Supporting Information

On-Demand Hydrogen Production from Formic Acid by Light-Active Dinuclear Iridium Catalysts

Yuki Sofue, Kotohiro Nomura, Akiko Inagaki*

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397.

1. Experimental Procedures for the synthesis and characterization of 1d, 1e, A ^a , B ^a , and A ^c .		
2. Figure S1. ¹ H NMR spectra of 1d.	<i>S4</i>	
Figure S2. ¹ H NMR spectra of 1d (hydride region).	<i>S4</i>	
Figure S3. ³¹ P NMR spectrum of 1d .	<i>S</i> 5	
Figure S4. ¹³ C NMR spectrum 1e .	<i>S</i> 5	
3. Figure S5. ¹ H NMR spectrum of 1e (hydride region).	<i>S6</i>	
Figure S6. ³¹ P NMR spectra of 1e .	<i>S</i> 7	
Figure S7. ¹³ C NMR spectrum of 1e .	<i>S</i> 7	
4. Figure S8. Figure S8. UV-vis absorption spectra of 1a-e .	<i>S8</i>	
5. Figure S9. ESI-MS spectra of the reaction mixture of the photocatalytic reaction by 1a .	<i>S8</i>	
6. Figure S10. ¹ H NMR spectra of A ^c .	<i>S9</i>	
Figure S11. ¹ H NMR spectra of A^c (hydride region).	<i>S9</i>	
Figure S12. ³¹ P NMR spectra of A ^c .	<i>S10</i>	
Figure S13. ¹³ C NMR spectra of A ^c .	<i>S10</i>	
7. Details of X-ray Structural Determinations.	<i>S11</i>	
8. Figure S14. ORTEP diagram of complex B ^b .	<i>S12</i>	
9. Table S1. Crystal data and structure refinement for B ^b .	<i>S13</i>	
10. Figure S15. UV-vis absorption spectra of 1a , A ^a , and B ^a .	<i>S14</i>	

Experimental Procedures

General. All experiments were carried out under a nitrogen atmosphere using standard Schlenk techniques. All solvents were treated with appropriate drying agents, distilled, and stored under nitrogen atmosphere. All the chemicals were purchased from common commercial suppliers. ¹H (400 MHz), ¹³C (100 MHz), and ³¹P (162 MHz) spectra were acquired on a JEOL JNM-AL400 FT-NMR spectrometers. Solvents for NMR measurements (CD₃OD, (CD₃)₂CO, CD₂Cl₂, THF-*d*₈, CD₃NO₂) were dried over molecular sieves, degassed, and stored under N₂ atmosphere. UV–vis absorption spectra were obtained on a JASCO V-670 spectrometer.

Preparation and spectral data of 1d.

To an acetone (2.0 mL) solution of $[Ir(cod)_2]BF_4$ (49.6 mg, 0.10 mmol), a THF solution (1.2 mL) of xylBINAP (2,2'-Bis[di(3,5-xylyl)phosphino]-1,1'-binaphthyl) (7.27 mg, 0.10 mmol) was added. After stirring for 1.5 h, the red-purple solution was concentrated under vacuum and Et₂O was added for recrystallization. [Ir(xylBINAP)(cod)]BF₄ was obtained as red-purple crystal (108.8 mg, 0.097 mmol, 98%).

A methanol (1 mL) solution of $[Ir(xy|BINAP)(cod)]BF_4$ (40.0 mg, 0.035 mmol) was degassed by freeze-pump-thaw method, and then 1 atm H₂ gas was introduced. After stirring the solution for 3 h, the solution became cloudy, and Et₂O was directly added to isolate **1d** as yellow powder (27.9 mg, 0.014 mmol, 82%).

