Supporting Information for

Inverse-Electron-Demand [4+2] Cycloaddition of Photogenerated Aza-ortho-Quinone Methides with 1,3,5-Triazinanes: Access to Perfluoroalkylated Tetrahydroquinazolines

Dong Liang,^a Li-Ping Tan,^a Wen-Jing Xiao,^{a,b,*}and Jia-Rong Chen^{a,*}

^a CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.

^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

E-mail: wxiao@mail.ccnu.edu.cn; chenjiarong@mail.ccnu.edu.cn

Table of Contents

1. General Information	S3
2. Preparation of Starting Materials	S4
3. Detailed Condition Optimization	S4
4. Mechanistic Studies	
4.1 TEMPO-quenching experiment	S7
4.2 Luminescence quenching experiments	S8
5. Synthetic Application of the Reactions	
5.1 Sun-light-driven reaction	
5.2 1.0 mmol scale reaction	
6. General Procedure and Spectral Data of Products	
6.1 Representative procedure for visible-light induced compound 4aa synthesis	
6.2 Spectral data of products	S10
7. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	S19
8. References	

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to standard methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400 spectrophotometers. Chemical shifts (δ (ppm)) are reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on 100 MHz with complete proton decoupling spectrophotometers. The high resolution mass spectra (HRMS) were measured on Bruker micrOTOF-II mass spectrometer by ESI. IR spectra were recorded on an IR spectrophotometer.

2. Preparation of Starting Materials

N-Ts-2-alkenylanilines 1^1 and hexahydro-1,3,5-triazines 3^2 were prepared according to the reported methods, Umemoto reagents are commercially available. Perfluoroalkyl substituted Umemoto reagents were prepared according to the known procedure.³

3. Detailed Condition Optimization

 Table S1. Screen of bases.^[a]

Entry	Base	Yield (%) ^[b]	Entry	Base	Yield (%) ^[b]
1	-	6	5	NaHCO ₃	62
2	Cs ₂ CO ₃	34	6	KHCO ₃	50
3	Na ₂ CO ₃	45	7	NaOAc	34
4	K ₂ CO ₃	50	8	Na ₂ HPO ₄	69

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol, 1.2 equiv), **3a** (0.1 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (0.02mmol, 2.0 mol %), base (0.2 mmol, 2.0 equiv), CH₂Cl₂(1.0 mL), rt, 5 h, irradiation with 3 W blue LEDs. [b] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard.

Entry	Photocatalyst	Yield (%) ^[b]	
1	<i>fac</i> -Ir(ppy) ₃	69	
2	[Ir(ppy) ₂ (dtbbpy)]PF ₆	18	
3	Ru(phen) ₃ Cl ₂	15	
4	4C _Z IPN	16	
5	Ph-PTZ ^[c]	64	

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol, 1.2 equiv), **3a** (0.10 mmol, 1.0 equiv), photocatalyst (0.02mmol, 2.0 mol %), Na₂HPO₄ (0.2 mmol, 2.0 equiv), CH₂Cl₂ (1.0 mL), rt, 5 h, irradiation with 3 W blue LEDs. [b] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard. [c] Under the irradiation of 2 x 3 W purple LEDs.

Table S3. Screen of the solvents.^[a]

[a] Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol, 1.2 equiv), 3a (0.1 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (0.02mmol, 2.0 mol %), Na₂HPO₄ (0.2 mmol, 2.0 equiv), solvent (1.0 mL), rt, 5 h, irradiation with 3 W blue LEDs. [b] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard.

Table S4. Screen of the light sources.^[a]

Entry	Light	Yield (%) ^[b]
1	3 W blue LEDs	69
2	2*3 W blue LEDs	68
3	7 W blue LEDs	84
4	7 W white LEDs	72
5	18 W white LEDs	75

[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol, 1.2 equiv), **3a** (0.1 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (0.02mmol, 2.0 mol %), Na₂HPO₄ (0.2 mmol, 2.0 equiv), CH₂Cl₂(1.0 mL), rt, 5 h, irradiation with light. [b] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard.

Table S5. Control experiments.^[a]

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol, 1.2 equiv), **3a** (0.2 mmol, 1.0 equiv), *fac*-Ir(ppy)₃ (0.04 mmol, 2.0 mol %), Na₂HPO₄ (0.4 mmol, 2.0 equiv), CH₂Cl₂ (2.0 mL), rt, 5 h, irradiation with 7 W blue LEDs. [b] Yields determined by ¹H NMR using 1,3,5-trimethoxybenzene as the internal standard. [c] Isolated yield.

4. Mechanistic Studies

4.1 TEMPO-quenching experiment.

In the presence of stoichiometric radical quenchers, such as TEMPO, significant inhibition of the reactivity was observed, which supports that the process involves radical steps. (Scheme S1).

4.2 Luminescence quenching experiments.

Figure S1. fac-Ir(ppy)₃ emission quenching by 1a, 2a and 3a.

Fluorescence spectra was collected on Agilent Fluorescence Spectrophotometer G9800AS24 for all experiments. All *fac*-Ir(ppy)₃ solutions were excited at 350 nm and the emission intensity was collected at 510 nm. In a typical experiment, the emission spectrum of a 1×10^{-5} M solution of *fac*-Ir(ppy)₃ in CH₂Cl₂ was collected. The significant decrease of *fac*-Ir(ppy)₃ luminescence could be observed in the presence of substrate **2a**. And a slightly decrease of *fac*-Ir(ppy)₃ luminescence was observed in the presence of substrate **1a**. The decrease of *fac*-Ir(ppy)₃ luminescence couldn't be observed in the presence of substrate **3a** (Figure S1).

5. Synthetic Application of the Reactions

5.1 Sun-light-driven reaction

1a (54.6 mg, 0.2 mmol), 2a (96.6 mg, 1.2 eq.), 3a (71.5 mg, 1.0 eq.), fac-Ir(ppy)₃ (2.6 mg, 2.0 mol%), Na₂HPO₄ (56.8 mg, 2.0 eq.) and anhydrous CH₂Cl₂ (2.0 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar. The resulting

mixture was degassed by a "freeze-pump-thaw" procedure (3 times) under argon atmosphere. Then the solution was stirring under sun light for 5 h. Upon the completion of reaction as monitored by TLC, the solvent was removed by vacuum and the crude reaction mixture was purified by flash chromatography on silica gel (silica: 200–300; eluent: petroleum ether/ethyl acetate (20 : 1-10 : 1) to provide the pure product **4aa** as a white solid in 68 % yield.

5.2 1.0 mmol scale reaction

1a (273.4 mg, 1.0 mmol), **2a** (482.8 mg, 1.2 eq.), **3a** (357.5 mg, 1.0 eq.), *fac*-Ir(ppy)₃ (13.0 mg, 2.0 mol%), Na₂HPO₄ (283.9 mg, 2.0 eq.) and anhydrous CH_2Cl_2 (10.0 mL) were added to a 50 mL Schlenk flask equipped with a magnetic stir bar. The resulting mixture was degassed by a "freeze-pump-thaw" procedure (3 times) under argon atmosphere. Then the solution was stirred at a distance of ca. 5 cm from two 7 W blue LEDs. Upon the completion of reaction as monitored by TLC, the solvent was removed by vacuum and the crude reaction mixture was purified by flash chromatography on silica gel (silica: 200–300; eluent: petroleum ether/ethyl acetate (20 : 1–10 : 1) to provide the pure product **4aa** as a white solid in 65 % yield.

