Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

(Z)-Selective *anti*-Markovnikov or Markovnikov Thiol-Yne-Click Reactions of an Internal Alkyne by Amide Hydrogen Bond Control

Content

General Information	S2
Synthesis and Reaction Optimization	S2-S3
Crystallographic Data	S4-S7
NMR and EPR analysis	S7-S8
Structure elucidation of compound 3ak	S9-S16
Compound characterization data	S16-S35
References	S36
NMR spectra	S37-S88

EXPERIMENTAL SECTION

General Aspects. All the chemicals were purchased from the commercial sources and used as received. All the reactions were generally carried out under open atmosphere unless otherwise noted. The reactions were monitored by TLC on aluminium sheets pre-coated with silica gel. Chromatographic purifications of the compounds were performed using silica gel (Mess 230-400) and ethyl acetate/hexane as an eluent. ¹H and ¹³C spectra of the compounds were recorded on Bruker 400 and 700 MHz instrument at 25 °C. The chemical shift value (δ, ppm) were reported with respect to the residual chloroform (7.26 for ¹H and 77.16 ppm for ¹³C). Mass spectra were recorded as ESI-TOF (HRMS). Infrared spectra were recorded on neat solids using KBr pellets and described in wave number (cm⁻¹). Digital melting point apparatus were used to record the Melting Point of the compound in degree centigrade (°C) and are uncorrected.

Synthesis

General procedures for the synthesis of N,3-diphenylpropiolamide derivatives.

Scheme S1

In an oven dried round bottomed flask, a solution of propionic acid (3.54 mmol, 1.1 equiv) in 10 mL CH_2Cl_2 was stirred at -20 °C and 4-dimethylaminopyridine (0.32 mmol, 0.1 equiv), dicyclohexylcarbodiimide (3.54 mmol, 1.1 equiv) in 5 mL CH_2Cl_2 were injected drop wise. Then a solution of aniline derivatives (3.22 mmol, 1.0 equiv) in 5 mL CH_2Cl_2 was then added drop wise. Afterwards, the reaction mixture was allowed to stir at room temperature for 12 h. After completion, the reaction mixture was diluted in CH₂Cl₂ and following organic content was washed 3 times by 0.5 M aq. HCl, dried over Na₂SO₄, and concentrated under reduced pressure. The crude residue was purified by a silica gel column chromatography to give the corresponding desired starting materials N,3-diphenylpropiolamide derivatives as solid.

Procedure for the Thiol Yne Click reaction and representative synthesis of 3aa. The compound (**1a**) (60 mg, 0.271 mmol) was taken in a round bottom flask and followed by thiophenol (**2a**) (89 mg, 0.813 mmol) was added dropwise at open atmosphere. Following, the reaction mixture stirred for 30 min while monitored by TLC (*for solid-solid component, few drops of EtOH was added to make the reaction mixture homogeneous*). After completion of the reaction, column chromatography was done in EtOAC/Hexane to isolate the desired product **3aa** and to recover excess thiol (~1.5 equiv).

Optimization Reaction Condition (Table S1):

	H^{N} $+$ H^{S} 1a 2a	neat rt, 30 min	H O N N S H 3aa
Entry	Thiol (equiv)	Solvent	Yield (%) ^a
1	1	-	50
2	1.5	-	68
3	2	-	81
4	3	-	97
5	3	EtOH	82
6	3	H_2O	86
7	3	CHCl ₃	40
8	3	DMSO	59
9	3	Toluene	27
10	3	-	93 ^b

^{*a*}Isolated yields after column chromatography; Reaction conditions: **1a** (0.271 mmol), **2a** (0.813 mmol), room temperature, 30 min. ^{*b*}Reaction was performed under inert atmosphere.

Crystallographic Investigation

The compound (**3aa**) was recrystallized by the slow evaporation of ethanol and water mixture (ca. 50%). The crystals data were collected with Bruker SMART D8 goniometer equipped with an APEX CCD detector and with an INCOATEC micro source (Cu-K α radiation, λ = 1.54184 Å). SAINT+¹ and SADABS² were used to integrate the intensities and to correct the absorption respectively The structure was resolved by direct methods and refined on F² with SHELXL-97.³

Compound (3aa) (CCDC 1910745)

Fig. S1. Crystal structure of (3aa) (CCDC 1910745).

Crystallographic Data for (3aa)

Empirical formula	$C_{21}H_{17}NOS$
Formula weight	331.43
Temperature/K	299
Crystal system	Orthorhombic
Space group	Pca2 ₁
a/Å	16.2527(7)
b/Å	5.8894(2)
c/Å	18.0008(7)

$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å	1723.01(12)
Z	4
$\rho_{calc}g/cm^3$	1.213
μ/mm ⁻¹	1.703
F(000)	629.0
Crystal size/mm ³	0.2×0.2×0.18
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
Reflections collected	13559
Independent reflections	3374 [$R_{int} = 0.1472, R_{sigma} = 0.0660$]
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0648, wR_2 = 0.1754$
Final R indexes [all data]	$R_1 = 0.0703, wR_2 = 0.1855$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.47

Compound 7 (CCDC 1965122)

The compound 7 was crystallized directly from the reaction mixture of compound 6 and (2f) in EtOH. The crystals data were collected with Bruker SMART D8 goniometer equipped with an APEX CCD detector and with an INCOATEC micro source (Mo-K α radiation, $\lambda = 0.71073$ Å). SAINT+⁴ and SADABS⁵ were used to integrate the intensities and to correct the absorption respectively The structure was resolved by direct methods and refined on F² with SHELXL-97.

Fig. S2. Crystal structure of compound 7 (CCDC 1965122).

Crystallographic Data for compound 7

Empirical formula	$C_{27}H_{19}BrO_2S$
Formula weight	487.41
Temperature/K	296
Crystal system	Triclinic
Space group	P-1
a/Å	6.5137(5)
b/Å	22.7108(19)
c/Å	32.675(3)
$\alpha/^{\circ}$	108.215(5)
β/°	93.851(5)
$\gamma/^{\circ}$	96.920(5)
Volume/Å	4529.7(7)
Z	2
$\rho_{calc}g/cm^3$	1.427
μ/mm ⁻¹	1.928
F(000)	1982.0
Crystal size/mm ³	0.26×0.18×0.12
Radiation	MoKa ($\lambda = 0.71073$)

Reflections collected	51290
Independent reflections	16535 [$R_{int} = 0.1142, R_{sigma} = 0.1507$]
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1058, wR_2 = 0.2309$
Final R indexes [all data]	$R_1 = 0.2549, wR_2 = 0.2858$
Largest diff. peak/hole / e Å ⁻³	1.11/-0.71

NMR Experiment:

Fig. S3. ¹H NMR spectra of reaction mixture **1a** and **2a** (**i-v**) in CDCl₃ solvent at different temperature.

EPR experiment:

EPR spectra was recorded at 298 K using EPR spectrometer derived at 9.4335 GHz. Typical spectrometer parameters are shown as follows, scan range: 100 G; centre field set: 3480.00 G; time constant: 0.16 ms; scan time: 122.88 s; modulation amplitude: 20.0 G; modulation frequency: 100 kHz; receiver gain: 2.00×10^2 ; microwave power: $7.14e^{-001}$ mW.

Reaction of Propiolamide 1a with Thiophenol 2a in presence of DMPO under standard condition: A mixture of propiolamide 1a (60 mg, 0.271 mmol), thiophenol (89 mg, 0.813 mmol) and DMPO (20 μ L) were stirred for 20 minutes at room temperature. Afterwards, 20 μ L solution was quickly transferred into EPR tube and 200 μ L toluene was added to analyze

EPR. No signal was observed, indicating reaction did not go through radical intermediate.

Fig. S4. EPR spectra of reaction mixture **1a** and **2a** in presence of spin trapping reagent DEMPO in Toluene solvent.

Structure elucidation for Compound (3ak)

Proposed structure is as follows:

Justification for proposed structure (3ak):

Fig. S5. ¹H NMR spectrum of Compound **(3ak)** with expanded aromatic region. The signature peaks are assigned through ¹H-¹³C HMBC and HSQC NMR study below.

Fig. S6. ¹³C NMR spectrum of Compound (3ak) with expanded aromatic region. The signature peaks are assigned through ¹H-¹³C HMBC and HSQC NMR study below.

Fig. S7. HMBC full spectra. Number of points used along indirect and direct dimension was 256 and 2048 with a spectral width of 23900 Hz and 5200 Hz. 16 transients were recorded with a prescan delay of 3s. All the 2D NMR were recorded in CDCl₃ Solvent. CDCl₃ is not calibrated(taken as 7.284 ppm instead of 7.26 ppm).

Fig. S8. HMBC spectra of aromatic region showing strong 3 bond correlation and very week 2 bond correlation.

Fig. S9. ¹H-¹³C HMBC NMR spectra having three bond correlation. **a)** Three bond correlation between H_c/H_c and C_3 . **b)** Three bond correlation between H_c/H_c and C_{13} . **c)** Three bond correlation between $H_c/H_{c'}$ and C_5 .

Fig. S10. ¹H-¹³C HMBC NMR spectra with two bond correlation. a) Two bond correlation

between Hb and C_3 b) Two Bond correlation between H_b and C_1 .

