ 7.79-7.70 (m, 2H), 7.43-7.24 (m, 4H), 3.56 (s, 3H), 3.45-3.32 (m, 2H), 2.38-2.27 (t, *J* = 7.2 Hz, 2H), 1.93-1.78 (m, 2H) ppm;

¹³C NMR (75 MHz, CDCl₃) δ 173.9, 167.7, 134.4, 131.1, 128.2, 126.9, 51.5, 39.4, 31.5, 24.4.

DEPT135-¹³C NMR (75 MHz, CDCl₃) δ 131.1, 128.2, 126.9, 51.5, 39.4 (-), 31.5 (-), 24.4 (-).

Colorless oil, 95% yield, n/iso = 71/29.

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 5H), 3.71 (s, 3H), 3.07-2.95 (t, *J* = 7.8 Hz, 2H), 2.73-2.64 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.1, 140.5, 128.4, 128.2, 126.2, 51.4, 35.6, 30.9.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 128.4, 128.2, 126.2, 51.4, 35.6 (-), 30.9 (-).

Colorless oil, 94% yield, n/iso = 65/35.

¹H NMR (400 MHz, CDCl₃) δ 7.34-7.22 (m, 5H), 3.70 (s, 3H), 2.75-2.62 (m, 2H), 2.45-2.33 (t, *J*=7.5 Hz, 2H), 2.08-1.96 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.7, 141.3, 128.4, 128.3, 125.9, 51.3, 35.1, 33.3, 26.4.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 128.5, 128.4, 126.0, 51.5, 35.2 (-), 33.4 (-), 26.6 (-).

Light yellow solid, 97% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 7.93-7.82 (m, 3H), 7.78-7.72 (m, 1H), 7.57-7.40 (m, 3H), 3.68 (s, 3H), 3.64-3.48 (m, 1H), 2.89-2.67 (m, 2H), 1.52-1.44 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 143.1, 133.6, 132.3, 128.2, 127.6, 127.6, 125.9, 125.4, 125.4, 124.9, 51.4, 42.6, 36.5, 21.8.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 128.2, 127.6, 127.6, 125.9, 125.4, 125.4, 124.9, 51.4, 42.6 (-), 36.5, 21.8.

Colorless oil, 87% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 3.03-2.95 (t, *J* = 7.7 Hz, 2H), 2.63-2.54 (t, *J* = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 146.5, 144.0, 141.3, 138.8, 136.3, 113.5, 51.8, 32.9, 18.0.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.8, 32.9 (-), 18.0 (-).

Colorless oil, 87% yield, *1*:*2* = 88:12.

 1 H NMR (400 MHz, CDCl₃) δ 7.55-7.46 (m, 1H), 7.39-7.22 (m, 3H), 4.20-4.10 (m, 1H), 3.82 (s, 3H),

3.24-2.95 (m, 2H), 2.60-2.37 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.2, 144.0, 140.6, 127.5, 126.4, 124.7, 124.6, 51.9, 50.0, 31.7, 28.7.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 127.5 (-), 126.4 (-), 124.7 (-), 124.6 (-), 51.9 (-), 50.0 (-), 31.7, 28.7.

Colorless oil, 89% yield, n/iso = 71/29.

¹H NMR (400 MHz, CDCl₃) δ 7.25-7.21 (m, 2H), 7.15-7.09 (m, 2H), 3.65 (s, 3H), 2.91 (t, *J* = 7.7 Hz, 2H), 2.60 (t, *J* = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.9, 138.9, 132.0, 129.6, 128.5, 51.5, 35.4, 30.2.

DEPT135- 13 C NMR (101 MHz, CDCl₃) δ 129.6, 128.5, 51.5, 35.4 (-), 30.2 (-).

Colorless oil, 86% yield, n/iso = 72/28.

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.09-7.03 (m, 2H), 3.65 (s, 3H), 2.89 (t, *J* = 7.7 Hz, 2H), 2.60 (t, *J* = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 139.4, 131.4, 130.0, 120.0, 51.5, 35.3, 30.2.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 131.4, 130.0, 51.5, 35.3 (-), 30.2 (-).