6. General Procedure and Spectral Data of Products

6.1 Representative procedure for visible-light induced compound 4aa synthesis

1a (54.6 mg, 0.2 mmol), **2a** (96.6 mg, 1.2 eq.), **3a** (71.5 mg, 1.0 eq.), *fac*-Ir(ppy)₃ (2.6 mg, 2.0 mol%), Na₂HPO₄ (56.8 mg, 2.0 eq.) and anhydrous CH_2Cl_2 (2.0 mL) were added to a 10 mL Schlenk flask equipped with a magnetic stir bar. The resulting mixture was degassed by a "freeze-pump-thaw" procedure (3 times) under argon atmosphere. Then the solution was stirred at a distance of ca. 5 cm from a 7 W blue LEDs. Upon the completion of reaction as monitored by TLC, the solvent was removed by vacuum and the crude reaction mixture was purified by flash chromatography on silica gel (silica: 200–300; eluent: petroleum ether/ethyl acetate (20 : 1–10 : 1) to provide the pure product **4aa** as a white solid in 80 % yield.

6.2 Spectral data of products

3-benzyl-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4aa)

73.7 mg, white solid, 80% yield in 5 h. ¹**H NMR** (400 MHz, CDCl3) δ (ppm) 7.71 – 7.68 (m, 3H), 7.34 – 7.23 (m, 7H), 7.20 (t, J = 7.8 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 4.60 (d, J = 12.7 Hz, 1H), 3.96 – 3.93 (m, 1H), 3.86 (d, J = 13.5 Hz, 1H), 3.55 (d, J = 13.5 Hz, 1H), 2.38 (s, 3H), 2.34 – 2.22 (m, 1H), 2.13 – 2.00 (m, 1H). ¹³C NMR (101 MHz, CDCl3) δ (ppm) 144.0, 136.9, 136.6, 135.5, 129.7, 129.1, 128.3, 128.0, 127.6, 126.8, 125.5 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 123.6, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 125.0, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 125.0, 120.0, 62.3, 57.1, 54.2 (q, J = 278.8 Hz), 125.0, 120.

J = 3.0 Hz), 40.8 (q, J = 26.8 Hz), 21.4. ¹⁹F NMR (376 MHz, CDCl3) δ (ppm) -63.37. IR (in KBr): 3418, 3127, 1604, 1492, 1333, 1153, 1121, 1009, 917, 676, 575 cm⁻¹. **HRMS** (ESI) for: $C_{24}H_{24}F_3N_2O_2S [M + H]^+$: calcd: 461.1505, found: 461.1517.

3-(4-methylbenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ab)

 CF_3

Τs

4aa

66.4 mg, colorless liquid, 70% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.71 – 7.66 (m, 3H), 7.27 (d, J = 8.0 Hz, 2H), 7.22 - 7.12 (m, 5H), 7.03 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.02 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.22 - 7.12 (m, 5H), 7.03 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.02 (d, J = 8.0 Hz, 2H), 7.22 - 7.12 (m, 5H), 7.03 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.02 (d, J = 8.0 Hz, 2H), 7.22 - 7.12 (m, 5H), 7.03 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.02 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 7.4 Hz, 2H), 7.03 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 7.4 Hz, 2H), 7.03 (t, J = 8.0 Hz, 2H), 7.03 (t, J = J = 12.6 Hz, 1H), 4.60 (d, J = 12.6 Hz, 1H), 3.96 – 3.92 (m, 1H), 3.82 (d, J = 13.3 Hz, 1H), 3.51 (d, J = 13.4 13.3 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 2.31 – 2.22 (m, 1H), 2.12 – 1.99 (m, 1H). ¹³C NMR (101

MHz, CDCl₃) δ (ppm) 144.0, 137.2, 136.6, 135.5, 133.8, 129.7, 129.1, 129.0, 128.2, 128.0, 126.9, 125.5 (q, *J* = 278.8 Hz), 125.1, 123.6, 120.0, 62.3, 56.9, 54.1 (q, J = 3.0 Hz), 40.8 (q, J = 26.7 Hz), 21.5, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.26. IR (in KBr): 3445, 3129, 1602, 1400, 1251, 1162, 1121, 1096, 814, 757, 673, 581, 565 cm⁻¹. HRMS (ESI) for: $C_{25}H_{26}F_{3}N_{2}O_{2}S [M + H]^{+}$: calcd: 475.1662, found: 475.1664.

3-(4-fluorobenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ac)

72.7 mg, white solid, 76% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.5 Hz, 1H), 7.30 - 7.25 (m, 4H), 7.19 (t, J = 7.7 Hz, 1H), 7.05 - 6.96 (m, 4H), 5.04 (d, J = 12.7 Hz, 1H), 4.58 (d, J = 12.7 Hz, 1H), 3.96 – 3.93 (m, 1H), 3.87 (d, J = 13.5 Hz, 1H), 3.54 (d, J = 13.4 Hz, 1H), 2.40 (s, 3H), 2.37 – 2.29 (m, 1H), 2.19 – 2.06 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 162.3 (d, J = 245.5 Hz), 144.1, 136.8, 135.6, 132.7 (d, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 130.8 (d, J = 8.1 Hz), 129.8, 128.2, 128.1, 126.8, 125.5 (q, J = 3.1 Hz), 128.1, 126.8, 126.2, 12 J = 278.8 Hz), 124.8, 123.7, 119.8, 115.1 (d, J = 21.3 Hz), 61.9, 56.4, 54.3 (q, J = 3.0 Hz), 41.0 (q, J = 26.7 Hz), 21.5. ¹⁹F **NMR** (376 MHz, CDCl₃) δ (ppm) -63.36, -114.98. **IR** (in KBr): 3446, 3127, 1604, 1511, 1339, 1250, 1231, 1098, 961, 818, 672, 580, 561 cm⁻¹. **HRMS** (ESI) for: $C_{24}H_{23}F_4N_2O_2S [M + H]^+$: calcd: 479.1411, found: 490.1420.

3-(4-chlorobenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ad)

76.2 mg, white solid, 77% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.30 – 7.24 (m, 6H), 7.19 (t, J = 7.7 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 4.57 (d, J = 12.8 Hz, 1H), 3.95 – 3.92 (m, 1H), 3.88 (d, J = 12.7 Hz, 1H), 4.57 (d, J = 12.8 Hz, 1H), 3.95 – 3.92 (m, 1H), 3.88 (d, J = 12.7 Hz, 1H), 4.57 (d, J = 12.8 Hz, 1H), 4.57 (d, J13.6 Hz, 1H), 3.54 (d, J = 13.6 Hz, 1H), 2.40 (s, 3H), 2.36 – 2.27 (m, 1H), 2.20 – 2.07 (m, 1H). ¹³C

NMR (101 MHz, CDCl₃) δ (ppm) 144.1, 136.8, 135.6, 135.5, 133.3, 130.5, 129.8, 128.4, 128.2, 128.1, 126.8, 125.5 (q, J = 278.8 Hz), 124.7, 123.7, 119.8, 61.9, 56.4, 54.4 (q, J = 3.0 Hz), 41.0 (q, J = 26.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.29. **IR** (in KBr): 3444, 3128, 1603, 1492, 1401, 1342, 1257, 1172, 1117, 1096, 1011, 657, 579 cm⁻¹. **HRMS** (ESI) for: $C_{24}H_{23}ClF_3N_2O_2S[M + H]^+$: calcd: 495.1115, found: 495.1106.