From the above 2D HMBC assignments it can be concluded that the Hc/Hc'(7.2 ppm) is connected to C₃ (157.2 ppm) via 3 bond coupling whereas it is also connected to C₁₃(128.2 ppm) via 3 bond coupling. Thus it can be concluded the the resonance at 7.2 ppm should come form H_C/C' . C₅(148.7) shows a strong 3 bond correlation with the proton resonating at 7.1 ppm thus indicating that this corresponds to H_d.

 $H_b(6.18 \text{ ppm})$ shows a two bond correlation with $C_3(157.2 \text{ ppm})$ and $C_1(163.8 \text{ ppm})$. Thus it is now confirmed that the carbon resonated at C_3 must be 157.2.

Fig. S11. HSQC Spectra: a) Expanded aromatic region. b) One bond correlation of H_b with C_2 . c) One bond correlation of H_e with C_{13} .

From HSQC study it is observed that single bond connectivity of H_b is with $C_2(119.2 \text{ ppm})$. C_{13} also shows a single bond correlation with $H_e(7.2 \text{ ppm})$ which further confirms that C_{13} resonates at 128.2 ppm.

Fig. S12. ROESY spectra of compound **3ak**. Number of points in acquisition and indirect dimension was 2048 and 256 with spinlock pulse of duration 270ms. 8 transients with a prescan delay of 3 second was used to ensure complete relaxation. Spectral with along both indirect and direct dimension was adjusted to 4125 Hz.

Fig. S13. Expanded region of the ROESY spectra.

¹H-¹H ROESY NMR study shows a strong correlation between $H_b(6.18 \text{ ppm})$ and H_a (7.64 ppm). This confirmes the Markovnikov selectivity of compound (**3ak**). On the other hand, another strong correlation of $H_b(6.18 \text{ ppm})$ with Hc/Hc²(7.20 ppm) is obserbed. It confirms the (Z)-selectivity of the compound (**3ak**). However there is a very weak interaction of H_b with H_d . The ratio of integrals between the two cross peaks are approximately 1:0.10.

In order to understand this interaction we have done structure optimization through DFT(B3LYP/6311G). The optimized structure is shown below.

Fig. S14. Optimized geometry via B3LYP DFT method using 6311G basis set with quadratic convergence.

In the optimized structure it is clearly seen that the distance between H_b and H_d is very high(3.90Å) compared to H_b and H_c (2.36 Å). As the intensity of roesy cross peaks are inversely proportional to sixth power of distance (1/r⁶), the intensity ratio in the present case between H_b - H_c and Hb-Hd is expected to be 1:0.06 which is close to the experimentally observed ratio of 1:0.10. This confirmes exclusive formation of (Z)-selective Markovnikov product.

NMR CHARATERIZATION DATA

(Z)-N,3-diphenyl-2-(phenylthio)acrylamide (3aa): $R_f = 0.6$ (20% ethyl acetate in hexane);

white solid; yield 97% (87 mg); mp 96-98 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.00 (s, 1H), 8.53 (s, 1H), 7.86-7.85 (m, 2H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.40-7.39 (m, 3H), 7.31-7.30 (m, 3H), 7.29-7.27 (m,

3H), 7.18 (t, J = 7.2 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 163.7, 147.6, 137.8, 134.6, 134.3, 130.9, 130.3, 129.8, 129.1, 128.6, 127.9, 126.9, 124.8, 124.3, 120.2; IR (KBr) \bar{v} 3347, 3057, 2924, 1674, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₇NOSNa 354.0923; found 354.0927.

(Z)-N,3-diphenyl-2-(*p*-tolylthio)acrylamide (3ab): $R_f = 0.7$ (20% ethyl acetate in hexane); white solid; yield 98% (91 mg); mp 122-124 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.01 (s, 1H), 8.48 (s, 1H), 7.89-7.85 (m, 2H), 7.48 (d, J = 7.7 Hz, 2H), 7.41-7.37 (m, 3H), 7.30 (t, J = 8.0 Hz, 2H), 7.20 (d, J = 7.7 Hz, 2H), 7.09 (t, J = 8.0 Hz, 3H), 2.27 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 163.3, 147.1, 137.9, 137.0, 134.7, 130.9, 130.6, 130.6, 130.2, 129.1, 128.6, 127.4, 124.9, 124.7, 120.2, 21.1; IR (KBr) \bar{v} 3344, 2923, 1667, 690; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₀NOS 346.1260; found 346.1258.

(Z)-2-((4-methoxyphenyl)thio)-N,3-diphenylacrylamide (3ac): $R_f = 0.5$ (20% ethyl acetate

in hexane); white solid; yield 66% (65 mg); in 1 mL EtOH 82% (80 mg); mp 140-141 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.99 (s, 1H), 8.40 (s, 1H), 7.87 (d, *J* = 7.7 Hz, 2H), 7.48 (d, J = 7.7 Hz,

^{COMe} 2H), 7.42-7.38 (m, 3H), 7.31 (t, J = 7.7 Hz, 2H), 7.26-7.24 (m, 2H), 7.10 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 3.74 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 163.3, 159.2, 146.1, 137.8, 134.7, 130.9, 130.1, 129.7, 129.1, 128.6, 126.0, 124.7, 124.6, 120.1, 115.5, 55.5; IR (KBr) $\bar{\nu}$ 3334, 2924, 2348, 1666, 691; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₉NO₂SNa 384.1029; found 384.1041.

(Z)-2-((4-fluorophenyl)thio)-N,3-diphenylacrylamide (3ad): $R_f = 0.6$ (20% ethyl acetate in hexane); white solid; yield 81% (77 mg); mp 113-114 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.94 (s, 1H), 8.47 (s, 1H), 7.85-7.84 (m, 2H), 7.48 (d, J = 7.7 Hz, 2H), 7.41-7.40 (m, 3H), 7.31 (t, J =

8.0 Hz, 2H), 7.28-7.26 (m, 2H), 7.11 (t, J = 7.4 Hz, 1H), 6.99 (t, J = 8.6 Hz, 2H); ¹³C NMR

(175 MHz, CDCl₃) δ 163.0, 162.0 (d, ${}^{1}J_{CF} = 247.2$ Hz), 147.3, 137.7, 134.4, 130.9, 130.4, 129.3 (d, ${}^{3}J_{CF} = 8.1$ Hz), 129.3 (d, ${}^{4}J_{CF} = 3.2$ Hz), 129.2, 128.6, 124.9(×2), 120.2, 117.0 (d, ${}^{2}J_{CF} = 22.3$ Hz); IR (KBr) \bar{v} 3353, 2923, 1661, 1314, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₆NFOSNa 372.0829; found 372.0846.

(Z)-2-((4-chlorophenyl)thio)-N,3-diphenylacrylamide (3ae): $R_f = 0.7$ (20% ethyl acetate in hexane); white solid; yield 86% (86 mg); mp 135-138 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.94 (s, 1H), 8.53 (s, 1H), 7.83-7.82 (m, 2H), 7.49 (d, J = 7.7 Hz, 2H), 7.41-7.40 (m, 3H), 7.32 (t, J =7.7 Hz, 2H), 7.25 (d, J = 7.7 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.12 (t, J = 7.7 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 162.9, 148.1, 137.6, 134.3, 132.9, 132.8, 130.9, 130.5, 130.0, 129.2, 128.7, 128.3, 124.9, 123.8, 120.2; IR (KBr) $\bar{\nu}$ 3348, 2924, 2853, 1663, 754, 690; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇CINOS 366.0714 ; found 366.0684.

(Z)-2-((4-bromophenyl)thio)-N,3-diphenylacrylamide (3af): $R_f = 0.5$ (20% ethyl acetate in hexane); white solid; yield 91% (101mg); mp 142-144 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.94 (s, 1H), 8.53 (s, 1H), 7.82-7.81 (m, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.41-7.39 (m, 5H), 7.32 (t, J =7.7 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 162.9, 148.3, 137.6, 134.3, 133.6, 132.8, 130.9, 130.5, 129.9, 128.7, 128.5, 124.9, 123.6, 120.7, 120.2; IR (KBr) \bar{v} 3353, 2924, 2359, 1661, 690, 667; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇BrNOS 410.0179; found 410.0209.

(Z)-N,3-diphenyl-2-((4-(trifluoromethyl)phenyl)thio)acrylamide (3ag): $R_f = 0.6$ (20%)

H O N S CF₃ 138-141 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.94 (s, 1H), 8.63 (s, 1H), 7.82- 7.80 (m, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.41-7.40 (m, 3H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 162.8, 149.3, 139.5, 137.5, 134.2, 130.9, 130.7, 129.2, 128.8 (q, ²*J*_{CF} = 32 Hz), 128.7, 126.6 (q, ⁴*J*_{CF} = 3.6 Hz), 126.6, 125.0, 124.0 (q, ¹*J*_{CF} = 272 Hz), 122.5, 120.3; IR (KBr) $\bar{\nu}$ 3363, 2923, 1659, 1326, 688; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₇F₃NOS 400.0977; found 400.0970.