COOMe 3r methyl 3-(4-methoxyphenyl)propanoate Chemical Formula: C₁₁H₁₄O₃ Exact Mass: 194.09

Colorless oil, 85% yield, n/iso = 52/48.

¹H NMR (400 MHz, CDCl₃) δ 7.17-7.09 (m, 2H), 6.91-6.86 (m, 2H), 3.78 (s, 3H), 3.68 (s, 3H), 2.92 (t, J = 7.8 Hz, 2H), 2.62 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.3, 158.0, 132.5, 129.2, 113.8, 55.1, 51.4, 35.9, 30.0.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 129.2, 113.8, 55.1, 51.4, 35.9 (-), 30.0 (-).

Colorless oil, 86% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.19 (m, 1H), 7.12-7.01 (m, 3H), 3.63 (s, 6H), 3.36-3.19 (m, 2H), 2.70-2.46 (m, 4H), 1.30 (d, *J* = 7.0 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 145.9, 128.7, 125.4, 124.7, 51.5, 42.8, 36.5, 21.7.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 128.7 (-), 125.4 (-), 124.7 (-), 51.5 (-), 42.8, 36.5(-), 21.7 (-).

Colorless oil, 97% yield.

¹H NMR (300 MHz, CDCl₃) δ 3.65 (s, 3H), 2.79-2.63 (m, 1H), 1.93-1.48 (m, 8H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 177.4, 51.7, 43.8, 30.1, 25.9. DEPT135-¹³C NMR (75 MHz, CDCl₃) δ 51.7 (-), 43.8 (-), 30.1, 25.9.

Colorless oil, 96% yield.

¹H NMR (300 MHz, CDCl₃) δ 3.60 (s, 3H), 2.32-2.17 (m, 1H), 1.92-1.76 (m, 2H), 1.74-1.13 (m, 8H) ppm;

¹³C NMR (75 MHz, CDCl₃) δ 176.5, 51.4, 43.1, 29.1, 25.8, 25.5.

DEPT135-¹³C NMR (75 MHz, CDCl₃) δ 51.4 (-), 43.1 (-), 29.1, 25.8, 25.5.

Colorless oil, 88% yield.

¹H NMR (400 MHz, CDCl₃) δ 3.61 (s, 3H), 2.48-2.39 (m, 1H), 2.32-2.19 (m, 2H), 1.85-1.72 (m, 1H), 1.54-1.36 (m, 4H), 1.22-1.06 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 51.6, 46.4, 41.0, 36.5, 36.1, 34.2, 29.5, 28.7.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.6 (-), 46.4 (-), 40.9 (-), 36.5, 36.1 (-), 34.2, 29.5, 28.7.

Colorless oil, 98% yield, n/iso = 69/31.

¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 6H), 2.36-2.27 (m, 4H), 1.68-1.60 (m, 4H), ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.9, 77.5, 77.2, 76.8, 51.7, 33.8, 24.5.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.7 (-), 33.8, 24.5.

Colorless oil, 88% yield, n/iso = 42/58.

¹H NMR (400 MHz, CDCl₃) δ 3.56 (s, 6H), 2.20 (t, *J* = 7.5 Hz, 4H), 1.52 (m, 4H), 1.28-1.17 (m, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.0, 51.3, 33.9, 28.9, 28.8, 24.8.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.3, 33.9 (-), 28.8 (-), 24.8 (-).

Light yellow solid, 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.26-6.95 (m, 10H), 3.78 (dd, J = 8.8, 6.7 Hz, 1H), 3.52 (s, 3H), 3.40-3.27 (m, 1H), 2.95 (dd, J = 13.7, 6.7 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.9, 139.2, 138.8, 129.0, 128.8, 128.5, 128.1, 127.5, 126.5, 53.7, 52.1, 40.0.

DEPT135-13C NMR (101 MHz, CDCl₃) & 129.0, 128.8, 128.5, 128.1, 127.5, 126.5, 53.7, 52.1, 39.9 (-).

Colorless oil, 84% yield, n/iso = 78/22.