3-(4-bromobenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ae)

78.8 mg, white solid, 73% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.2 Hz, 3H), 7.03 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 5.03 (d, J = 12.8 Hz, 1H), 4.57 (d, J = 12.8 Hz, 1H), 3.95 – 3.92 (m, 1H), 3.86 (d, J = 13.7 Hz, 1H), 3.52 (d, J = 13.7 Hz, 1H), 2.40 (s, 3H), 2.37 – 2.27 (m, 1H), 3.95 – 3.92 (m, 1H), 3

1H), 2.20 – 2.07 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 144.1, 136.8, 136.0, 135.5, 131.4, 130.8, 129.8, 128.2, 128.1, 126.8, 125.5 (q, *J* = 278.8 Hz), 124.7, 123.7, 121.5, 119.8, 61.9, 56.5, 54.5 (q, *J* = 3.0 Hz), 41.0 (q, *J* = 26.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.27. **IR** (in KBr): 3452, 3128, 1603, 1401, 1341, 1253, 1170, 1150, 1095, 1006, 757, 677 cm⁻¹. **HRMS** (ESI) for: C₂₄H₂₃BrF₃N₂O₂S [M + H]⁺: calcd: 539.0610, found: 539.0617.

4-((1-tosyl-4-(2,2,2-trifluoroethyl)-1,2-dihydroquinazolin-3(4H)-yl)methyl)benzonitrile (4af)

72.8 mg, white solid, 75% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.69 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 7.3 Hz, 1H), 5.04 (d, J = 12.9 Hz, 1H), 4.57 (d, J = 12.9 Hz, 1H), 4.03 (d, J = 14.2 Hz, 1H), 3.97 – 3.94 (m, 1H), 3.66 (d, J = 14.2 Hz, 1H),

2.48 – 2.34 (m, 4H), 2.29 – 2.16 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ (ppm) 144.2, 142.7, 137.0, 135.6, 132.1, 129.9, 129.7, 128.2, 126.7, 125.4 (q, *J* = 278.8 Hz), 124.4, 123.8, 119.7, 118.9, 111.4, 61.6, 56.7, 55.1 (q, *J* = 3.0 Hz), 41.2 (q, *J* = 26.7 Hz), 21.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -63.30. **IR** (in KBr): 3442, 3128, 1606, 1400, 1339, 1169, 1096, 1008, 907, 814, 760, 673, 544 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₃F₃N₃O₂S [M + H]⁺: calcd: 486.1458, found: 486.1463.

3-(4-methoxybenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ag)

71.6 mg, colorless liquid, 73% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (t, *J* = 7.7 Hz, 3H), 7.29 – 7.25 (m, 2H), 7.20 (t, *J* = 8.0 Hz, 3H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.03 (d, *J* = 12.6 Hz, 1H), 4.58 (d, *J* = 12.6 Hz, 1H), 3.96 – 3.93 (m, 1H), 3.82 – 3.79 (m, 4H), 3.50 (d, *J* = 13.2 Hz, 1H), 2.39 (s, 3H), 2.33 – 2.22 (m, 1H), 2.13 – 2.00 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 159.0, 144.0, 136.7, 135.6, 130.4, 129.8, 128.9, 128.2, 128.0, 126.9, 125.5 (q, J = 278.8 Hz), 125.1, 123.6, 120.0, 113.6, 62.2, 56.5, 55.2, 54.0 (q, J = 2.7 Hz), 40.9 (q, J = 26.8 Hz), 21.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -63.29. **IR** (in KBr): 3443, 3130, 1614, 1400, 1250, 1164, 1095, 673, 580, 543 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₆F₃N₂O₃S [M + H]⁺: calcd: 491.1611, found: 491.1617.

3-(2-methylbenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ah)

3-(2-fluorobenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ai)

78.5 mg, white solid, 82% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.70 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 8.0 Hz, 3H), 7.20 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 7.8 Hz, 1Hz), 7.12 (t, J = 7.8 Hz, 1Hz), 7.12 (t, J = 7.8 Hz, 1Hz), 7.12 (t, J = 7.8 Hz), 7.12 (t7.4 Hz, 1H), 7.06 - 6.99 (m, 3H), 5.03 (d, J = 12.7 Hz, 1H), 4.62 (d, J = 12.7 Hz, 1H), 3.97 - 3.94 (m, 1H), 3.88 (d, J = 13.8 Hz, 1H), 3.62 (d, J = 13.8 Hz, 1H), 2.39 (s, 3H), 2.34 - 2.22 (m, 1H), 2.11 - 1.98 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm) 161.4 (d, *J* = 247.7 Hz), 144.1, 136.5, 135.5, 131.2 (d, *J* = 4.0 Hz), 129.7, 129.4 (d, *J* = 8.2 Hz), 128.2, 128.1, 126.9, 125.4 (q, J = 278.8 Hz), 125.3, 124.0 (d, J = 3.7 Hz), 123.9, 123.8, 120.3, 115.3 (d, J = 21.7 Hz), 62.5, 54.30 (q, J = 2.7 Hz), 50.2 (d, J = 2.6 Hz), 41.0 (q, J = 26.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.62, -117.59. IR (in KBr): 3446, 3129, 1605, 1492, 1400, 1332, 1151, 1124, 1008, 757, 674, 577, 545 cm⁻¹. HRMS (ESI) for: $C_{24}H_{23}F_4N_2O_2S [M + H]^+$: calcd: 479.1411, found: 479.1420.

3-(3-methylbenzyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4aj)

72.1 mg, colorless liquid, 76% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.72 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.20 (t, J = 7.5 Hz, 2H), 7.11 – 7.01 (m, 4H), 6.95 (d, J = 7.5 Hz, 1H), 5.02 (d, J = 12.6 Hz, 1H), 4.61 (d, J = 12.7 Hz, 1H), 3.95 – 3.91 (m, 1H), 3.82 (d, J = 13.5 Hz, 1H), 3.51 (d, J = 13.5 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H), 2.31 - 2.22 (m, 1H), 2.11 - 1.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 144.0, 137.9, 136.7, 136.6, 135.5, 129.8, 129.7, 128.3, 128.3, 128.1, 128.1, 126.9, 126.1, 125.5 (q, J = 278.8 Hz), 125.1, 123.6, 120.1, 62.4, 57.2, 54.1 (q, J = 2.7 Hz), 40.9 (q, J = 26.9 Hz), 21.5, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.32. **IR** (in KBr): 3444, 3127, 1606, 1491, 1333, 1152, 1120, 1010, 758, 675, 576, 546 cm⁻¹. **HRMS** (ESI) for: $C_{25}H_{26}F_3N_2O_2S [M + H]^+$: calcd: 475.1662, found: 475.1660.