(Z)-2-((3-methoxyphenyl)thio)-N,3-diphenylacrylamide (3ah): $R_f = 0.7$ (20% ethyl acetate

in hexane); white solid; yield 78% (76 mg); mp 101-103 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.00 (s, 1H), 8.53 (s, 1H), 7.86-7.85 (m, 2H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.40-7.39 (m, 3H), 7.31 (t, *J* =

7.7 Hz, 2H), 7.20 (t, J = 8.2 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 6.90 (dd, J = 7.7, 0.7 Hz, 1H), 6.84 (s, 1H), 6.72 (dd, J = 8.4, 1.8 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 163.1, 160.5, 147.8, 137.8, 135.5, 134.5, 130.9, 130.7, 130.3, 129.1, 128.6, 124.7, 124.14, 120.2, 119.3, 112.6, 112.6, 55.4; IR (KBr) \bar{v} 3345, 2924, 2359, 1668, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₉NO₂SNa 384.1029; found 384.1015.

(Z)-2-((3-chlorophenyl)thio)-N,3-diphenylacrylamide (3ai): $R_f = 0.6$ (20% ethyl acetate in hexane); white solid; yield 90% (89 mg); mp 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.58 (s, 1H), 7.84-7.81 (m, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.42-7.40 (m, 3H), 7.32 (t, J = 8.0 Hz, 2H), 7.30 (s, 1H), 7.23-7.10 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 148.7, 137.6, 136.4, 135.6, 134.3, 130.9, 130.8, 130.6, 129.2, 128.7, 127.1, 126.7, 124.9, 124.9, 123.2,

120.3; IR (KBr) \bar{v} 3348, 2348, 1665, 774, 690; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇ClNOS 366.0714; found 366.0713.

(Z)-2-((2-fluorophenyl)thio)-N,3-diphenylacrylamide (3aj): $R_f = 0.6$ (20% ethyl acetate in

hexane); white solid; yield 79% (75 mg); mp 105-108 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.05 (s, 1H), 8.51 (s, 1H), 7.87-7.86 (m, 2H), 7.53 (d, J = 7.7 Hz, 2H), 7.45-7.39 (m, 3H), 7.32 (t, J =7.7 Hz, 2H), 7.21-7.16 (m, 2H), 7.11 (t, J = 7.7 Hz, 1H), 7.09 (t, J

= 8.7 Hz, 1H), 7.03 (t, J = 7.7 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 163.0, 160.2 (d, ¹ J_{CF} = 245.2 Hz), 147.9, 137.7, 134.4, 130.9, 130.4, 129.9, 129.1, 129.0 (d, ³ J_{CF} = 7.6 Hz), 128.6, 125.5 (d, ⁴ J_{CF} = 3.4 Hz), 124.8, 123.7, 121.3 (d, ² J_{CF} = 17.0 Hz), 120.2, 116.1 (d, ² J_{CF} = 21.3 Hz); IR (KBr) $\bar{\nu}$ 3355, 3056, 2924, 1652, 1178, 689; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇FNOS 350.1009; found 350.1003.

(Z)-3-((2-aminophenyl)thio)-N,3-diphenylacrylamide (3ak): $R_f = 0.4$ (20% ethyl acetate in hexane); brownish white solid; yield 86% (81 mg); mp 175-176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.63 (d, J =7.4 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.20-7.18 (m, 2H), 7.13-7.08 (m, 5H), 7.93-6.88 (m, 1H), 6.44-6.40 (m, 2H), 6.16 (s, 1H), 4.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 157.4, 148.8, 138.4, 138.2, 137.4, 130.6, 129.1, 128.4, 127.5, 124.4, 119.8, 119.7, 118.0, 115.0, 114.7; IR (KBr) \bar{v} 3432, 3359, 2923, 2359, 1607, 668; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₈N₂OSNa 369.1032 ; found 369.1020.

(Z)-3-phenyl-2-(phenylthio)-N-(p-tolyl)acrylamide (3ba): $R_f = 0.4$ (20% ethyl acetate in

hexane); white solid; yield 96% (85 mg); mp 108-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.51 (s, 1H), 7.867.84 (m, 2H), 7.42-7.38 (m, 3H), 7.34 (d, J = 8.2 Hz, 2H), 7.31-7.26 (m, 4H), 7.19-7.16 (m, 1H), 7.10 (d, J = 8.2 Hz, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 147.4, 135.2, 134.6, 134.4, 134.4, 130.9, 130.2, 129.8, 129.6, 128.6, 127.2, 126.8, 124.4, 120.3, 21.0; IR (KBr) \bar{v} 3360, 2921, 2369, 1676, 689; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₀NOS 346.1260; found 346.1277.

(Z)-N-(2,4-dimethylphenyl)-3-phenyl-2-(phenylthio)acrylamide (3ca): $R_f = 0.6$ (20%)

ethyl acetate in hexane); white solid; yield 91% (79 mg); mp 143-146 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.92 (s, 1H), 8.56 (s, 1H), 7.86-7.85 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.41-7.38 (m,

3H), 7.31-7.27 (m, 4H), 7.18 (t, J = 7.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.92 (s, 1H), 2.26 (s, 3H), 1.93 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 162.9, 147.9, 134.9, 134.7, 134.6, 133.3, 131.2, 130.8, 130.2, 129.8, 129.1, 128.6, 127.4, 126.9, 126.7, 124.3, 122.4, 21.0, 17.3; IR (KBr) $\bar{\nu}$ 3365, 2923,2853, 1673, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₂₁NOSNa 382.1236; found 382.1250.

(Z)-N-mesityl-3-phenyl-2-(phenylthio)acrylamide (3da): $R_f = 0.8$ (20% ethyl acetate in

hexane); white solid; yield 88% (75 mg); mp 158-160 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.52 (s, 1H), 8.39 (s, 1H), 7.88-7.87 (m, 2H), 7.42-7.38 (m, 3H), 7.35 (d, J = 7.0 Hz, 2H), 7.31 (t, J =

7.7 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H), 6.83 (s, 2H), 2.24 (s, 3H), 1.89 (s, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 163.6, 147.4, 137.2, 135.3, 134.8, 134.7, 131.3, 130.8, 130.1, 129.8, 129.0, 128.5, 127.4, 126.8, 124.3, 21.0, 18.1; IR (KBr) \bar{v} 3259, 2923, 2853, 1646, 689; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₄NOS 374.1573; found 374.1576.

(Z)-N-(4-ethylphenyl)-3-phenyl-2-(phenylthio)acrylamide (3ea): $R_f = 0.6$ (20% ethyl acetate in hexane); white solid; yield 97% (84 mg); mp 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.52 (s, 1H), 7.86-7.84 (m, 2H), 7.42-7.38 (m, 5H), 7.32-7.26 (m, 4H), 7.19-7.18 (m, 1H), 7.13 (d, J = 8.4 Hz, 2H), 2.60 (q, J = 7.6Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 147.4, 140.9, 135.4, 134.6, 134.4, 130.9, 130.2, 129.8, 128.6, 128.4, 127.2, 126.8, 124.4, 120.4, 28.5, 15.8; IR (KBr) \bar{v} 3341, 2959, 1716, 667; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₂NOS 360.1417; found 360.1426.

(Z)-N-(4-isopropylphenyl)-3-phenyl-2-(phenylthio)acrylamide (3fa): $R_f = 0.7$ (20% ethyl

acetate in hexane); white solid; yield 89% (76 mg); mp 129-133 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.96 (s, 1H), 8.53 (s, 1H), 7.86-7.85 (m, 2H), 7.41-7.38 (m, 5H), 7.31 (d, *J* = 7.7 Hz, 2H), 7.28 (t, *J* = 7.7 Hz, 2H), 7.18 (d, *J* = 7.7 Hz, 1H),

7.16 (d, J = 7.7 Hz, 2H), 2.86 (sept, J = 7.0 Hz, 1H), 1.22 (d, J = 7.0 Hz, 6H); ¹³C NMR (175 MHz, CDCl₃) δ 163.0, 147.5, 145.5, 135.5, 134.6, 134.4, 130.9, 130.2, 129.8, 128.6, 127.2, 127.0, 126.8, 124.4, 120.4, 33.7, 24.1; IR (KBr) \bar{v} 3359, 2957, 2868, 2358, 1652, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₄H₂₃NOSNa 396.1393; found 396.1409.

(Z) N-(4-(tert-butyl)phenyl)-3-phenyl-2-(phenylthio)acrylamide (3ga): $R_f = 0.8$ (20%)

ethyl acetate in hexane); white solid; yield 95% (79 mg); mp 137-139 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.53 (s, 1H), 7.86-7.84 (m, 2H), 7.40-7.38 (m, 5H), 7.33-7.28 (m, 6H), 7.18 (t, J = 6.8 Hz, 1H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 147.8, 147.5, 135.2, 134.6, 134.4, 130.9, 130.2, 129.8, 128.6, 127.2, 126.8, 125.9, 124.4, 120.0, 34.5, 31.5; IR (KBr) ῡ 3338, 3069, 2962, 1661, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₅H₂₅NOSNa 410.1549; found 410.1562.