¹H NMR (400 MHz, CD₂Cl₂, δ / ppm) 8.21 (d, *J* = 6.0 Hz, 4 H, Ph + naphthyl), 7.80 (brs, 4 H), 7.57 (d, *J* = 8.0 Hz, 2 H), 7.49 (d, *J* = 8.0 Hz, 2 H), 7.42 (d, *J* = 8.0 Hz, 2 H), 7.27-7.39 (m, 6 H), 7.22 (t, *J* = 6.6 Hz, 4 H), 7.18-7.05 (m, 8 H), 6.86-7.03 (m, 8 H), 6.66 (s, 2 H), 6.27 (s, 2 H), 5.93 (s, 2 H), 2.43 (s, 12 H, C₆H₃-2CH₃), 2.16 (s, 12 H, C₆H₃-2CH₃), 1.79 (s, 12 H, C₆H₃-2CH₃), 0.92 (s, 12 H, C₆H₃-2CH₃), -6.78 (d, *J* = 74.4 Hz, 2 H, Ir-H), -7.78 (t, *J* = 63.8 Hz, 1 H, Ir-H), -21.12 (brs, 2 H, Ir-H) ³¹P{¹H} NMR (162 MHz, acetone-*d*₆, δ / ppm) 34.4, 22.5 (br).

¹³C (100MHz, CD₂Cl₂, δ / ppm) 139.0–122.0 (*Ar*), 20.22 (Ar-*C*H₃), 20.13 (Ar-*C*H₃), 20.04 (Ar-*C*H₃), 19.03 (Ar-*C*H₃).

Anal. Calcd. for C₁₀₄H₁₀₁Ir₂P₄BF₄·CH₂Cl₂: C, 62.09; H, 5.11. Found: C, 62.00; H, 5.30.

Preparation and spectral data of 1e.

To a acetone (2.0 mL) solution of $[Ir(cod)_2]BF_4$ (46.5 mg, 0.094 mmol), a THF (1.5 mL) solution of DADMP-BINAP(2,2'-Bis[bis(4-dimethylamino-3,5-dimethylphenyl)phosphino]-1,1'-binaphthyl) (81.0 mg, 0.089 mmol) was added. After stirring for 1.5 h, the red-purple solution was concentrated under vacuum and Et₂O and hexane was added for precipitation. [Ir(DADMP-BINAP)(cod)]BF₄ was obtained as red powder (113.6 mg, 0.087 mmol, 97%).

A methanol (1 mL) solution of $[Ir(DADMP-BINAP)(cod)]BF_4$ (61.1 mg, 0.047 mmol) was degassed by freeze-pump-thaw method, and then 1 atm H₂ gas was introduced. After stirring the solution for 3 h, Et₂O and hexane was added to isolate **1e** as yellow powder (47.8 mg, 0.021 mmol, 89%).

¹H NMR (400 MHz, MeOH- d_4 , δ / ppm) 8.33 (d, J = 12.0 Hz, 4 H, Ph + naphthyl), 7.60-7.69 (m, 4 H), 7.47 (d, J = 8.0 Hz, 2 H), 7.35-7.44 (m, 6 H), 7.14-7.43 (m, 12 H), 6.96 (s, 2 H), 6.89 (d, J = 4.8 Hz, 2 H), 6.70 (s, 4 H), 7.18-7.05 (m, 8 H), 6.86-7.03 (m, 8 H), 6.66 (s, 2 H), 6.27 (s, 2 H), 5.93 (s, 2 H), 2.93 (s, 26 H, N-2CH₃), 2.65 (s, 12 H, N-2CH₃), 2.49 (s, 12 H, N-2CH₃), 2.29 (s, 14 H, C₆H₃-2CH₃), 2.01 (s, 12 H, C₆H₃-2CH₃), 1.89 (s, 12 H, C₆H₃-2CH₃), 0.88 (brs, 10H, C₆H₃-2CH₃) -6.92 (d, J = 74.4 Hz, 2 H, Ir-H), -7.74 (t, J = 63.8 Hz, 1 H, Ir-H), -20.95 (brs, 2 H, Ir-H)

³¹P{¹H} NMR (162 MHz, acetone- d_6 , δ / ppm) 34.6, 20.1 (br).

Anal. Calcd. for $C_{120}H_{141}Ir_2P_4N_8BF_4\cdot 3H_2O$: C, 61.47; H, 6.32; N, 4.78. Found: C, 61.14; H, 5.92; N, 4.58.

Preparation and spectral data of monoformate complex A^a.