¹H NMR (400 MHz, CDCl₃) δ 7.48-7.21 (m, 5H), 3.97 (t, *J* = 7.6 Hz, 1H), 3.74 (s, 3H), 3.05 (dd, *J* = 16.8, 7.5 Hz, 1H), 2.82 (dd, *J* = 16.8, 7.6 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.5, 135.8, 129.3, 128.6, 127.6, 117.6, 52.8, 47.6, 21.7.

DEPT135-13C NMR (101 MHz, CDCl₃) δ 129.3, 128.6, 127.6, 52.8, 47.6, 21.7 (-).

Colorless oil, 86% yield, 2:3 = 95:5.

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.20 (m, 5H), 4.15-4.05 (m, 1H), 3.66 (s, 6H), 3.27-3.14 (m, 1H), 2.67 (dd, *J* = 17.0, 5.2 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.4, 171.9, 144.1, 128.9, 127.7, 127.6, 52.3, 51.8, 47.1, 37.6.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 128.9, 127.7, 127.6, 52.3, 51.5, 46.3, 37.6 (-).

Colorless oil, 94% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 3H), 2.33-2.23 (m, 1H), 2.15-2.06 (m, 1H), 2.06-1.93 (m, 1H), 1.21 (dd, *J* = 14.0, 4.0 Hz, 1H), 1.09 (dd, *J* = 14.1, 6.3 Hz, 1H), 0.97-0.92 (d, 3H), 0.88 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.7, 51.4, 50.6, 43.9, 31.2, 30.0, 27.1, 22.8.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.4, 50.6 (-), 43.9 (-), 30.0, 27.1, 22.8.

Colorless oil, 70% yield, n/iso > 99/1.

¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 3H), 2.32 (dd, J = 14.6, 5.2 Hz, 1H), 2.05 (dd, J = 14.6, 9.1 Hz, 1H), 1.92-1.75 (m, 1H), 1.62-1.45 (m, 1H), 0.89-0.77 (m, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 174.3, 51.5, 39.1, 36.0, 32.2, 19.9, 18.4, 15.9.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 51.5, 39.1 (-), 36.0, 32.2, 19.9, 18.3, 15.9.

White solid, 32% yield, n/iso = 90/10.

For this product, linear and branched products were not easily separated by column chromatography and we obtained a mixture of products. The ratio of linear and branched products is determined by GC. Corresponding low-resolution mass spectra, ¹³C characteristic peaks were compared to the known spectra. For the ¹H spectrum, here we list the spectrum of the mixture products.

¹H NMR (400 MHz, CDCl₃) δ 6.98-6.82 (m, 6H), 6.76-6.52 (m, 8H), 4.12-3.99 (m, 1H), 3.58-3.47 (s, 1.45 H), 3.47-3.35 (s, 2.94H), 2.70-2.31 (m, 3.04H), 2.15-1.78 (m, 5.62H), 1.24-1.11 (m, 3.38H), 0.67-0.59 (t, J = 7.2 Hz, 1H), 0.51-0.40 (t, J = 7.3 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 175.6, 154.4, 154.2, 154.1, 153.8, 135.6, 135.0, 134.1, 133.3, 130.1, 130.0, 129.3, 115.5, 115.3, 114.8, 114.6, 77.5, 77.2, 76.8, 61.0, 53.6, 52.7, 51.9, 51.8, 51.0, 50.0, 32.6, 32.1, 29.7, 28.2, 27.4, 26.0, 21.1, 14.1, 12.4, 12.2.

DEPT135-¹³C NMR (101 MHz, CDCl₃) δ 130.1, 130.0, 129.3, 115.5, 115.3, 114.8, 114.6, 61.0, 53.6, 52.7, 51.9, 51.8, 51.0, 50.0, 32.6, 32.6, 29.7, 28.6, 27.4, 26.0, 21.1, 14.1, 12.4, 12.2.