(Z)-N-(4-methoxyphenyl)-3-phenyl-2-(phenylthio)acrylamide (3ha): $R_f = 0.6$ (20% ethyl

OMe acetate in hexane); white solid; yield 79% (68 mg); mp 129-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.51 (s, 1H), 7.85-7.83 (m, 2H), 7.42-7.39 (m, 3H), 7.35

(d, J = 8.8 Hz, 2H), 7.31-7.26 (m, 4H), 7.20-7.17 (m, 1H), 6.83 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 156.8, 147.2, 134.6, 134.5, 130.9, 130.8, 130.2, 129.8, 128.6, 127.2, 126.8, 124.4, 122.0, 114.3, 55.6; IR (KBr) $\bar{\nu}$ 3348, 2923, 2359, 1672, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₉NO₂SNa 384.1029; found 384.1024.

(Z)-N-([1,1'-biphenyl]-4-yl)-3-phenyl-2-(phenylthio)acrylamide (3ia): $R_f = 0.5$ (20% ethyl

acetate in hexane); brownish white solid; yield 43% (36 mg); mp 163-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 8.54 (s, 1H), 7.88-7.86 (m, 2H), 7.56-7.52 (m, 6H), 7.43-7.40 (m, 5H), 7.34-7.28 (m, 5H), 7.19 (t, *J* =

6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 147.7, 140.6, 137.7, 137.1, 134.6, 134.3, 130.9, 130.3, 129.9, 128.9, 128.6, 127.7, 127.3, 127.2, 127.0, 126.9, 124.3, 120.5; IR (KBr) $\bar{\nu}$ 3316, 2922, 1652, 687; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₂NOS 408.1417; found 408.1433.

(Z)-N-(2-fluorophenyl)-3-phenyl-2-(phenylthio)acrylamide (3ja): $R_f = 0.7$ (20% ethyl acetate in hexane); white solid; yield 98% (86 mg); mp 125-127 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.38 (s, 1H), 8.52 (s, 1H), 8.38 (t, J = 8.0 Hz, 1H), 7.90-7.89 (m, 2H), 7.43-7.39 (m, 3H), 7.33 (d, J = 7.0 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.0 Hz, 1H), 7.13-7.12 (m, 1H), 7.05-7.01 (m, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 163.2, 152.9 (d, ¹ $J_{CF} = 244.4$ Hz), 147.8, 134.4, 134.0, 131.0, 130.4, 129.7, 128.6, 127.6, 127.0, 126.5 (d, ³ $J_{CF} = 10.0$ Hz), 124.6 (d, ⁴ $J_{CF} = 1.6$ Hz), 124.63, 124.59, 121.5, 114.9 (d, ² $J_{CF} = 19.0$ Hz); IR (KBr) \bar{v} 3358, 2924, 1699, 1320, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₆FNOSNa 372.0829; found 372.0834.

(Z)-N-(2-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide (3ka): $R_f = 0.75$ (20% ethyl

acetate in hexane); white solid; yield 98% (84 mg); mp 117-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.54 (s, 1H), 8.48 (d, *J* = 8.0 Hz, 1H), 7.90-7.89 (m, 2H), 7.41-7.40 (m, 3H), 7.32-7.25 (m, 6H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H);

¹³C NMR (175 MHz, CDCl₃) δ 163.3, 148.3, 134.9, 134.5, 134.1, 131.0, 130.5, 129.7, 129.2, 128.6, 127.8, 127.4, 126.8, 124.8, 124.6, 123.6, 121.3; IR (KBr) \bar{v} 3330, 3059, 2926, 1699, 738, 689; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇ClNOS 366.0714; found 366.0718.

(Z)-N-(2-bromophenyl)-3-phenyl-2-(phenylthio)acrylamide (3la): $R_f = 0.85$ (20% ethyl

acetate in hexane); white solid; yield 88% (72 mg); mp 124-126 ^oC; ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 8.55 (s, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 7.90-7.88 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.41-7.40 (m, 3H), 7.32-7.25 (m, 5H), 7.17 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.4, 136.1, 134.5, 134.2, 132.5, 131.0, 130.5, 129.7, 128.6, 128.4, 127.3, 126.8, 125.3, 124.4, 121.6, 114.0; IR (KBr) \bar{v} 3314, 1672, 737, 688; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₆BrNOSNa 432.0028; found 432.0041.

(Z)-N-(2-iodophenyl)-3-phenyl-2-(phenylthio)acrylamide (3ma): $R_f = 0.8$ (20% ethyl acetate in hexane); white solid; yield 76% (60 mg); mp 128-130 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.58 (s, 1H), 8.57 (s, 1H), 8.36 (dd, J = 8.2, 1.1 Hz, 1H), 7.89-7.88 (m, 2H), 7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.41-7.4 (m, 3H), 7.35-7.31 (m, 3H), 7.28-7.26 (m, 2H), 7.17 (t, J = 7.4 Hz, 1H), 6.82-6.80 (m, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 163.6, 148.6, 139.1, 138.7, 134.5, 134.4, 131.0, 130.5, 129.7, 129.2, 128.6, 127.2, 126.7, 126.1, 124.2, 121.6, 89.8; IR (KBr) \bar{v} 3293, 3058, 1672, 688, 524; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₆INOSNa 479.9889; found 479.9904.

(Z)-N-(4-cyanophenyl)-3-phenyl-2-(phenylthio)acrylamide (3na): $R_f = 0.5$ (20% ethyl

acetate in hexane); brownish white solid; yield 74% (64 mg); mp > 180 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.19 (s, 1H), 8.52 (s, 1H), 7.88-7.86 (m, 2H), 7.63-7.57 (m, 4H), 7.42-7.41 (m, 3H), 7.32-7.29 (m, 4H), 7.22-7.20 (m, 1H); ¹³C NMR

(100 MHz, CDCl₃) δ 163.6, 148.7(×2), 141.7, 134.2, 133.8, 133.3, 131.0, 130.8, 130.0, 128.7, 127.2, 123.5, 119.9, 118.9, 107.6; IR (KBr) υ 3325, 2359, 1661, 687; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₂OS 357.1056; found 357.1067.

acetate in hexane); brownish white solid; yield 70% (59 mg); mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.53 (s, 1H), 8.18 (d, J = 8.8 Hz, 2H), 7.88-7.86

(m, 2H), 7.66 (d, J = 8.8 Hz, 2H), 7.43-7.41 (m, 3H), 7.31-7.30 (m, 4H), 7.23-7.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 149.0, 143.9, 143.5, 134.1, 133.7, 131.1, 130.8, 130.0, 128.7, 127.23, 127.18, 125.1, 123.5, 119.5; IR (KBr) \bar{v} 3356, 2924, 2359, 1700, 1558, 689; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₁₇N₂O₃S 377.0954; found 377.0952.

(Z)-N-(3-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide (3pa): $R_f = 0.8$ (20% ethyl

acetate in hexane); white solid; yield 98% (84 mg); mp 102-103 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.01 (s, 1H), 8.52 (s, 1H), 7.86-7.85 (m, 2H), 7.60 (s, 1H), 7.41-7.40 (m, 3H), 7.31-7.28 (m, 5H), 7.22-7.18 (m, 2H), 7.07 (d, *J* = 7.7 Hz, 1H); ¹³C NMR (175

MHz, CDCl₃) δ 163.3, 148.1, 138.9, 134.8, 134.4, 134.1, 131.0, 130.5, 130.0, 129.9, 128.6, 127.1, 127.0, 124.8, 123.9, 120.2, 118.1; IR (KBr) \bar{v} 3341, 3059, 1667, 738, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₆ClNOSNa 388.0533; found 388.0545.

(Z)-N-(4-chloro-2-methylphenyl)-3-phenyl-2-(phenylthio)acrylamide (3qa): $R_f = 0.85$

(20% ethyl acetate in hexane); white solid; yield 98% (82 mg); mp 137-139 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.97 (s, 1H), 8.57 (s, 1H), 7.92 (d, J = 9.1 Hz, 1H), 7.87-7.85 (m, 2H), 7.42-7.40 (m, 3H), 7.30-7.29 (m, 4H), 7.21-7.18 (m, 1H)

1H), 7.17 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.09 (s, 1H), 1.94 (s, 3H); ¹³C NMR (175 MHz, CDCl₃) δ 163.0, 148.5, 134.6, 134.5, 134.4, 130.9, 130.6, 130.4, 130.2, 130.0, 129.8, 128.6, 126.84, 126.83, 126.81, 123.8, 123.3, 17.3; IR (KBr) \bar{v} 3351, 3056, 1670, 765, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₈ClNOSNa 402.0690; found 402.0674.

((Z)-N-benzyl-3-phenyl-2-(phenylthio)acrylamide (3ra): $R_f = 0.45$ (20% ethyl acetate in hexane); white solid; yield 88% (68 mg); mp 102-103 °C; ¹H NMR (700 MHz, CDCl₃) δ 8.44 (s, 1H), 7.82 (d, J = 6.3 Hz, 2H), 7.39-7.36 (m, 4H), 7.28-7.26 (m, 2H), 7.23-7.21 (m, 3H), 7.20-7.17 (m, 3H), 6.91 (d, J = 6.3 Hz, 2H), 4.46 (d, J = 6.3 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 165.1, 146.7, 137.9, 134.8, 134.7, 130.8, 130.0, 129.7, 128.7, 128.5, 127.4, 127.4, 127.3, 126.6, 124.4, 44.4; IR (KBr) \bar{v} 3314, 2924, 2853, 1651, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₂H₁₉NOSNa 368.1080; found 368.1080.