To a MeOH (1.5 mL) solution of **1a** (25.9 mg, 15.0 mmol), HCOOH (2.3 μ L, 4.0 eq) was added and irradiated (395 nm) for 15 minutes. The solvent was removed under reduced pressure to yield A^a as yellow powder quantitatively.

¹H NMR (400 MHz, acetone- d_6 , δ / ppm) 8.77 (d, J = 14.8 Hz, 2 H, Ar), 8.34-8.25 (m, 4 H, Ar), 7.85 (brs, 1 H, OCHO), 7.71-7.21 (m, 26 H, Ar), 7.18-7.00 (m, 14 H, Ar), 6.95-6.72 (m, 8 H, Ar), 6.65 (d, J = 7.6 Hz, 2H, Ar), 6.48 (d, J = 8.4 Hz, 2 H, Ar), 6.42 (t, J = 7.5 Hz, 2 H, Ar), 6.25 (d, J = 8.4 Hz, 2 H, Ar), 6.18 (t, J = 7.5 Hz, 2 H, Ar), -8.43 (dt, $J_{PH} = 64$ Hz, 2 H, Ir-H), -21.03 (m, 2 H, Ir-H). ³¹P{¹H} NMR (162 MHz, acetone- d_6 , δ / ppm) 15.0, 6.1.

Preparation and spectral data of monoformate complex B^a.

Complex **1a** (40.0 mg, 23.2 mmol) was dissolved into HCOOH (0.5 mL) and irradiated (395 nm) for 6 h. The solvent was removed under reduced pressure to yield **B**^a as yellow powder quantitatively. ¹H NMR (400 MHz, acetone- d_6 , δ / ppm) 7.92-7.87 (m, 3 H, OCHO + Ar), 7.83-7.76 (m, 4 H, Ar), 7.66-7.47 (m, 22 H, Ar), 7.42-7.32 (m, 6 H, Ar), 7.30-7.09 (m, 5 H, Ar), 6.79-6.57 (m, 6 H, Ar), 6.53-6.43 (m, 8 H, Ar), 6.25-6.19 (m, 4 H, Ar), -13.14 (dt, $J_{PH} = 58$ Hz, 2 H, Ir-H), -24.70 (s, 2 H, Ir-H). ³¹P{¹H} NMR (162 MHz, acetone- d_6 , δ / ppm) 5.3, -9.1.

Preparation and spectral data of monoformate complex A^c.

The monoformate complex A^c was prepared as the same procedure as that for A^a.

¹H NMR (400 MHz, acetone- d_6 , δ / ppm) 7.97-7.25 (m, 38 H, Ar), 7.04-6.92 (m, 12 H, Ar), 6.82 (t, J = 8.0 Hz, 4H, Ar), 6.69-6.59 (m, 4 H), 6.47 (d, J = 8.0 Hz, 4 H, Ar), 6.23 (m, 2 H, Ar), 6.02(s, 2 H, methyl), 5.98 (s, 2 H, methyl), 5.85 (s, 6 H, methyl), -8.39 (dt, J = 64.2 Hz, J = 9.2 Hz, 2 H, Ir-H), -21.45 (t, J = 17.6 Hz, 2 H, Ir-H).

³¹P{¹H} NMR (162 MHz, acetone- d_6 , δ / ppm) 13.87 (brs), 6.17 (brs).

¹³C NMR (100.8 MHz, acetone- d_6 , δ / ppm) 174.9 (s, 1 (OCHO)), 149.7 (d, $J_{C-O} = 15.3$ Hz, b), 147.2 (d, $J_{C-O} = 13.5$ Hz, g), 146.9 (d, $J_{C-O} = 14.0$ Hz, g), 134.9 (d, $J_{C-P} = 10.6$ Hz, h), 134.6 (d, $J_{C-P} = 11.5$ Hz, h), 133.8(d, $J_{C-P} = 8.7$ Hz, h), 133.2 (d, $J_{C-P} = 10.6$ Hz, h), 131.5, 131.2, 130.8, 130.4, 130.2, 130.0 (s, i), 129.3-127.6 (m, d, f, j), 126.9(d, $J_{C-P} = 8.7$ Hz, e), 125.8 (d, $J_{C-P} = 8.4$ Hz, e), 125.3,124.7, 123.8, 123.2 (s, k), 117.9, 117.2 (m, c), 107.5-107.9 (m, a), 102.2 (s, a), 102.1 (s, a).