References

- K. Dong, X. Fang, S. Gülak, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell, M. Beller, *Nat. Commun.* 2017, 8, 14117-14123;
- [2] H. Tomioka, H. Miyagawa, J. Chem. Soc., Chem. Commun., 1988, 1183-1184;
- [3] Q. Liu, L. Wu, H. Jiao, X. Fang, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* **2013**, *52*, 8064-8068;
- [4] P. H. Gehrtz, V. Hirschbeck, I. Fleischer, Chem. Commun., 2015, 51, 12574-12577;
- [5] K. Dong, R. Sang, J. Liu, R. Razzaq, R. Franke, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* **2017**, *56*, 6203-6207;
- [6] L. Bencze, A. Kraut-Vass, L. Prókai, J. Chem. Soc., Chem. Commun., 1985, 911-912;
- [7] E. Drent, P. Arnoldy, H. M. Budzelaar, J. Organomet. Chem. 1993, 455, 247-253;
- [8] M. Calmes, F. Escale, J. Martinez, Tetrahedron: Asymmetry, 2002, 13, 293-296;
- [9] F. Fini, M. Beltrani, R. Mancuso, B. Gabriele, Carla Carfagna, *Adv. Synth. Catal.* **2015**, *357*, 177-184;

[10] J. Yang, J. Liu, H. Neumann, R. Franke, R. Jackstell, M. Beller, *Science*, 2019, 366, 1514-1517;

S6. NMR, GC and GC-MS spectra:

СООМе За Chemical Formula: C₁₀H₂₀O₂ Exact Mass: 172.15

Instrument:TraceGC Sequence:JY-5-122-1-13

Page 1 of 1

Injed	tion Details						
njec	tion Name:	JY-5-122-1			Run Time (min):	40,00	
Vial I	Number:	61			Injection Volume:	2,00	
njeci	tion Type:	Unknown			Channel:	FrontDetector	
alib	vation Level:				Wavelength:	n.a.	
nstru	ument Method:	dong-40min			Bandwidth:	n.a.	
Proce	essing Method:	dong			Dilution Factor:	1,0000	
njec	tion Date/Time:	09.Jan.20 15:22			Sample Weight:	1,0000	
hro	matogram						
60	0000 JY-5-122-1-13 #1	[manually Integrated]	JY-5	-122-1		FrontDete	ctor
50	0000 -			LA	1-12,134-347 1-12,134-347 14.5 150 155	4 - 15,700	
20 10			9 ² 71	100 110			
41 9500 20 10 -10		10,0	15,0 20 Time	.0 25,0	30,0		40,0
-10 -10	0000 - 0000 - 0 - 0 - 0 - 0	10,0	9 ³ 700 15,0 20 Time Area	.0 25,0 [mln]	30,0	35,0 Relative Height	40,0
-10 -10	0000 - 0.0 - 5.0 -	10,0 Time min	15,0 20 Area pA*min	,0 25,0 [min] Height pA	30,0 Relative Area	35,0 Relative Height	40,0 Amoun
-10 -10 nteglio.	0000 - 0000 - 0000 - 0 - 0 - 0 - 0 - 0 -	10,0 Retention Time min n.a.	15,0 20 Time Area pA*min n.a.	0 25,0 [min] Height pA n.a.	30,0 Relative Area % n.a.	35,0 Relative Height % n.a.	40,0 Amoun
-10 -10 -10 -10	0000 0000 0000 0 0 0 0 0 0 0 0	10,0 Retention Time min n.a. n.a. n.a.	15,0 20 Time Area pA*min n.a. n.a.	0 25,0 [min] Height pA n.a. n.a.	30,0 Relative Area % n.a. n.a.	35,0 Relative Height % n.a. n.a. n.a.	40,0 Amoun n.a. n.a.
-10 -10 -10	0000 0000 0000 0 0 0 0 0 0 0 0 0 0 0 0	10,0 Retention Time min n.a. n.a. 14,197	9 ³ 7 ^{15,700} 15,0 20 Time Area pA [*] min n.a. 3,643	0 25,0 [mln] Height pA n.a. 155,521	30,0 Relative Area % n.a. n.a. 2,77	35,0 Relative Height % n.a. n.a. 5,08	40,0 Amoun n.a. n.a.
-10 -10 -10 -10	0000 0000 0000 0000 0000 0000 0000 0000 0000	10,0 Retention Time min n.a. n.a. 14,197 14,387	Area pA'min n.a. 3,643 5,439	.0 25,0 [min] Height pA n.a. n.a. 155,521 232,981	30,0 Relative Area % n.a. 2,77 4,13	35,0 Relative Height % n.a. 5,08 7,81	40,0 Amoun n.a. n.a. n.a.
-10 -10 -10	0000 0000 0000 0000 0000 0000 0000 0000 0000	10,0 Retention Time min n.a. n.a. 14,197 14,387 14,727	Area pA*min n.a. 3,643 5,439 25,100	0 25,0 [mln] Height pA n.a. 155,521 232,981 809,661	30,0 Relative Area % n.a. 2,77 4,13 19,07	35,0 Relative Height % n.a. 5,08 7,81 26,46	40,0 Amoun n.a. n.a. n.a. n.a. n.a.
-10 -10 -10 -10	0000 0000 0000 0000 0000 0000 0000 0000 0000	10,0 Retention Time min n.a. n.a. 14,197 14,367 14,727 15,700	Area pA'min n.a. 3,643 5,439 25,100 97,436	0 25,0 [mln] Height pA n.a. 155,521 232,981 809,661 1861,618	30,0 Relative Area % n.a. n.a. 2,77 4,13 19,07 74,03	35,0 Relative Height % n.a. n.a. 5,08 7,61 26,46 60,84	40,0 Amoun n.a. n.a. n.a. n.a. n.a.
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	20000 2000 200	10,0 Retention Time min n.a. n.a. 14,197 14,387 14,727 15,700 n.a.	Area pA*min n.a. 3,643 5,439 25,100 97,436 n.a.	0 25,0 [min] Height pA n.a. n.a. 155,521 232,981 809,661 1861,618 n.a.	30,0 Relative Area % n.a. n.a. 2,77 4,13 19,07 74,03 n.a.	35,0 Relative Height 9/5 n.a. n.a. 5,08 7,81 26,46 60,84 n.a.	40,0 Amoun n.a. n.a. n.a. n.a. n.a. n.a. n.a.
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	20000 2000 2000	10,0 Retention Time min n.a. n.a. 14,197 14,387 14,727 15,700 n.a. n.a. n.a. n.a.	Area pA*min n.a. 15,0 20 Time Area pA*min n.a. 3,643 5,439 25,100 97,436 n.a. n.a.	0 25,0 [min] Height pA n.a. n.a. 155,521 232,981 809,661 1861,618 n.a. n.a.	30,0 Relative Area % n.a. n.a. 2,77 4,13 19,07 74,03 n.a. n.a. n.a.	35,0 Relative Height % n.a. n.a. 5,08 7,61 26,48 60,84 n.a. n.a. n.a.	40,0 Amoun n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.

Instrument:TraceGC Sequence:JY-5-122-1-13

Chromatogram and Results Injection Details				
			Injection Name:	JY-5-122-2
Vial Number:	62	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	rocessing Method: dong Dilution Factor: 1,0000			
Injection Date/Time:	09.Jan.20 16:24	Sample Weight:	1,0000	

Page 1 of 1

-

Page 1 of 1

Instrument:TraceGC Sequence:JY-5-122-1-13

Chromatogram and Results					
Injection Details					
Injection Name:	JY-5-122-3	Run Time (min):	40,00		
Vial Number:	63	Injection Volume:	2,00		
Injection Type:	Unknown	Channel:	FrontDetector		
Calibration Level:		Wavelength:	n.a.		
Instrument Method:	dong-40min	Bandwidth:	n.a.		
Processing Method:	dong	Dilution Factor:	1,0000		
Injection Date/Time:	jection Date/Time: 09.Jan.20 17:25 Sample Weight: 1,0000				

.....