(Z)-N-(naphthalen-1-yl)-3-phenyl-2-(phenylthio)acrylamide (3sa): $R_f = 0.4$ (10% ethyl

acetate in hexane); white solid; yield 78% (64 mg); mp 160-164 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 1H), 8.63 (s, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.91-7.89(m, 2H), 7.82 (d, *J* =

8.2 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.49-7.45 (m, 2H), 7.45-7.41 (m, 6H), 7.34 (t, J = 7.8 Hz, 3H), 7.30-7.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 148.3, 134.6, 134.57, 134.1, 132.5, 130.9, 130.4, 129.9, 128.8, 128.6, 127.3 127.2, 126.9, 126.4, 126.0, 125.9, 125.9, 124.3, 120.6, 120.5; IR (KBr) \bar{v} 3366, 3052, 2360, 1671, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₅H₁₉NOSNa 404.1080; found 404.1093.

(Z)-3-phenyl-2-(phenylthio)-N-(quinolin-3-yl)acrylamide (3ta): $R_f = 0.4$ (30% ethyl

acetate in hexane); white solid; yield 62% (52 mg); mp 169-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.73 (d, J = 2.4 Hz, 1H), 8.60 (d, J = 2.5 Hz, 1H), 8.56 (s, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.90-7.88 (m, 2H), 7.80 (d, J = 8.2 Hz, 1H), 7.64-7.60 (m, 1H), 7.54-7.50 (m, 1H), 7.43-7.41 (m, 3H), 7.36-7.28 (m, 4H), 7.21-7.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 148.2, 145.9, 144.3, 134.3, 134.0, 131.3, 131.0, 130.6, 130.0, 129.2, 128.7, 128.6, 128.3, 127.9, 127.4, 127.3, 127.2, 124.2, 123.9; IR (KBr) \bar{v} 3346, 2954, 2339, 1663, 688; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₁₉N₂OS 383.1213; found 383.1235.

(Z)-N-([1,1'-biphenyl]-2-yl)-3-phenyl-2-(phenylthio)acrylamide (3ua): $R_f = 0.75$ (10%)

ethyl acetate in hexane); colorless liquid; yield 48% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.66 (d, *J* = 8.2 Hz, 1H), 8.55 (s, 1H), 7.83-7.81 (m, 2H), 7.43-7.40 (m, 4H), 7.37-7.35 (m,

3H), 7.26-7.24 (m, 2H), 7.22-7.10 (m, 5H), 6.92-6.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 147.8, 138.0, 135.3, 134.5, 134.2, 132.3, 130.8, 130.2, 129.5, 129.4, 129.4, 129.1, 128.5, 128.5, 127.9, 126.7, 126.3, 124.4, 124.1, 120.0; IR (KBr) \bar{v} 3331, 2359, 1668, 689; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₇H₂₁NOSNa 4430.1236; found 430.1239.

(R,Z)-N,3-diphenyl-2-(phenylsulfinyl)acrylamide 4: R_f = 0.55 (20% ethyl acetate in

hexane); white solid; yield 90% (66 mg); mp 141-142 °C; ¹H NMR (700 MHz, CDCl₃) δ 10.33 (s, 1H), 8.40 (s, 1H), 7.68-7.66 (m, 2H), 7.60-7.59 (m, 2H), 7.50-7.44 (m, 8H), 7.29 (t, *J* = 7.7

Hz, 2H), 7.09 (t, J = 7.7 Hz, 1H); ¹³C NMR (175 MHz, CDCl₃) δ 161.4, 147.8, 141.4, 137.8, 134.9, 132.5, 131.3, 130.94, 130.90, 129.8, 129.1(×2), 124.7, 124.4, 120.8; IR (KBr) \bar{v} 3352, 3058, 2348, 1677, 1316, 690; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₂₁H₁₇NO₂SNa 370.0872; found 370.0862.

(Z)-N-([1,1'-biphenyl]-2-yl)-3-phenyl-2-(phenylthio)acrylamide 5: $R_f = 0.85$ (20% ethyl acetate in hexane); liquid; yield 98% (58 mg); ¹H NMR (700 MHz, CDCl₃) δ 9.41 (s, 1H), 8.62 (d, J = 7.7 Hz, 1H), 8.52 (s, 1H), 7.81-7.80 (m, 2H), 7.43-7.35 (m, 7H), 7.24 (dd, J = 7.7, 1.4 Hz, 2H), 7.20-7.20-7.18 (m, 1H), 7.18-7.15 (m, 2H), 7.14 (dd, J = 7.7, 0.7 Hz, 1H), 7.11 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 7.7 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 163.1, 147.9, 138.0, 135.3, 134.5, 134.2, 132.3, 130.9, 130.2, 129.5, 129.4, 129.2(×2), 128.6, 128.5, 128.0, 126.7, 126.4, 124.4, 124.2, 120.1; IR (KBr) \bar{v} 3334, 3057, 1642, 1495, 691; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₂NOS 408.1417; found 408.1423.

[1,1'-biphenyl]-4-yl (Z)-3-((4-bromophenyl)thio)-3-phenylacrylate 7: $R_f = 0.4$ (10% ethyl

acetate in hexane); white solid; yield 42% (41 mg); mp 108-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.51 (m, 4H), 7.43-7.27 (m, 5H), 7.22-7.12 (m, 6H), 6.98-

6.88 (m, 3H), 6.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 161.9, 150.3, 140.6, 139.0, 137.9, 137.0, 135.5, 133.4, 131.8, 129.2, 128.9, 128.9, 128.3, 127.4, 127.3, 122.6, 122.1, 115.5; IR (KBr) \bar{v} 3055, 2923, 2360, 1712, 690.

(E)-3-([1,1'-biphenyl]-4-yl)-2-((4-bromophenyl)thio)-3-phenylacrylic acid 8^6 : $R_f = 0.5$

(40% ethyl acetate in hexane); yellow solid; yield 56% (54 mg); ¹H NMR (400 MHz, DMSO) δ 12.99 (s, 1H), 7.68-7.65 (m, 4H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.42-7.37 (m, 3H), 7.36-7.33 (m, 3H), 7.31-7.28 (m, 4H); ¹³C NMR (100 MHz, DMSO) δ 167.4, 149.6, 140.4, 140.1, 139.8, 139.3, 133.7, 132.0, 131.3, 129.1, 129.0, 128.8, 128.5, 128.3, 127.8, 126.6, 126.5, 125.9, 120.1; IR (KBr) $\bar{\upsilon}$ 3475, 2924, 1680, 698.

N,3-diphenylpropiolamide 1a:⁷ $R_f = 0.7$ (20% ethyl acetate in hexane); brownish white

solid; yield 90% (650 mg); mp 126-128 °C (lit.⁷124-125 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.59-7.55 (m, 4H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.38-7.32 (m, 4H), 7.14 (t, *J* = 7.4 Hz, 1H).

3-phenyl-N-(p-tolyl)propiolamide 1b:⁸ $R_f = 0.8$ (20% ethyl acetate in hexane); yellow solid;

yield 91% (598 mg); mp 144-145 °C (lit.⁸143-145); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.58-7.56 (m, 2H), 7.46-7.42 (m, 3H), 7.37 (t, *J* = 7.2 Hz, 2H), 7.15 (d, *J* = 8.0 Hz,

2H), 2.33 (s, 3H).

N-(2,4-dimethylphenyl)-3-phenylpropiolamide 1c:⁹ $R_f = 0.85$ (20% ethyl acetate in hexane); brown solid; yield 74% (450 mg); mp 136-138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.46-7.43 (m, 1H), 7.38 (t, J = 7.2 Hz, 2H),

7.31-7.26 (m, 1H), 7.09-7.02 (m, 2H), 2.31 (s, 3H), 2.29 (s, 3H).

N-mesityl-3-phenylpropiolamide 1d: $R_f = 0.85$ (20% ethyl acetate in hexane); yellow solid; yield 63% (355 mg); mp 140-142 °C; ¹H NMR (400 MHz, DMSO) δ 10.02 (s, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.48-7.40 (m, 3H), 6.83 (s, 2H), 2.16 (s, 3H), 2.06 (s, 6H); ¹³C NMR (100

MHz, DMSO) & 150.8, 136.2, 134.9, 132.3, 131.2, 130.4, 129.1, 128.4, 119.8, 84.1, 83.7,

20.5, 18.1; IR (KBr) \bar{v} 3212, 2981, 2920, 2217, 1634; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₈H₁₇NONa 286.1202; found 286.1216.

N-(4-ethylphenyl)-3-phenylpropiolamide 1e: $R_f = 0.5$ (20% ethyl acetate in hexane);

yellow solid; yield 93% (575 mg); mp 126-128 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.57 (d, *J* = 6.8 Hz, 2H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.39-7.35 (m, 2H), 7.17 (d, *J* = 7.6 Hz, 2H), 2.63 (q, *J* = 7.6 Hz, 2H), 1.22 (t,

J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 135.2, 132.7, 130.3, 128.6, 128.4, 120.35, 120.30, 120.1, 85.7, 83.7, 28.4, 15.7; IR (KBr) \bar{v} 3262, 2964, 2209, 1636; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₇H₁₆NO 250.1226; found 250.1235.