3-(thiophen-2-ylmethyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ak)

56.9 mg, colorless liquid, 61% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (t, J = 7.8 Hz, 3H), 7.28 (d, J = 7.7 Hz, 3H), 7.21 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 - 6.92 (m, 3H), 5.04 (d, J = 7.4 Hz, 1H), 7.05 (t, 12.7 Hz, 1H, 4.59 (d, J = 12.7 Hz, 1H), 4.06 - 4.01 (m, 2H), 3.76 (d, J = 14.1 Hz, 1H), 2.40 (s, 3H), 2.35 - 2.35 Hz, 3.76 (d, J = 14.1 Hz, 1H), 2.40 (s, 3H), 2.35 - 2.35 Hz, 3.76 (d, J = 14.1 Hz, 1Hz), 3.76 (d, J = 14.1 Hz), 3.76 (d, J =2.19 (m, 1H), 2.09 – 1.96 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 144.1, 140.3, 136.5, 135.4, 129.8,

128.3, 128.1, 127.0, 126.9, 126.5, 125.8, 125.5 (q, J = 278.8 Hz), 125.2, 123.9, 120.4, 62.1, 54.1 (q, J = 3.0 Hz), 51.9, 41.0 (q, J = 3.0 Hz), 51.9, 51 J = 26.9 Hz, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.35. IR (in KBr): 3445, 3123, 1601, 1491, 1400, 1270, 1162, 1122, 1096, 757, 578, 543 cm⁻¹. **HRMS** (ESI) for: $C_{22}H_{22}F_3N_2O_2S_2 [M + H]^+$: calcd: 467.1069, found: 467.1064.

3-methyl-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4al)

58.4 mg, white solid, 76% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 8.2 Hz, 2H), 7.63 (d, F₃C J = 8.4 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.18 (t, J = 7.7 Hz, 1H), 7.08 – 7.00 (m, 2H), 4.84 (d, J = 12.7 Hz, 1H), 7.08 – 7.00 (m, 2H), 7.08 (m, 2H), 7 1H), 4.60 (d, J = 12.7 Hz, 1H), 3.80 – 3.77 (m, 1H), 2.42 (s, 3H), 2.39 (s, 3H), 2.29 – 2.04 (m, 2H). ¹³C NMR Ťs 4al (101 MHz, CDCl₃) δ (ppm) 143.9, 137.0, 135.5, 129.6, 128.1, 127.8, 127.2, 126.2, 125.8 (q, J = 278.8 Hz), 124.2, 121.0, 64.5, 56.5 (q, J = 2.8 Hz), 41.5 (q, J = 26.6 Hz), 40.9, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.81. IR (in KBr): 3419, 3129, 1602, 1401, 1337, 1255, 1123, 1005, 1010, 659, 546 cm⁻¹. **HRMS** (ESI) for: $C_{18}H_{19}F_{3}N_{2}NaO_{2}S$ [M + Na]⁺: calcd: 407.1012, found: 407.1022.

Tert-butyl 2-(1-tosyl-4-(2,2,2-trifluoroethyl)-1,2-dihydroquinazolin-3(4H)-yl)acetate (4am)

61.2 mg, colorless liquid, 63% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.60 (d, J = 8.1 Hz, 2H), 7.26 – 7.20 (m, 3H), 7.10 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 4.98 (d, J = 12.8 Hz, 1H), 4.65 (d, J = 12.8 Hz, 1H), 4.16 – 4.13 (m, 1H), 3.41 (d, J = 17.1 Hz, 1H), 3.20 (d, J = 17.1 Hz, 1H),

2.38 (s, 3H), 2.17 – 1.90 (m, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 168.9, 144.0, 136.7, 135.6, 129.5, 128.0, 127.8, 127.8, 127.3, 125.8 (q, J = 278.8 Hz), 124.8, 122.3, 81.7, 63.5, 54.6 (q, J = 2.8 Hz), 54.2, 41.6 (q, J = 26.9 Hz), 28.0, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.67. IR (in KBr): 3444, 3129, 1736, 1633, 1400, 1161, 1092, 659, 575 cm⁻¹. **HRMS** (ESI) for: $C_{23}H_{28}F_{3}N_{2}O_{4}S[M + H]^{+}$: calcd: 485.1716, found: 485.1727.

(2S)-methyl 2-phenyl-2-(1-tosyl-4-(2,2,2-trifluoroethyl)-1,2-dihydroquinazolin-3(4H)-yl)acetate (4an)

67.4 mg, colorless liquid, 65% yield in 5 h, d.r. = 2:1. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.73 (d, J = 8.5 Hz, 1H, minor), 7.69 (d, J = 8.1 Hz, 2H, major), 7.62 (d, J = 8.4 Hz, 1H, major), 7.54 (d, J = 8.1 Hz, 2H, minor), 7.46 - 7.29 (m, 6H, major + minor), 7.26 - 7.17 (m, 2H, major + minor), 7.05 (t, J = 8.0 Hz, 1H, minor), 7.01 (d, J = 7.5 Hz, 1H, minor), 6.99 (t, J = 8.0 Hz, 1H, major), 6.75 (d, J = 7.6 Hz, 1H, major), 5.40 (d, J = 13.2 Hz, 1H, major), 4.72 (d, J = 12.8 Hz, 1H, minor), 4.65 (d, J = 13.2 Hz, 1H,

major), 4.47 (d, J = 12.8 Hz, 1H, minor), 4.37 (s, 1H, major + minor), 4.18 (t, J = 6.5 Hz, 1H, minor), 3.78 (t, J = 6.8 Hz, 1H, major), 3.69 (s, 3H, major), 3.63 (s, 3H, minor), 2.41 (s, 3H, major), 2.37 (s, 3H, minor), 2.34 - 2.23 (m, 1H, major + minor), 1.99 – 1.84 (m, 1H, major + minor). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) (major + minor) 171.0, 144.2, 136.7, 135.8, 135.5, 135.2, 134.5, 134.4, 129.9, 129.7, 129.2, 129.2, 128.8, 128.7, 128.5, 128.4, 128.1, 126.9, 126.8, 125.3 (q, *J* = 278.8 Hz), 125.0, 124.9, 123.8, 123.7, 120.2, 120.1, 68.0, 66.8, 60.7, 59.7, 53.5 (q, *J* = 3.0 Hz), 52.4, 52.3, 51.4 (q, *J* = 3.0 Hz), 41.4 (q, *J* = 27.3 Hz), 40.8 (q, J = 27.3 Hz), 21.5, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.35. IR (in KBr): 3444, 3129, 1746, 1400, 1169, 1119, 1096, 757, 702, 615, 577 cm⁻¹. **HRMS** (ESI) for: $C_{26}H_{25}F_3N_2NaO_4S$ [M + Na]⁺: calcd: 541.1379, found: 541.1381.

3-(4-chlorophenyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ao)

50.0 mg, white solid, 52% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 – 7.07 (m, 4H), 7.01 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 8.7 Hz, 2H), 5.77 (d, J = 13.7 Hz, 1H), 4.81 (d, J = 13.7 Hz, 1H), 4.78 - 4.75 (m, 1H), 2.58 - 2.45 (m, 1H), 2.58 - 2.58 (m, 1H), 2.5 1H), 2.32 (s, 3H), 2.30 – 2.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 146.2, 143.9, 135.8, 135.5, 129.4, 129.3, 128.4, 127.4, 127.0, 127.0, 126.2, 125.4 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q, J = 278.8 Hz), 124.6, 121.9, 120.1, 60.5, 53.3 (q, J = 3.0 Hz), 40.5 (q

J = 26.9 Hz, 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.37. IR (in KBr): 3446, 3128, 1596, 1494, 1398, 1205, 1160, 1002, 968, 656, 581, 534 cm⁻¹. **HRMS** (ESI) for: $C_{23}H_{21}ClF_3N_2O_2S [M + H]^+$: calcd: 481.0959, found: 481.0952.