50 60 70 80 90 100 110 120 130 140 150 160

170 180 190 200 210 220 230 240 250 260 270 280

0

m/z-->

Instrument:TraceGC Sequence:JY-5-122-1-13

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-4	Run Time (min):	40,00	
Vial Number:	64	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	Processing Method: dong Dilution Factor: 1,0000			
Injection Date/Time:	09.Jan.20 18:27	Sample Weight:	1,0000	

2 4 COOMe₁ 3e 5 3 methyl 4,4-dimethylpentanoate **Chemical Formula:** C₈H₁₆O₂ Exact Mass: 144.12

Chromatogram and Results			
Vial Number:	65	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	09.Jan.20 19:29	Sample Weight:	1,0000

Chromatogram and Results			
Vial Number:	122	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 18:06	Sample Weight:	1,0000

Chromatogram and Results			
Vial Number:	25	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 21:31	Sample Weight:	1,0000

 $_{1}Et_{3}Si \xrightarrow{3}_{2}COOMe^{1}$ 3h methyl 3-(triethylsilyl)propanoate Chemical Formula: C₁₀H₂₂O₂Si

Exact Mass: 202.14

Chromatogram and Results			
Vial Number:	120	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 16:02	Sample Weight:	1,0000

Page 1 of 1

Chromatogram and Results			
Vial Number:	28	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	11.Jan.20 16:26	Sample Weight:	1,0000

Chromatogram

110000

100000

90000

80000

- 70000

60000

50000

40000

. 30000

20000

. 10000

. 0

-3

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 f1 (ppm)

Chromatogram and Results				
Vial Number:	75	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	13.Jan.20 16:34	Sample Weight:	1,0000	

Chromatogram and Results			
Injection Details			
Injection Name:	JY-5-122-10	Run Time (min):	40,00
Vial Number:	70	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 00:37	Sample Weight:	1,0000

Chromatogram and Results			
Vial Number:	71	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 01:38	Sample Weight:	1,0000

Chromatogram and Results			
Vial Number:	72	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 02:40	Sample Weight:	1,0000

Chromatogram and Results			
Vial Number:	73	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	10.Jan.20 03:41	Sample Weight:	1,0000

110 100 f1 (ppm) -10

-10000

Instrument:TraceGC Sequence:JY-5-122-14-26

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-14-26-2	Run Time (min):	40,00	
Vial Number:	112	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	10.Jan.20 07:47	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-14-26

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-14-26-3	Run Time (min):	40,00	
Vial Number:	113	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	10.Jan.20 08:48	Sample Weight:	1,0000	

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-14-26-4	Run Time (min):	40,00	
Vial Number:	114	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	10.Jan.20 09:49	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-14-26

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-14-26-5	Run Time (min):	40,00	
Vial Number:	115	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	10.Jan.20 10:51	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-27-39

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-27-39-12	Run Time (min):	40,00	
Vial Number:	36	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	12.Jan.20 00:32	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-1-13

Chromatogram and Results				
Injection Details			1.2.00	
Injection Name:	JY-5-122-8	Run Time (min):	40,00	
Vial Number:	68	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	09.Jan.20 22:34	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-1-13

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-9	Run Time (min):	40,00	
Vial Number:	69	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	09.Jan.20 23:36	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-27-39

Chromatogram and Results				
Injection Details				
Injection Name:	JY-5-122-27-39-13	Run Time (min):	40,00	
Vial Number:	37	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	12.Jan.20 01:33	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-27-39

Chromatogram and Results					
Injection Details					
Injection Name:	JY-5-122-27-39-5	Run Time (min):	40,00		
Vial Number:	29	Injection Volume:	2,00		
Injection Type:	Unknown	Channel:	FrontDetector		
Calibration Level:		Wavelength:	n.a.		
Instrument Method:	dong-40min	Bandwidth:	n.a.		
Processing Method:	dong	Dilution Factor:	1,0000		
Injection Date/Time:	11.Jan.20 17:26	Sample Weight	1.0000		

Chromatogram

Page	1	0
------	---	---

Chromatogram and Results					
Injection Details	niection Details				
Injection Name:	JY-5-122-27-39-6	Run Time (min):	40,00		
Vial Number:	30	Injection Volume:	2,00		
Injection Type:	Unknown	Channel:	FrontDetector		
Calibration Level:		Wavelength:	n.a.		
Instrument Method:	dong-40min	Bandwidth:	n.a.		
Processing Method:	dong	Dilution Factor:	1,0000		
Injection Date/Time:	11.Jan.20 18:27	Sample Weight:	1,0000		

