Supporting Information for:

Operando X-ray absorption spectroscopy of hyperfine β-FeOOH nanorods modified with Ni(OH)₂ under electrocatalytic water oxidation condition

Takeshi Morikawa,*a Sheraz Gul, b Yusaku F. Nishimura, a Tomiko M. Suzuki a and Junko Yano *b

a. Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
b. Molecular Biophysics and Integrated Bioimaging Division. Lawrence Barkeley.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA *Corresponding Authors: morikawa@mosk.tytlabs.co.jp, jyano@lbl.gov

-Syntheses of materials

-Ni-Modified β-FeOOH Colloidal Solutions

All starting materials were used as-received. FeCl₃·6H₂O (99%), Ni(NO₃)₂·6H₂O (99.9%), ethylenediamine and a 1 M aqueous KOH solution were purchased from Wako Pure Chemical Industries (Japan). Each Ni-doped β -FeOOH colloidal solution was prepared by combining 500mL of an aqueous solution containing FeCl₃·6H₂O (0.1 M as Fe³⁺) and the desired amount of Ni(NO₃)₂·6H₂O along with ethylenediamine, followed by pH adjustment to the range of 2.0-2.4 and agitation with a magnetic stirrer at room temperature. After 30 min continuous stirring, the solution was aged overnight at room temperature.

-Preparation of the Ni-Modified β -FeOOH Nanorods on Carbon Paper (CP)¹

Ni-modified β -FeOOH nanorods on CP were prepared by depositing 1000 μ L of a given colloidal solution together with a small amount of ethanol on the CP (TORAY, TGP-H-060, 1.8 x 2.2 cm), followed by drying at room temperature for 6 h and further drying under vacuum at 40 °C. The samples were subsequently washed with water and a 0.1 M aqueous KOH solution and then dried. In this manner, a 1.0 mg quantity of the nanorods was loaded on each 1 cm² of the CP.

1. T. M. Suzuki, T. Nonaka, K. Kitazumi, N. Takahashi, S. Kosaka, Y. Matsuoka, K. Sekizawa, A. Suda and T. Morikawa, *Bulletin of the Chemical Society of Japan*, 2018, **91**, 778–786.

-Experimental Methods

-Electrochemical Measurements of Water Oxidation.

The electrochemical characteristics of nanorod samples on CP electrodes were investigated in an aqueous 0.1 M KOH solution (pH 12.8) with a three-electrode configuration using a Ag/AgCl reference electrode and a Pt wire counter electrode. Electrochemical O_2 and H_2 evolution during water splitting by the same electrodes were examined using a Pyrex sealed glass reactor (total volume: 115.5 ml) in an aqueous 0.1 M KOH solution (60 ml). A three-electrode configuration incorporating a Ag/AgCl reference electrode and a Pt wire counter electrode was employed with an applied potential of +1.56V (vs. RHE). The amounts of O_2 and H_2 generated with the above electrodes as the anode and a Pt cathode were determined using a gas chromatograph equipped with a thermal conductivity detector (GC-2014, Shimadzu). Potentials in all graphs are shown without subtraction of iR drop.

-Operando Hard X-ray XAS

Hard X-ray XAS (5–9 keV), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses were conducted using fluorescence yield detection with a 30 element Ge detector (Canberra). When acquiring in situ/operando XAS data, an H-shaped glass cell with a glass frit between the two compartments (Adams & Chittenden Scientific Glass, USA) was used, as reported previously.^{2,3}

The sample compartment of the cell contained a hole with a diameter of approximately 8.0 mm in its upper half and a β -FeOOH:Ni/a-Ni(OH)₂ sample on CP was glued on to this hole together with a 13 μ m thick Kapton film, which was placed on the outer side of the material facing the X-ray beam. The cell was mounted at an angle of 45° with respect to the X-ray beam and the fluorescence signal was detected orthogonally, as shown in Figure 2.

- M. Favaro, W. S. Drisdell, M. A. Marcus, J. M. Gregoire, E. J. Crumlin, J. A. Haber and J. Yano, ACS Catalysis, 2017, 7, 1248-1258.
- F. H. Saadi, A. I. Carim, W. S. Drisdell, S. Gul, J. H. Baricuatro, J. Yano, M. P. Soriaga and N. S. Lewis, J. Am. Chem. Soc. 2017, 139, 12927–12930

Figure S1. The XRD patterns of β-FeOOH:Ni nanorods synthesized in a one-pot process with different total Ni concentrations, in the form of electrodes deposited on CP.

Figure S2 Current-potential curves acquired during OER in 0.1 M KOH over pure β-FeOOH (black), 1%-Ni (β-FeOOH:Ni) (blue), 22%-Ni (β-FeOOH:Ni/a-Ni(OH)₂) (red), and amorphous Ni(OH)₂ (yellow).

Figure S3 Fe EXAFS spectra acquired from (a) 1% Ni (β -FeOOH:Ni) and (b) 22% Ni (β -FeOOH:Ni surface-decorated with Ni(OH)₂) under dry, OC potential and OER potential (+1.56 V) conditions.

Figure S4 XANES Ni k-edge data acquired from 1 and 22% Ni samples.

Figure S5 XANES Ni data acquired by cycling from the OC to OER potential and back to the OC potential, indicating reversible changes in the Ni species in a 22% Ni sample.

Figure S6 *r*-space EXAFS Fe k-edge data acquired from 1 and 22% Ni samples.

Fig. S7 *r*-space EXAFS data with fits for β -FeOOH:Ni (1 at.%) under (a) dry, (b) OC potential and (c) OER conditions (+1.56 V vs RHE), and (d) after 5 h of catalytic activity. The fast oscillation is the real part of the Fourier transform.

Fig. S8 r-space data with fits for β -FeOOH:Ni/a-Ni(OH)₂ (22 at.%) corresponding to dry sample (a) at open circuit potential (b) and under catalytic conditions at +1.56 V vs RHE (c).

Sample	Path	R (Å)	N	σ² (10 ⁻³ Ų)	R-factor (%)	ΔE _o (eV)
FeOOH:Ni (1 at.%)						
As-syn	Ni-O	2.03±0.02	2.22±0.88	2.84±2.18	1.93	0.70±1.67
	Ni-O	2.16±0.02	3.78±0.88	5.57±2.40		
@ OC	Ni-O	2.08±0.01	6	5.89±0.57	0.14	-1.82±0.73
@ 1.56 V	Ni-O	2.07±0.01	6	5.66±0.89	1.49	-1.77±0.87
	Ni-Ni	3.10±0.02	2.19±0.55	6.72± <mark>0.57</mark>		
@ 1.56 after 5 hrs	Ni-O	2.07±0.02	6	6.70±1.37	2.56	-1.21±1.26
	Ni-Ni	3.11±0.02	3.67±0.88	8.00± <mark>0.05</mark>		
FeOOH:Ni (20 at. %)						
As-syn	Ni-O	2.07±0.01	6	9.79±0.96	1.84	-1.42±0.78
	Ni-Ni	3.09±0.02	1.56±0.40	9.57±1.21		
@ OC	Ni-O	2.06±0.01	6	4.70±0.93	1.23	-1.42±0.89
	Ni-Ni	3.10±0.01	5.5±0.65	8.00±0.91		
@ 1.56 V	Ni-O	1.90±0.05	4.92±0.64	6.10±3.69	1.30	-2.03±1.11
	Ni-O	2.06±0.01	1.08±0.64	6.10±3.69		
	Ni-Ni	2.86±0.02	3.88±0.57	5.37±4.73	3.66	
	Ni-Ni	3.10±0.01	1.62±0.57	7.00±1.01		