3-(4-bromophenyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (4ap)

57.8 mg, white solid, 55% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 8.4 Hz, 1H), 7.25 (d, J = 8.5 Hz, 3H), 7.20 (d, J = 8.1 Hz, 2H), 7.14 – 7.07 (m, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.69 (d, *J* = 8.7 Hz, 2H), 5.78 (d, *J* = 13.8 Hz, 1H), 4.82 – 4.75 (m, 2H), 2.59 – 2.45 (m, 1H), 2.37 – 2.24 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 146.7, 143.9, 135.8, 135.5, 132.2, 129.3, 128.4, 127.4, 126.9,

126.2, 125.4 (q, J = 278.8 Hz), 124.7, 121.9, 120.4, 114.3, 60.3, 53.1 (q, J = 3.0 Hz), 40.4 (q, J = 26.9 Hz), 21.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.33. **IR** (in KBr): 3420, 3128, 1590, 1492, 1399, 1160, 1126, 1003, 830, 581 cm⁻¹. **HRMS** (ESI) for: $C_{23}H_{20}BrF_{3}N_{2}NaO_{2}S[M + Na]^{+}$: calcd: 547.0273, found: 547.0266.

3-benzyl-6-methyl-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ba)

64.5 mg, colorless liquid, 68% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.34 - 7.26 (m, 7H), 7.01 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H), 5.00 (d, J = 12.6 Hz, 1H), 4.57 (d, J = 12.7 Hz, 1H), 3.91 – 3.84 (m, 2H), 3.54 (d, J = 13.5 Hz, 1H), 2.39 (s, 3H), 2.32 – 2.19 (m, 4H), 2.12 – 1.99 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 143.9, 137.0, 136.6, 133.3, 132.9, 129.7, 129.1, 128.8, 128.6, 128.3, 127.6, 126.9, 125.6 (q, *J* = 278.8 Hz), 125.0, 120.0, 62.3, 57.2, 54.2 (q, *J* = 2.7 Hz), 40.9 (q, *J* = 26.7 Hz), 21.5, 20.6. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.36. **IR** (in KBr): 3446, 3128, 1622, 1499, 1400, 1254, 1160, 1122, 1096, 812, 662, 547 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₆F₃N₂O₂S [M + H]⁺: calcd: 475.1662, found: 475.1667.

3-benzyl-6-methoxy-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ca)

60.8 mg, white solid, 62% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.69 (d, J = 9.2 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.26 (d, J = 6.2 Hz, 5H), 6.81 – 6.79 (m, 1H), 6.46 (d, J = 2.2 Hz, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 12.6 Hz, 1H), 3.87 – 3.83 (m, 1H), 3.79 (d, J = 13.6 Hz, 1H), 3.75 (s, 3H), 3.52 (d, J = 13.5 Hz, 1H), 2.39 (s, 3H), 2.23 – 2.04 (m, 1H), 1.98 – 1.85

(m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 155.9, 144.0, 136.9, 136.2, 129.7, 129.1, 128.4, 128.3, 127.6, 127.3, 127.0, 125.5 (q, J = 278.8 Hz), 122.4, 113.8, 112.9, 62.6, 57.3, 55.4, 54.3 (q, J = 2.8 Hz), 40.5 (q, J = 27.0 Hz), 21.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -63.38. **IR** (in KBr): 3419, 3129, 1619, 1500, 1400, 1257, 1157, 1095, 1003, 754, 574 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₆F₃N₂O₃S [M + H]⁺: calcd: 491.1611, found: 491.1620.

3-benzyl-6-fluoro-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5da)

66.0 mg, colorless liquid, 69% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 – 7.71 (m, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.34 – 7.25 (m, 7H), 6.97 – 6.92 (m, 1H), 6.69 – 6.67 (m, 1H), 4.95 (d, J = 12.7 Hz, 1H), 4.56 (d, J = 12.7 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.81 (d, J = 13.4 Hz, 1H), 3.51 (d, J = 13.4 Hz, 1H), 2.40 (s, 3H), 2.26 – 2.13 (m, 1H), 2.00 – 1.87 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

(ppm) 158.8 (d, J = 245.6 Hz), 144.3, 136.5, 136.1, 131.5 (d, J = 2.8 Hz), 129.8, 129.1, 128.4, 127.7, 127.5 (d, J = 6.3 Hz), 126.9, 125.3 (q, J = 278.8 Hz), 122.5 (d, J = 7.7 Hz), 115.3 (d, J = 22.2 Hz), 114.5 (d, J = 22.5 Hz), 62.5, 57.3, 54.1 (q, J = 3.0 Hz), 40.4 (q, J = 27.2 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.39, -118.00. IR (in KBr): 3445, 3128, 1597, 1497, 1399, 1336, 1155, 1015, 899, 810, 546 cm⁻¹. HRMS (ESI) for: C₂₄H₂₃F₄N₂O₂S [M + H]⁺: calcd: 479.1411, found: 479.1419.

3-benzyl-6-bromo-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ea)

75.5 mg, colorless liquid, 70% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.66 – 7.64 (m, 3H), 7.35 – 7.26 (m, 8H), 7.08 (d, J = 2.2 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 4.57 (d, J = 12.7 Hz, 1H), 3.91 – 3.88 (m, 1H), 3.83 (d, J = 13.4 Hz, 1H), 3.51 (d, J = 13.4 Hz, 1H), 2.41 (s, 3H), 2.33 – 2.20 (m, 1H), 2.10 – 1.97 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 144.4, 136.5, 136.1, 134.7, 131.2, 130.8,

129.9, 129.1, 128.4, 127.8, 127.0, 126.9, 125.3 (q, J = 278.8 Hz), 121.8, 116.5, 62.3, 57.3, 53.9 (q, J = 2.9 Hz), 40.6 (q, J = 27.2 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.34. **IR** (in KBr): 3444, 3128, 1634, 1400, 1162, 1095, 1008, 811, 662, 543 cm⁻¹. **HRMS** (ESI) for: C₂₄H₂₃BrF₃N₂O₂S [M + H]⁺: calcd: 539.0610, found: 539.0618.

3-benzyl-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline-6-carbonitrile (5fa)

72.8 mg, colorless liquid, 75% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.8 Hz, 1H), 7.40 – 7.35 (m, 5H), 7.31 (d, J = 5.8 Hz, 3H), 5.19 (d, J = 12.0 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.04 – 4.01 (m, 1H), 3.89 (d, J = 13.4 Hz, 1H), 3.55 (d, J = 13.4 Hz, 1H), 2.25 – 2.39 (m, 4H), 2.23 – 2.11 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

(ppm) 144.9, 139.6, 136.0, 135.8, 132.1, 131.8, 130.1, 129.0, 128.5, 127.9, 126.8, 125.1 (q, J = 278.8 Hz), 125.0, 119.7, 118.1, 106.5, 62.4, 57.2, 53.7 (q, J = 2.9 Hz), 40.5 (q, J = 27.4 Hz), 21.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -63.24. **IR** (in KBr): 3446, 3129, 1609, 1495, 1400, 1168, 1099, 814, 664, 572, 545 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₃F₃N₃O₂S [M + H]⁺: calcd: 486.1458, found: 486.1456.