N-(4-isopropylphenyl)-3-phenylpropiolamide 1f: $R_f = 0.6$ (20% ethyl acetate in hexane);

brown solid; yield 82% (480 mg); mp 133-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 2H), 7.52 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 2.90 (sept, J = 6.8 Hz,

1H), 1.24 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 145.9, 135.1, 132.7, 130.4, 128.7, 127.2, 120.25, 120.17, 85.7, 83.6, 33.8, 24.1; IR (KBr) $\bar{\upsilon}$ 3259, 2956, 2209, 1639; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₈NO 264.1383; found 264.1394.

N-(4-(tert-butyl)phenyl)-3-phenylpropiolamide 1g: $R_f = 0.8$ (20% ethyl acetate in hexane);

yellow solid; yield 87% (489 mg); mp 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 1H); 7.51-7.47 (m, 2H), 7.43 (d, *J* = 7.2 Hz, 1H), 7.40-7.36 (m, 4H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 148.1, 134.8, 132.7, 130.4, 128.7, 126.1, 120.2, 119.9, 85.7, 83.7, 34.6, 31.4; IR (KBr) v 3258, 3055, 2962, 2211, 1632; HRMS $(ESI/Q-TOF) m/z: [M + Na]^+$ calcd for $C_{19}H_{19}NONa 300.1359$; found 300.1344.

N-(4-methoxyphenyl)-3-phenylpropiolamide 1h:¹⁰ $R_f = 0.4$ (20% ethyl acetate in hexane);

brownish solid; yield 93% (570 mg); mp 128-130 °C; ¹H OMe NMR (400 MHz, CDCl₃) δ 7.58-7.56 (m, 2H), 7.48 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 7.2 Hz, 1H), 7.39-7.36 (m, 2H),

7.32-7.30 (m, 1H), 6.88 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H).

N-([1,1'-biphenyl]-4-yl)-3-phenylpropiolamide 1i: $R_f = 0.7$ (20% ethyl acetate in hexane);

yellow solid; yield 75% (399 mg); mp 184-186 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (m, 3H), 7.60-7.57 (m, 6H), 7.47-7.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 140.5, 138.0, 136.7, 132.8, 130.5, 129.0, 128.8, 127.9, 127.4, 127.0, 120.4, 120.1, 86.0, 83.6; IR (KBr) v 3258, 2923, 2359, 1639; HRMS

(ESI/Q-TOF) m/z: $[M + H]^+$ calcd for C₂₁H₁₆NO 298.1226; found 298.1227.

N-(2-fluorophenyl)-3-phenylpropiolamide 1j: $R_f = 0.8$ (20% ethyl acetate in hexane);

yellow solid; yield 85% (550 mg); mp 110-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (t, *J* = 8.0 Hz, 1H), 7.77 (s, 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.49-7.44 (m, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.17-7.08

(m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 151.00, 150.9, 132.8, 130.6, 128.7, 125.1 (d, ${}^{3}J_{CF}$ = 7.6 Hz), 124.8 (d, ${}^{4}J_{CF}$ = 3.5 Hz), 122.1, 119.9, 115.0 (d, ${}^{2}J_{CF}$ = 19.1 Hz), 86.3, 83.3; IR (KBr) \bar{v} 3232, 2212, 1649, 1322; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ calcd for C₁₅H₁₀FNONa 262.0639; found 262.0629.

N-(2-chlorophenyl)-3-phenylpropiolamide 1k:¹¹ $R_f = 0.8$ (20% ethyl acetate in hexane); off white solid; yield 84% (620 mg); mp 104-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.4 Hz, 1H), 8.00 (s, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.48-7.45 (m, 1H), 7.42-7.38 (m, 3H), 7.31 (t,

J = 8.0 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H).

N-(2-bromophenyl)-3-phenylpropiolamide 11:¹¹ $R_f = 0.6$ (20% ethyl acetate in hexane); yellowish white solid; yield 76% (401 mg); mp 101-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 8.0 Hz, 1H), 7.99 (s, 1H), 7.63-7.56 (m, 3H), 7.48-7.45 (m, 1H), 7.42-7.38 (m, 2H), 7.35 (t,

J = 7.6 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H).

N-(2-iodophenyl)-3-phenylpropiolamide 1m:¹¹ $R_f = 0.8$ (20% ethyl acetate in hexane); brown solid; yield 66% (315 mg); mp 100-103 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.42-7.36 (m, 4H), 6.89 (t, J = 7.2 Hz, 1H).

N-(4-cyanophenyl)-3-phenylpropiolamide 1n: $R_f = 0.3$ (20% ethyl acetate in hexane); brown solid; yield 64% (401 mg); mp 156-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.48 (t, J =

7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 151.1, 141.4, 133.5,

132.9, 130.9, 128.9, 119.8, 119.5, 118.7, 108.0, 87.3, 83.0; IR (KBr) $\bar{\upsilon}$ 3288, 2923, 2210, 1650, 1592; HRMS (ESI/Q-TOF) m/z: $[M + H]^+$ calcd for C₁₆H₁₁N₂O 247.0866; found 247.0859.

N-(4-nitrophenyl)-3-phenylpropiolamide 10: $R_f = 0.45$ (20% ethyl acetate in hexane); NO₂ yellowish white solid; yield 67% (389 mg); mp 166-168 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.8 Hz, 2H), 7.91 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.50-7.45 (m, 1H), 7.42-7.36 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 144.0, 143.2, 133.2, 132.8, 131.0, 128.8, 125.3, 119.5, 87.7, 82.9; IR (KBr) $\bar{\nu}$ 3266, 2207, 1642, 1552, 1331; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₅H₁₀N2O₃ 267.0764; found 267.0767.

N-(3-chlorophenyl)-3-phenylpropiolamide 1p:¹² $R_f = 0.6$ (20% ethyl acetate in hexane);

brown solid; yield 95% (686 mg); mp 110-112 °C; ¹H NMR (400] MHz, CDCl₃) δ 7.69 (s, 1H), 7.59-7.56 (m, 2H), 7.47-7.36 (m, 4H), 7.29-7.26 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 1H).

N-(4-chloro-2-methylphenyl)-3-phenylpropiolamide 1q: $R_f = 0.55$ (20% ethyl acetate in

CI hexane); off white solid; yield 86% (585 mg); mp 146-148 °C;
¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 7.2 Hz, 2H), 7.48-7.44 (m, 1H), 7.40 (t, J = 7.4 Hz, 2H)

2H), 7.30 (s, 1H), 7.21 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 133.7, 132.8, 130.95, 130.92, 130.6, 130.5, 128.8, 127.1, 124.5, 119.9, 86.2, 83.3, 17.9; IR (KBr) $\bar{\nu}$ 3195, 2359, 1628, 1518, 756; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₆H₁₃ClNO 270.0680; found 270.0686.

N-benzyl-3-phenylpropiolamide 1r:¹³ $R_f = 0.6$ (20% ethyl acetate in hexane); yellowish white solid; yield 90% (586 mg); mp 116-118 °C (lit¹³.108-110 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.51 (m, 2H), 7.43-7.40 (m, 2H), 7.37-7.31 (m, 7H), 4.55 (d, J = 6.0 Hz, 2H).

N-(naphthalen-1-yl)-3-phenylpropiolamide (1s):¹⁴ $R_f = 0.45$ (10% ethyl acetate in hexane); yellow solid; yield 61% (350 mg); mp 177-181 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 1H), 7.95 (d, J = 7.8Hz, 2H), 7.90 (d, J = 7.8 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.64

(d, *J* = 7.4 Hz, 2H), 7.59-7.51 (m, 3H), 7.50-7.47 (m, 1H), 7.43-7.39 (m, 2H).

3-phenyl-N-(quinolin-3-yl)propiolamide (1t): $R_f = 0.35$ (30% ethyl acetate in hexane);

white solid; yield 35% (200 mg); mp 154-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.85 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.51-7.48 (m, 2H), 7.42-7.39 (m, 1H),

7.33-7.30 (m, 2H); IR (KBr) \bar{v} 3345, 2929, 2360, 1663; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₃N₂O 273.1022; found 273.1037.