Instrument:TraceGC Sequence:JY-5-122-27-39

Page 1 of 1

Chromatogram and Results			
Injection Details			
Injection Name:	JY-5-122-27-39-9	Run Time (min):	40,00
Vial Number:	33	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	11.Jan.20 21:30	Sample Weight:	1,0000

Instrument:TraceGC Sequence:JY-5-122-43-45

Page 1 of

Chromatogram and Results			
Injection Details			
Injection Name:	JY-5-122-43-45	Run Time (min):	40,00
Vial Number:	74	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	13.Jan.20 15:32	Sample Weight:	1,0000

Instrument:TraceGC Sequence:JY-5-122-43-45

Page 1 of

Chromatogram and Results					
Injection Details	niection Details				
Injection Name:	JY-5-122-43-45	Run Time (min):	40,00		
Vial Number:	73	Injection Volume:	2,00		
Injection Type:	Unknown	Channel:	FrontDetector		
Calibration Level:		Wavelength:	n.a.		
Instrument Method:	dong-40min	Bandwidth:	n.a.		
Processing Method:	dong	Dilution Factor:	1,0000		
Injection Date/Time:	13.Jan.20 14:30	Sample Weight:	1,0000		

Chromatogram

Chromatogram and Results				
Injection Details			and the second	
Injection Name:	JY-5-122-27-39-11	Run Time (min):	40,00	
Vial Number:	35	Injection Volume:	2,00	
Injection Type:	Unknown	Channel:	FrontDetector	
Calibration Level:		Wavelength:	n.a.	
Instrument Method:	dong-40min	Bandwidth:	n.a.	
Processing Method:	dong	Dilution Factor:	1,0000	
Injection Date/Time:	11.Jan.20 23:31	Sample Weight:	1,0000	

Instrument:TraceGC Sequence:JY-5-122-1-13

Page 1 of 1

Chromatogram and Results			
Injection Details			
Injection Name:	JY-5-122-7	Run Time (min):	40,00
Vial Number:	67	Injection Volume:	2,00
Injection Type:	Unknown	Channel:	FrontDetector
Calibration Level:		Wavelength:	n.a.
Instrument Method:	dong-40min	Bandwidth:	n.a.
Processing Method:	dong	Dilution Factor:	1,0000
Injection Date/Time:	09.Jan.20 21:33	Sample Weight:	1,0000

Instrument:TraceGC Sequence:JY-5-122-27-39

Page 1 o

Chromatogram and Results					
Injection Details	njection Details				
Injection Name:	JY-5-122-27-39-8	Run Time (min):	40,00		
Vial Number:	32	Injection Volume:	2,00		
Injection Type:	Unknown	Channel:	FrontDetector		
Calibration Level:		Wavelength:	n.a.		
Instrument Method:	dong-40min	Bandwidth:	n.a.		
Processing Method:	dong	Dilution Factor:	1,0000		
Injection Date/Time:	11.Jan.20 20:29	Sample Weight:	1,0000		

Chromatogram

CIIIO	matogram							
60	ור 000 JY-5-122-27-39 #8 [m	nanually integrated]	JY-5-122	2-27-39-8		FrontDete	ector	
50	000							
40	- 000							
Ise [pA]	0000							
Cespor	0000 -							
10	- 0000							
	0							
-10	000 - 5,0	10.0	15,0 20,1	0 25,0	30,0	35,0	40,0	
			Time [min]				
Integ	ration Results							
No.	Peak Name	Retention Time min	Area pA*min	Height pA	Relative Area %	Relative Height %	Amount	
n.a.	Component 2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
n.a.	Component 3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
n.a.	Component 4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
n.a.	Component 5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
1		28,050	1,870	11,640	10,30	22,28	n.a.	
Z		31,088	16,286	40,616	89,70	100.00	n.a.	
rotal			18,156	52,256	100,00	100,00		