3-benzyl-5-fluoro-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ga)

77.5 mg, colorless liquid, 81% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.71 (d, J = 7.9 Hz, 2H), 7.48 (d, J = 8.6 Hz, 1H), 7.32 – 7.25 (m, 7H), 7.17 (q, J = 8.0 Hz, 1H), 6.75 (t, J = 6.6 Hz, 1H), 5.15 (d, J = 12.8 Hz, 1H), 4.59 (d, J = 12.9 Hz, 1H), 4.25 (t, J = 6.6 Hz, 1H), 3.88 (d, J = 13.4 Hz, 1H), 3.56 (d, J = 13.4 Hz, 1H), 2.41 (s, 3H), 2.37 – 2.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.9 (d, J = 243.8

Hz), 144.3, 137.0 (d, J = 6.6 Hz), 136.6 (d, J = 2.0 Hz), 129.9, 129.2, 128.7, 128.6, 128.3, 127.7, 126.8, 125.3 (q, J = 278.8 Hz), 114.8 (d, J = 3.1 Hz), 112.2 (d, J = 20.1 Hz), 109.8 (d, J = 21.8 Hz), 61.5, 57.2, 49.7 – 49.6 (m), 38.7 (d, J = 27.1 Hz), 21.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -63.23, -116.00. **IR** (in KBr): 3445, 3128, 1619, 1474, 1400, 1164, 1095, 814, 665, 587, 542 cm⁻¹. **HRMS** (ESI) for: C₂₄H₂₃F₄N₂O₂S [M + H]⁺: calcd: 479.1411, found: 479.1420.

3-benzyl-7-chloro-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ha)

82.2 mg, white solid, 83% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.34 – 7.26 (m, 7H), 7.02 – 7.00 (m, 1H), 6.88 (d, J = 8.2 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 4.57 (d, J = 12.7 Hz, 1H), 3.92 – 3.88 (m, 7H), 3.83 (d, J = 13.4 Hz, 1H), 3.50 (d, J = 13.4 Hz, 1H), 2.41 (s, 3H), 2.37 – 2.21 (m, 1H), 2.07 – 1.94 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

(ppm) 144.5, 136.5, 136.0, 133.8, 129.9, 129.3, 129.1, 128.4, 127.7, 127.0, 125.3 (q, J = 278.8 Hz), 123.7, 123.1, 119.9, 62.3, 57.2, 53.7 (q, J = 2.8 Hz), 40.7 (q, J = 27.0 Hz), 21.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -63.34. **IR** (in KBr): 3445, 3128, 1597, 1401, 1340, 1166, 1126, 1017, 908, 665, 541 cm⁻¹. **HRMS** (ESI) for: C₂₄H₂₃ClF₃N₂O₂S [M + H]⁺: calcd: 495.1115, found: 495.1111.

3-benzyl-1-tosyl-4-(2,2,2-trifluoroethyl)-7-(trifluoromethyl)-1,2,3,4-tetrahydroquinazoline (5ia)

74.0 mg, white solid,70% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 8.07 (s, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.36 – 7.26 (m, 8H), 7.08 (d, J = 8.0 Hz, 1H), 5.10 (d, J = 12.7 Hz, 1H), 4.61 (d, J = 12.8 Hz, 1H), 4.00 – 3.97 (m, 1H), 3.86 (d, J = 13.4 Hz, 1H), 3.52 (d, J = 13.4 Hz, 1H), 2.41 (s, 3H), 2.39 – 2.28 (m, 1H), 2.14 – 2.01 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 144.7, 136.4, 136.0, 135.8,

130.4 (q, J = 32.0 Hz), 130.0, 129.1, 128.9, 128.4, 127.8, 127.0, 125.3 (q, J = 278.8 Hz), 123.6 (q, J = 273.7 Hz), 119.8 (q, J = 3.6 Hz), 116.7 (q, J = 4.1 Hz), 62.2, 57.3, 54.0 (q, J = 3.0 Hz), 40.6 (q, J = 27.4 Hz), 21.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -62.88, -63.34. **IR** (in KBr): 3442, 3129, 1631, 1400, 1167, 1096, 542 cm⁻¹. **HRMS** (ESI) for: C₂₅H₂₂F₆N₂NaO₂S [M + Na]⁺: calcd: 551.1198, found: 551.1208.

3-benzyl-6,7-dimethoxy-1-tosyl-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ja)

56.2 mg, colorless liquid, 54% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.61 (d, J = 7.7 Hz, 2H), 7.38 (s, 1H), 7.33 – 7.26 (m, 7H), 6.38 (s, 1H), 4.85 (d, J = 12.5 Hz, 1H), 4.54 (d, J = 12.6 Hz, 1H), 3.87 (s, 3H), 3.80 – 3.75 (m, 5H), 3.52 (d, J = 13.5 Hz, 1H), 2.40 (s, 3H), 2.17 – 2.03 (m, 1H), 1.92 – 1.79 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 148.3, 145.8, 144.1, 136.9, 136.1, 129.6,

129.0, 128.4, 128.3, 127.6, 127.1, 125.5 (q, J = 278.8 Hz), 117.9, 110.1, 105.1, 62.6, 57.3, 56.0, 56.0, 53.8 (d, J = 2.8 Hz), 40.6 (q, J = 26.6 Hz), 21.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -62.27. **IR** (in KBr): 3445, 3127, 1617, 1526, 1400, 1244, 1166, 1110, 907, 657, 543 cm⁻¹. **HRMS** (ESI) for: C₂₆H₂₈F₃N₂O₄S [M + H]⁺: calcd: 521.1716, found: 521.1700.

3-benzyl-1-(phenylsulfonyl)-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ka)

71.4 mg, colorless liquid, 80% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.79 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.34 – 7.25 (m, 5H), 7.21 (t, *J* =

7.8 Hz, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 7.5 Hz, 1H), 5.05 (d, J = 12.7 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.97 – 3.94 (m, 1H), 3.87 (d, J = 13.5 Hz, 1H), 3.56 (d, J = 13.5 Hz, 1H), 2.38 – 2.24 (m, 1H), 2.16 – 2.03 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 139.7, 136.8, 135.5, 133.1, 129.2, 129.1, 128.3, 128.1, 127.6, 126.8, 125.4 (q, J = 278.8 Hz), 125.1, 123.8, 120.0, 62.4, 57.1, 54.2 (q, J = 2.7 Hz), 40.9 (q, J = 26.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.27. IR (in KBr): 3443, 3128, 1604, 1492, 1400, 1253, 1163, 914, 755, 588 cm⁻¹. HRMS (ESI) for: C₂₃H₂₂F₃N₂O₂S [M + H]⁺: calcd: 447.1349, found: 447.1356.

3-benzyl-1-((4-fluorophenyl)sulfonyl)-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5la)

69.7 mg, white solid, 75% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82 – 7.79 (m, 2H), 7.66 (d, J = 8.4 Hz, 1H), 7.34 – 7.28 (m, 5H), 7.24 – 7.14 (m, 3H), 7.05 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 5.03 (d, J = 12.7 Hz, 1H), 4.63 (d, J = 12.7 Hz, 1H), 3.99 – 3.96 (m, 1H), 3.86 (d, J = 13.4 Hz, 1H), 3.57 (d, J = 13.4 Hz, 1H), 2.44 – 2.30 (m, 1H), 2.23 – 2.10 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 165.2 (d, J = 255.9 Hz), 135.8 (d, J = 3.3 Hz), 129.6 (d, J = 9.4 Hz), 125.3 (q, J = 278.8 Hz), 116.5 (d, J = 12.7 Hz, 1H), 2.24 – 2.30 (m, 20.5 Hz), 125.8 (m, 20.5 Hz), 12

22.7 Hz), 54.3 (q, J = 2.7 Hz), 41.0 (q, J = 26.9 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -63.23, -104.12. **IR** (in KBr): 3443, 3125, 1592, 1400, 1249, 1152, 837, 577 cm⁻¹. **HRMS** (ESI) for: C₂₃H₂₁F₄N₂O₂S [M + H]⁺: calcd: 465.1254, found: 465.1248.