N-([1,1'-biphenyl]-2-yl)-3-phenylpropiolamide (1u):¹¹ $R_f = 0.6$ (20% ethyl acetate in hexane); brownish white solid; yield 62% (330 mg); mp 171-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 8.2 Hz, 1H), 7.54-7.46 (m, 5H), 7.44-7.38 (m, 5H), 7.36-7.32 (m, 2H), 7.29 (d, J = 8.2 Hz, 1H), 7.29 (

7.2 Hz, 1H), 7.24-7.20 (m, 1H).

References

- SAINT+, Bruker AXS Inc., Madison, Wisconsin, USA, 1999 (Program for Reduction of Data collected on Bruker CCD Area Detector Diffractometer V. 6.02.)
- 2. SADABS, Bruker AXS, Madison, Wisconsin, USA, 2004
- 3. G. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112.
- 4. SAINT+, Bruker AXS Inc., Madison, Wisconsin, USA, 1999 (Program for Reduction of Data collected on Bruker CCD Area Detector Diffractometer V. 6.02.)
- 5. SADABS, Bruker AXS, Madison, Wisconsin, USA, 2004
- 6. H. Sahoo, S. Singh and M. Baidya, Org. Lett., 2018, 20, 3678.
- 7. I. Schäfer and T. Opatz, *Synthesis*, 2011, 1691.
- 8. M. Kissane, M. Murphy, E. O'Brien, J. Chopra, L. Murphy, S. G. Collins, S. E. Lawrence and A. R. Maguire, *Org. Biomol. Chem.*, 2011, **9**, 2452.
- 9. D. Qian and J. Zhang, Chem. Commun., 2012, 48, 7082.
- 10. M. Barreau and G. Ponsinet, *Synthesis*, 1987, 262.
- C.-S. Wang, T. Roisnel, P. H. Dixneuf and J.-F. Soulé, *Adv. Synth. Catal.*, 2019, 361, 445.
- H.-L. Hua, Y.-T. He, Y.-F. Qiu, Y.-X. Li, B. Song, P. Gao, X.-R. Song, D.-H. Guo, X.-Y. Liu and Y.-M. Liang, *Chem. Eur. J.*, 2015, 21, 1468.
- 13. M. Sayes and A. B. Charette, *Green Chem.*, 2017, **19**, 5060.
- H.-L. Hua, Y.-T. He, Y.-F. Qiu, Y.-X. Li, B. Song, P. Gao, X.-R. Song, D.-H. Guo, X.-Y. Liu and Y.-M. Liang, *Chem. Eur. J.*, 2015, 21, 1468.

Fig. S15. ¹H NMR spectrum of (Z)-N,3-diphenyl-2-(phenylthio)acrylamide (3aa)

Fig. S16. ¹³C NMR spectrum of (Z)-N,3-diphenyl-2-(phenylthio)acrylamide (3aa)

Fig. S17. ¹H NMR spectrum of (Z)-N,3-diphenyl-2-(p-tolylthio)acrylamide (3ab)

Fig. S18. ¹³C NMR spectrum of (Z)-N,3-diphenyl-2-(p-tolylthio)acrylamide (3ab)

Fig. S19. ¹H NMR spectrum of (Z)-2-((4-methoxyphenyl)thio)-N,3-diphenylacrylamide (3ac)

Fig. S20. ¹³C NMR spectrum of (Z)-2-((4-methoxyphenyl)thio)-N,3-diphenylacrylamide

(3ac)

Fig. S21. ¹H NMR spectrum of (Z)-2-((4-fluorophenyl)thio)-N,3-diphenylacrylamide (3ad)

Fig. S22. ¹³C NMR spectrum of (Z)-2-((4-fluorophenyl)thio)-N,3-diphenylacrylamide (3ad)

Fig. S23. ¹H NMR spectrum of (Z)-2-((4-chlorophenyl)thio)-N,3-diphenylacrylamide (3ae)

Fig. S24. ¹³C NMR spectrum of (Z)-2-((4-chlorophenyl)thio)-N,3-diphenylacrylamide (3ae)

Fig. S25. ¹H NMR spectrum of (Z)-2-((4-bromophenyl)thio)-N,3-diphenylacrylamide (3af)

Fig. S26. ¹³C NMR spectrum of (Z)-2-((4-bromophenyl)thio)-N,3-diphenylacrylamide (3af)

Fig.S27.¹H NMR spectrum of (Z)-N,3-diphenyl-2((4(trifluoromethyl)phenyl)thio)acrylamide

Fig. S29. ¹H NMR spectrum of (Z)-2-((3-methoxyphenyl)thio)-N,3-diphenylacrylamide

(3ah)

Fig. S30. ¹³C NMR spectrum of (Z)-2-((3-methoxyphenyl)thio)-N,3-diphenylacrylamide

(3ah)

Fig. S31. ¹H NMR spectrum of (Z)-2-((3-chlorophenyl)thio)-N,3-diphenylacrylamide (3ai)

Fig. S32. ¹³C NMR spectrum of (Z)-2-((3-chlorophenyl)thio)-N,3-diphenylacrylamide (3ai)

- 9.051 7.852 7.852 7.852 7.852 7.7387 7.7387 7.7387 7.7387 7.7339 7.7423 7.744

Fig. S33. ¹H NMR spectrum of (Z)-2-((2-fluorophenyl)thio)-N,3-diphenylacrylamide (3aj)

Fig. S34. ¹³C NMR spectrum of (Z)-2-((2-fluorophenyl)thio)-N,3-diphenylacrylamide (3aj)

- 4.25

Fig. S35. ¹H NMR spectrum of (Z)-3-((2-aminophenyl)thio)-N,3-diphenylacrylamide (3ak)

Fig. S36. ¹³C NMR spectrum of (Z)-2-((2-aminophenyl)thio)-N,3-diphenylacrylamide (3ak)

Fig. S37. ¹H NMR spectrum of (Z)-3-phenyl-2-(phenylthio)-N-(p-tolyl)acrylamide (3ba)

Fig. S38. ¹³C NMR spectrum of (Z)-3-phenyl-2-(phenylthio)-N-(p-tolyl)acrylamide (3ba)

Fig. S39. ¹H NMR spectrum of (Z)-N-(2,4-dimethylphenyl)-3-phenyl-2-

(phenylthio)acrylamide (3ca)

Fig. S40. ¹³C NMR spectrum of (Z)-N-(2,4-dimethylphenyl)-3-phenyl-2-

(phenylthio)acrylamide (3ca)

Fig. S41. ¹H NMR spectrum of (Z)-N-mesityl-3-phenyl-2-(phenylthio)acrylamide (3da)

Fig. S42. ¹³C NMR spectrum of (Z)-N-mesityl-3-phenyl-2-(phenylthio)acrylamide (3da)

Fig. S43. ¹H NMR spectrum of (Z)-N-(4-ethylphenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S44. ¹³C NMR spectrum of (Z)-N-(4-ethylphenyl)-3-phenyl-2-(phenylthio)acrylamide

(3ea)

Fig. S45. ¹H NMR spectrum of (Z)-N-(4-isopropylphenyl)-3-phenyl-2-

(phenylthio)acrylamide (3fa)

Fig. S46. ¹³C NMR spectrum of (Z)-N-(4-isopropylphenyl)-3-phenyl-2-(phenylthio)acrylamide (3fa)

Fig. S47. ¹H NMR spectrum of (Z)-N-(4-(tert-butyl)phenyl)-3-phenyl-2-

(phenylthio)acrylamide (3ga)

Fig. S48. ¹³C NMR spectrum of (Z)-N-(4-(tert-butyl)phenyl)-3-phenyl-2-(phenylthio)acrylamide **(3ga)**

Fig. S49. ¹H NMR spectrum of (Z)-N-(4-methoxyphenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S50. ¹³C NMR spectrum of (Z)-N-(4-methoxyphenyl)-3-phenyl-2-(phenylthio)acrylamide **(3ha)**

Fig. S51. ¹H NMR spectrum of (Z)-N-([1,1'-biphenyl]-4-yl)-3-phenyl-2-

(phenylthio)acrylamide (3ia)

Fig. S52. ¹³C NMR spectrum of (Z)-N-([1,1'-biphenyl]-4-yl)-3-phenyl-2-(phenylthio)acrylamide **(3ia)**

- 9.379 8.357 8.376 8.376 8.376 8.376 8.376 7.339 7.7397 7.7397 7.739 7.739 7.739 7.7397 7.739 7.7397 7.7397 7.7397 7.73

Fig. S53. ¹H NMR spectrum of (Z)-N-(2-fluorophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S54. ¹³C NMR spectrum of (Z)-N-(2-fluorophenyl)-3-phenyl-2-(phenylthio)acrylamide

(3ja)

Fig. S55. ¹H NMR spectrum of (Z)-N-(2-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S56. ¹³C NMR spectrum of (Z)-N-(2-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide

(3ka)

Fig. S57. ¹H NMR spectrum of (Z)-N-(2-bromophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S58. ¹³C NMR spectrum of (Z)-N-(2-bromophenyl)-3-phenyl-2-(phenylthio)acrylamide

(**3la**)

Fig. S59. ¹H NMR spectrum of (Z)-N-(2-iodophenyl)-3-phenyl-2-(phenylthio)acrylamide

(3ma) 148.57 139.14 139.14 134.515 134.515 134.517 134.517 134.517 129.67 129.67 129.65 126.66 126.66 126.66 126.09 121.65 121.65 121.65 - 163.62 - 89.85 76.98 110 90 f1 (ppm) 190 170 150 130 80 70 60 50 40 30 20 10 0

Fig. S60. ¹³C NMR spectrum of (Z)-N-(2-iodophenyl)-3-phenyl-2-(phenylthio)acrylamide

(3ma)

- 9.188 9.188 - 8.521 - 8.521 - 8.521 - 7.874 - 7.875 - 7.875 - 7.875 - 7.875 - 7.875 - 7.875 - 7.857 - 7.750 - 7.7