Figure S1. ¹H NMR spectra of **1d** (400 MHz, CD₂Cl₂, r.t.).

-21.0 -22.0

Figure S2. ¹H NMR spectra of hydride region of **1d** (400 MHz, CD_2Cl_2 , r.t.).

150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 Figure S4. ^{13}C NMR spectra of **1d** (100 MHz, CD₂Cl₂, r.t.).

Figure S5. ¹H NMR spectra of **1e** (400 MHz, MeOH-*d*₄, 323 K).

 $_{-6.0}^{-7.0}$ $_{-8.0}^{-8.0}$ $_{-9.0}^{-9.0}$ $_{-10.0}^{-11.0}$ $_{-12.0}^{-13.0}$ $_{-13.0}^{-14.0}$ $_{-15.0}^{-16.0}$ $_{-17.0}^{-18.0}$ $_{-19.0}^{-19.0}$ $_{-21.0}^{-21.0}$ Figure S6. ¹H NMR spectra of hydride region of **1e** (400 MHz, MeOH-*d*4, 323 K).

Figure S8. UV-vis absorption spectra of **1a-e** measured in CD₂Cl₂ at r.t.

Figure S9. ESI-MS spectra of the reaction mixture of the photocatalytic reaction by **1a** (CH₃CN, r.t.).

Figure S12. ³¹P NMR spectra of A^{c} (161.8 MHz, acetone- d_{6} , r.t.).

X-ray Structural Determinations.

The diffraction data of **B**^b were collected on a Rigaku XtaLAB P100 diffractometer with graphite monochromated MoK $\alpha(\lambda=0.71073$ Å). The data were collected at a temperature of -180 ± 1°C to a maximum 2 θ value of 55.1°. The crystal-to-detector distance was 45.00 mm. Readout was performed in the 0.172 mm pixel mode. Data were collected and processed using CrystalClear (Rigaku).¹ An empirical absorption correction was applied. The data were corrected for Lorentz and polarization effects.

The crystal structures were solved by direct method (SHELXS-97² or SHELXT³) and expanded using Fourier techniques, which are subsequently completed by Fourier recycling using the SHELXL 2014 program.³ Non-hydrogen atoms were refined by anisotropic displacement parameters. Crystallographic data, data collection and refinement parameters for **B**^b are listed in Table S1.

(b)

Figure S14. ORTEP diagram of complex B^{b} (a) including solvent and anion, (b) cationic unit.

Complex	B ^b
Empirical formula	C112 H98 B F4 Ir2 O4 P4
Formula weight	2102.99
Temperature	93(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	a = 15.3077(3) Å
	b = 17.0493(3) Å
	c = 35.2582(8) Å
	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$
Volume	9201.9(3) Å ³
Ζ	4
Density (calculated)	1.518 Mg/m ³
Absorption coefficient	3.023 mm ⁻¹
F(000)	4228
Crystal size	0.390 x 0.360 x 0.090 mm ³
Theta range for data collection	2.735 to 27.499°
Index ranges	-19<=h<=19, -21<=k<=16, -45<=l<=43
Reflections collected	67280
Independent reflections	19583 [R(int) = 0.0537]
Completeness to theta = 27.50°	99.6 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	19583 / 0 / 1154
Goodness-of-fit on F ²	1.009
Final R indices [I>2sigma(I)]	R1 = 0.0689, wR2 = 0.1663
R indices (all data)	R1 = 0.0726, wR2 = 0.1687
Largest diff. peak and hole	13.584 and -4.386 e.Å ⁻³

Table S1. Crystal data and structure refinement for $\mathbf{B}^{\mathbf{b}}$.

(1) CrystalClear: Data Collection and Processing Software, Rigaku Corporation (1998-2015). Tokyo 196-8666, Japan.

(2) SHELXS Version 2013/1: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

(3) <u>SHELXT Version 2014/5</u>: Sheldrick, G. M. (2014). Acta Cryst. A70, C1437.

Figure S15. UV-vis absorption spectra of 1a, A^a , and B^a measured in CD₂Cl₂ at r.t.