3-benzyl-1-(mesitylsulfonyl)-4-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydroquinazoline (5ma)

62.5 mg, white solid, 64% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (d, J = 7.2 Hz, 2H), 7.34 – 7.25 (m, 3H), 7.07 – 7.01 (m, 5H), 6.77 (d, J = 7.7 Hz, 1H), 5.27 (d, J = 13.3 Hz, 1H), 4.61 (d, J = 13.3 Hz, 1H), 4.09 (d, J = 13.2 Hz, 2H), 3.72 (d, J = 13.6 Hz, 1H), 2.66 – 2.57 (m, 7H), 2.43 – 2.26 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 142.8, 138.7, 137.2, 136.6, 132.5, 129.4, 128.4, 128.1, 127.7, 127.4, 125.6 (q, J = 278.8 Hz), 125.0, 123.7, 119.1, 61.3, 57.1, 54.0 (q, J = 2.8 Hz), 41.9 (q, J = 26.6 Hz), 22.6,

21.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -63.16. **IR** (in KBr): 3444, 3128, 1604, 1400, 1152, 993, 755, 663, 602, 529 cm⁻¹. **HRMS** (ESI) for: C₂₆H₂₈F₃N₂O₂S [M + H]⁺: calcd: 489.1818, found: 489.1829.

3-benzyl-4-(2,2,3,3,4,4,4-heptafluorobutyl)-1-tosyl-1,2,3,4-tetrahydroquinazoline (6ab)

84.1 mg, colorless liquid, 75% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.75 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.33 – 7.20 (m, 8H), 7.05 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.98 (d, J = 12.6 Hz, 1H), 4.61 (d, J = 12.6 Hz, 1H), 4.10 – 4.07 (m, 1H), 3.84 (d, J = 13.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 2.38 (s, 3H), 2.30 – 2.15 (m, 1H), 2.06 – 1.94 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm)

144.1, 136.8, 136.4, 135.6, 129.7, 129.1, 128.3, 128.2, 127.6, 126.9, 125.6, 123.8, 120.4, 62.2, 57.2, 53.4 (d, J = 3.0 Hz), 37.4 (t, J = 20.5 Hz), 21.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -80.30 (t, J = 10.3 Hz, 3F), -112.58 - -115.31 (m, 2F), -127.79 (t, J = 7.5 Hz, 2F). **IR** (in KBr): 3415, 3129, 1638, 1400, 1220, 1169, 1093, 911, 671, 578 cm⁻¹. **HRMS** (ESI) for: C₂₆H₂₄F₇N₂O₂S [M + H]⁺: calcd: 561.1441, found: 561.1440.

3-benzyl-4-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-1-tosyl-1,2,3,4-tetrahydroquinazoline (6ac)

95.2 mg, colorless liquid, 78% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.75 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.35 – 7.21 (m, 8H), 7.05 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.99 (d, J = 12.6 Hz, 1H), 4.60 (d, J = 12.6 Hz, 1H), 4.10 – 4.07 (m, 1H), 3.85 (d, J = 13.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 2.38 (s, 3H), 2.31 – 2.15 (m, 1H), 2.06 – 1.94 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm)

144.1, 136.8, 136.4, 135.6, 129.7, 129.1, 128.3, 128.2, 127.6, 126.9, 125.6, 123.8, 120.4, 62.2, 57.2, 53.4 (d, J = 3.0 Hz), 37.6 (t, J = 20.5 Hz), 21.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -81.07 (t, J = 10.2 Hz, 3F), -111.80 - -114.50 (m, 2F), -124.43 - -

124.52 (m, 2F), -125.85 – -125.97 (m, 2F). **IR** (in KBr): 3442, 3127, 1603, 1400, 1236, 1168, 1000, 755, 672, 578 cm⁻¹. **HRMS** (ESI) for: $C_{27}H_{24}F_9N_2O_2S$ [M + H]⁺: calcd: 611.1409, found: 611.1414.

3-benzyl-1-tosyl-4-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptyl)-1,2,3,4-tetrahydroquinazoline (6ad)

Gad ts

93.8 mg, colorless liquid, 66% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.34 – 7.21 (m, 8H), 7.05 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.98 (d, J = 12.6 Hz, 1H), 4.61 (d, J = 12.6 Hz, 1H), 4.10 – 4.07 (m, 1H), 3.84 (d, J = 13.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 2.37 (s, 3H), 2.31 – 2.16 (m, 1H), 2.06 – 1.95 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm)

144.1, 136.8, 136.4, 135.6, 129.7, 129.1, 128.3, 128.2, 127.6, 126.9, 125.7, 123.9, 120.4, 62.3, 57.3, 53.5 (d, J = 2.7 Hz), 37.7 (t, J = 20.5 Hz), 21.4. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -80.79 (t, J = 11.3 Hz, 3F), -111.62 – -114.24 (m, 2F), -121.80 (s, 2F), -122.91 (s, 2F), -123.50 – -123.58 (m, 2F), -126.13 – -126.21 (m, 2F). **IR** (in KBr): 3445, 3128, 1604, 1492, 1400, 1240, 1168, 913, 752, 578 cm⁻¹. **HRMS** (ESI) for: C₂₉H₂₄F₁₃N₂O₂S [M + H]⁺: calcd: 711.1345, found: 711.1343.

3-benzyl-4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononyl)-1-tosyl-1,2,3,4-tetrahydroquinazoline (6ae)

Gae ts

105.4 mg, colorless liquid, 65% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.75 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.35 – 7.21 (m, 8H), 7.05 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.98 (d, J = 12.6 Hz, 1H), 4.61 (d, J = 12.6 Hz, 1H), 4.10 – 4.07 (m, 1H), 3.85 (d, J = 13.4 Hz, 1H), 3.59 (d, J = 13.4 Hz, 1H), 2.37 (s, 3H), 2.31 – 2.15 (m, 1H), 2.06 – 1.94 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm)

144.1, 136.8, 136.4, 135.6, 129.7, 129.2, 128.3, 128.2, 127.6, 126.9, 125.7, 123.9, 120.4, 62.3, 57.3, 53.5 (d, J = 2.9 Hz), 37.7 (t, J = 20.5 Hz), 21.3. ¹⁹**F** NMR (376 MHz, CDCl₃) δ (ppm) -80.83 (t, J = 9.9 Hz, 3F), -111.63 – -114.22 (m, 2F), -121.62 (s, 2F), -121.99 (s, 4F), -122.76 (s, 2F), -123.50 (s, 2F), -126.18 (s, 2F). **IR** (in KBr): 3444, 3125, 1603, 1493, 1349, 1202, 1149, 1007, 753, 670, 578 cm⁻¹. **HRMS** (ESI) for: C₃₁H₂₃F₁₇N₂NaO₂S [M + Na]⁺: calcd: 833.1101, found: 833.1098.