— 1.560 — 1.257

Fig. S61. ¹H NMR spectrum of (Z)-N-(4-cyanophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S62. ¹³C NMR spectrum of (Z)-N-(4-cyanophenyl)-3-phenyl-2-(phenylthio)acrylamide

(**3na**)

9.301 8.532 8.532 8.518 8.168 8.168 7.888 7.888 7.888 7.866 7.653 7.655 7.655 7.4120 7.420 7.420 7.200 7.200 7.200 7.201

Fig. S63. ¹H NMR spectrum of (Z)-N-(4-nitrophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S64. ¹³C NMR spectrum of (Z)-N-(4-nitrophenyl)-3-phenyl-2-(phenylthio)acrylamide

(3oa)

- 9.011 - 8.515 - 8.515 - 8.515 - 8.515 - 7.853 - 7.853 - 7.853 - 7.853 - 7.853 - 7.407 - 7.407 - 7.308 - 7.708 - 7.70

Fig. S65. ¹H NMR spectrum of (Z)-N-(3-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S66. ¹³C NMR spectrum of ¹H NMR spectrum of (Z)-N-(3-chlorophenyl)-3-phenyl-2-(phenylthio)acrylamide (**3pa**)

Fig. S67. ¹H NMR spectrum of (Z)-N-(4-chloro-2-methylphenyl)-3-phenyl-2-

(phenylthio)acrylamide (3qa)

Fig. S68. ¹³C NMR spectrum of (Z)-N-(4-chloro-2-methylphenyl)-3-phenyl-2-(phenylthio)acrylamide (**3qa**)

-8.444 -8.444 7.812 7.7323 7.7333 7.7333 7.7333 7.7333 7.7244 7.7244 7.7453 7.7554 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.75567.756

- 1.598

Fig. S69. ¹H NMR spectrum of ((Z)-N-benzyl-3-phenyl-2-(phenylthio)acrylamide (3ra)

Fig. S70. ¹³C NMR spectrum of ((Z)-N-benzyl-3-phenyl-2-(phenylthio)acrylamide (3ra)

Fig. S71. ¹H NMR spectrum of (Z)-N-(naphthalen-1-yl)-3-phenyl-2-(phenylthio)acrylamide

Fig. S72. ¹³C NMR spectrum of (Z)-N-(naphthalen-1-yl)-3-phenyl-2-(phenylthio)acrylamide

(3sa)

Fig. S73. ¹H NMR spectrum of (Z)-3-phenyl-2-(phenylthio)-N-(quinolin-3-yl)acrylamide

Fig. S74. ¹³C NMR spectrum of (Z)-3-phenyl-2-(phenylthio)-N-(quinolin-3-yl)acrylamide

(3ta)

-9449 (46666 (46666) (46666) (46666) (46666) (46666) (46666) (46676) (46776) (

Fig. S75. ¹H NMR spectrum of (Z)-N-([1,1'-biphenyl]-2-yl)-3-pheny2(phenylthio)acrylamide

Fig. S76. ¹³C NMR spectrum of (Z)-N-([1,1'-biphenyl]-2-yl)-3pheny2(phenylthio)acrylamide

(**3ua**)

Fig.S77. ¹H NMR spectrum of (R,Z)-N,3-diphenyl-2-(phenylsulfinyl)acrylamide 4

Fig. S78. ¹³C NMR spectrum of (R,Z)-N,3-diphenyl-2-(phenylsulfinyl)acrylamide 4

-9414 (8610) (8510) (8510) (8510) (8510) (8510) (8510) (7730) (77

Fig. S79. ¹H NMR spectrum of (Z)-N-([1,1'-biphenyl]-2-yl)-3-phenyl-2-

(phenylthio)acrylamide 5

Fig. S80. ¹³C NMR spectrum of (Z)-N-([1,1'-biphenyl]-2-yl)-3-phenyl-2-

(phenylthio)acrylamide 5

Fig. S81. ¹H NMR spectrum of [1,1'-biphenyl]-4-yl (Z)-3-((4-bromophenyl)thio)-3-

phenylacrylate7 ~ 164.11 ~ 161.86 150.27 137.92 135.53 131.78 129.19 128.93 128.93 128.26 128.26 127.28 77.48 - 77.16 - 76.84 110 90 f1 (ppm) 190 170 150 130 80 70 60 50 40 30 20 10 0

Fig. S82. ¹³C NMR spectrum of [1,1'-biphenyl]-4-yl (Z)-3-((4-bromophenyl)thio)-3-

phenylacrylate7

Fig. S83. ¹H NMR spectrum of (E)-3-([1,1'-biphenyl]-4-yl)-2-((4-bromophenyl)thio)-3-

phenylacrylic acid 8

Fig. S84. ¹³C NMR spectrum of (E)-3-([1,1'-biphenyl]-4-yl)-2-((4-bromophenyl)thio)-3-

phenylacrylic acid 8

Fig. S86. ¹H NMR spectrum of 3-phenyl-N-(p-tolyl)propiolamide 1b

Fig. S87. ¹H NMR spectrum of N-(2,4-dimethylphenyl)-3-phenylpropiolamide 1c

Fig. S88. ¹H NMR spectrum of N-mesityl-3-phenylpropiolamide 1d

Fig. S89. ¹³C NMR spectrum of N-mesityl-3-phenylpropiolamide 1d

Fig. S90. ¹H NMR spectrum of N-(4-ethylphenyl)-3-phenylpropiolamide 1e

Fig. S91. ¹³C NMR spectrum of N-(4-ethylphenyl)-3-phenylpropiolamide 1e

Fig. S92. ¹H NMR spectrum of N-(4-isopropylphenyl)-3-phenylpropiolamide 1f

Fig. S93. ¹³C NMR spectrum of N-(4-isopropylphenyl)-3-phenylpropiolamide 1f

Fig. S94. ¹H NMR spectrum of N-(4-(tert-butyl)phenyl)-3-phenylpropiolamide 1g

Fig. S95. ¹³C NMR spectrum of N-(4-(tert-butyl)phenyl)-3-phenylpropiolamide 1g

Fig. S96. ¹H NMR spectrum of N-(4-methoxyphenyl)-3-phenylpropiolamide 1h

Fig. S97. ¹H NMR spectrum of N-([1,1'-biphenyl]-4-yl)-3-phenylpropiolamide 1i

Fig. S98. ¹³C NMR spectrum of N-([1,1'-biphenyl]-4-yl)-3-phenylpropiolamide 1i

Fig. S99. ¹H NMR spectrum of N-(2-fluorophenyl)-3-phenylpropiolamide 1j

Fig. S100. ¹³C NMR spectrum of N-(2-fluorophenyl)-3-phenylpropiolamide 1j

Fig. S101. ¹H NMR spectrum of N-(2-chlorophenyl)-3-phenylpropiolamide 1k

Fig. S102. ¹H NMR spectrum of N-(2-bromophenyl)-3-phenylpropiolamide 11

Fig. S103. ¹H NMR spectrum of N-(2-iodophenyl)-3-phenylpropiolamide 1m

Fig. S104. ¹H NMR spectrum of N-(4-cyanophenyl)-3-phenylpropiolamide 1n

Fig. S105. ¹³C NMR spectrum of N-(4-cyanophenyl)-3-phenylpropiolamide 1n

Fig. S106. ¹H NMR spectrum of N-(4-nitrophenyl)-3-phenylpropiolamide 10

Fig. S107. ¹³C NMR spectrum of N-(4-nitrophenyl)-3-phenylpropiolamide 10

Fig. S108. ¹H NMR spectrum of N-(3-chlorophenyl)-3-phenylpropiolamide 1p

Fig. S109. ¹H NMR spectrum of N-(4-chloro-2-methylphenyl)-3-phenylpropiolamide 1q

Fig. S110. ¹³C NMR spectrum of N-(4-chloro-2-methylphenyl)-3-phenylpropiolamide 1q

Fig. S111. ¹H NMR spectrum of N-benzyl-3-phenylpropiolamide 1r

Fig. S112. ¹H NMR spectrum of N-(naphthalen-1-yl)-3-phenylpropiolamide1s

-8.873 -8.873 -8.848 -8.848 -8.848 -8.846 -7.636 -7.636 -7.636 -7.636 -7.635 -7.636 -7.635 -7.755 -7.635 -7.755 -7

Fig. S113. ¹H NMR spectrum of 3-phenyl-N-(quinolin-3-yl)propiolamide1t

Fig. S114. ¹H NMR spectrum of N-([1,1'-biphenyl]-2-yl)-3-phenylpropiolamide1u

Fig. S115. ¹H NMR spectrum of inseparable reaction mixture of phenyl 3-phenylpropiolate 6

and thiophenol 2a

Reaction of compound 1a and 2a

Fig. S117. ¹H NMR spectrum of crude reaction mixture of phenyl 3-phenylpropiolamide 1a and thiophenol 2a

Reaction of Compound 1a and 2k.

Scheme S4.

Fig. S118. ¹H NMR spectrum of crude reaction mixture of phenyl 3-phenylpropiolamide 1a and 2-amino thiophenol 2k