Ethyl 3-(3-benzyl-1-tosyl-1,2,3,4-tetrahydroquinazolin-4-yl)-2,2-difluoropropanoate (6af)

77.2 mg, white solid, 75% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.69 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.35 – 7.26 (m, 7H), 7.17 (t, J = 7.5 Hz, 1H), 7.01 (q, J = 6.9, 6.2 Hz, 2H), 4.96 (d, J = 12.7 Hz, 1H), 4.58 (d, J = 12.7 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.00 – 3.96 (m, 1H), 3.83 (d, J = 13.0 Hz, 1H), 3.55 (d, J = 13.0 Hz, 1H), 2.68 – 2.53 (m, 1H), 2.40 (s, 3H), 2.24 – 2.10 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm) 164.0 – 163.3 (m), 144.0, 136.8, 136.4, 135.5, 129.8,

128.3, 128.2, 127.9, 127.7, 126.8, 124.4, 123.4, 119.2, 117.1 – 112.1 (m), 62.8, 61.1, 57.2, 55.0 – 54.9 (m), 40.9 (t, J = 22.7 Hz), 21.5, 13.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) -99.34 (d, J = 269.9 Hz, 1F), -109.78 (d, J = 270.0 Hz, 1F). **IR** (in KBr): 3446, 3128, 1773, 1492, 1336, 1170, 1001, 674, 544 cm⁻¹. **HRMS** (ESI) for: C₂₇H₂₉F₂N₂O₄S [M + H]⁺: calcd: 515.1811, found: 515.1818.

3-(3-benzyl-1-tosyl-1,2,3,4-tetrahydroquinazolin-4-yl)propanenitrile (6ag)

44.9 mg, colorless liquid, 52% yield in 5 h. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.68 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.39 – 7.31 (m, 3H), 7.27 (d, J = 7.8 Hz, 4H), 7.19 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 4.90 (d, J = 12.6 Hz, 1H), 4.69 (d, J = 12.6 Hz, 1H), 3.82 (d, J = 13.3 Hz, 1H), 3.62 – 3.59 (m, 1H), 3.56 (d, J = 13.3 Hz, 1H), 2.42 (s, 3H), 2.06 – 1.79 (m, 4H). ¹³C NMR

(101 MHz, CDCl₃) δ (ppm) 144.1, 137.0, 136.9, 135.8, 129.8, 129.4, 128.5, 128.0, 127.9, 127.7, 127.1, 126.1, 124.0, 120.5, 119.5, 63.0, 57.7, 57.0, 31.6, 21.5, 12.8. **IR** (in KBr): 3443, 3129, 1633, 1400, 1167, 1079, 889, 671, 571 cm⁻¹. **HRMS** (ESI) for: $C_{25}H_{26}N_3O_2S [M + H]^+$: calcd: 432.1740, found: 432.1740.

Diethyl 2-((3-benzyl-1-tosyl-1,2,3,4-tetrahydroquinazolin-4-yl)methyl)-2-methylmalonate (6ah)

65.5 mg, colorless liquid, 58% yield in 5 h. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.69 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.5 Hz, 1H), 7.36 – 7.26 (m, 7H), 7.12 (t, J = 7.6 Hz, 1H), 7.03 – 6.96 (m, 2H), 4.94 (d, J = 7.5 Hz, 1H), 7.05 – 6.96 (m, 2H), 4.94 (d, J = 7.5 Hz, 1H), 7.05 – 7.56 (m, 7H), 7.05 (m, 12.5 Hz, 1H), 4.67 (d, J = 12.5 Hz, 1H), 4.23 – 4.07 (m, 4H), 3.84 – 3.76 (m, 2H), 3.50 (d, J = 12.8 Hz, 1H), 2.47 - 2.41 (m, 1H), 2.39 (s, 3H), 2.02 - 1.97 (m, 1H), 1.30 - 1.27 (m, 6H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 172.3, 171.4, 143.8, 137.0, 136.7, 135.4, 130.1, 129.7, 128.6, 128.1, 127.5, 127.3, 126.7, 125.8, 122.9, 118.5, 61.4, 61.2, 61.1, 57.2, 56.2, 52.1, 41.2, 21.4, 19.1, 14.0, 13.9. IR (in KBr): 3422, 3127, 1730, 1400, 1235, 1167, 1095, 917, 671, 596 cm⁻¹. **HRMS** (ESI) for: $C_{31}H_{37}N_2O_6S$ [M + H]⁺: calcd: 565.2367, found:

565.2384.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17

-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl-3-(3-benzyl-1-tosyl-1,2,3,4-tetrahydroquinazolin-4-yl)-

2,2-difluoropropanoate (6ai)

100.9 mg, colorless liquid, 59% yield in 5 h, d.r. > 19:1. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.70 – 7.65 (m, 3H), 7.34 – 7.25 (m, 7H), 7.17 (t, J = 8.3 Hz, 1H), 7.00 (q, J = 8.8, 8.1 Hz, 2H), 5.42 - 5.35 (m, 1H), 4.99 - 4.94 (m, 1H), 4.77 – 4.67 (m, 1H), 4.61 (d, J = 12.6 Hz, 1H), 3.96 (d, J = 8.5 Hz, 1H), 3.85 – 3.80 (m, 1H), 3.55 (d, J = 13.1 Hz, 1H), 2.64 – 2.48 (m, 1H), 2.39 (s, 3H), 2.36 -2.27 (m, 1H), 2.18 - 1.80 (m, 6H), 1.72 - 1.26 (m, 13H), 1.19 - 1.07 (m, 7H), 1.03 (s, 4H), 0.92 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.4 Hz, 7H), 0.69 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ (ppm) 163.4 – 162.7 (m), 144.0 (d, J = 1.6 Hz), 138.7 (d, J = 12.3 Hz), 136.8 (d, J = 4.5 Hz), 136.4, 135.5 (d, J = 2.7 Hz), 129.8, 129.7 (d, J = 1.7 Hz), 128.3, 128.2, 127.9, 127.6 (d, J = 3.1 Hz), 126.8, 124.5, 123.5 (d, J = 3.1 Hz), 126.8, 124.5, 124.5 (d, J = 3.1 Hz), 126.8, 126.5 (d, J = 3.1 Hz), 126.5 (d, J = 3.1 Hz) 6.4 Hz), 123.3, 119.2, 117.1 – 112.1 (m), 61.5 (d, J = 9.5 Hz), 57.2, 56.6, 56.1, 54.8 – 54.6 (m), 49.9 (d, J = 2.0 Hz), 42.3, 41.2 -40.7 (m), 39.7, 39.5, 37.6, 36.8 (d, J = 5.7 Hz), 36.5, 36.1, 35.8, 31.9, 31.8, 28.2, 28.0, 27.4 (d, J = 5.0 Hz), 24.3, 23.8, 22.8, 22.5, 21.5, 21.0, 19.3 (d, J = 1.2 Hz), 18.7, 11.8. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -98.81 - -99.70 (m, 1F), -108.17 - -109.28 (m, 1F). IR (in KBr): 3443, 3129, 2951, 1767, 1400, 1168, 1090, 752, 576 cm⁻¹. HRMS (ESI) for: C₅₂H₆₈F₂N₂NaO₄S $[M + Na]^+$: calcd: 877.4760, found: 877.4750.

7. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4aa

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ab

S20

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ac

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ad

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ae

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4af

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ag

-63.29

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ah

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ai

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ak

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4al

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4am

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4an

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ao

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 4ap

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ba

-63.36

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ca

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5fa

DL597D.2.fid

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ga

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ha

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ia

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ja

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ka

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5la

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 5ma

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 6ab

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 6ac

S62

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 6ad

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 6ae

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) and ¹⁹F NMR (376 MHz, CDCl₃) spectra of 6af

DL603B.3.fid

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) spectra of 6ag

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of 6ah

8. References

- (a) L. Fra, A. Millán, J. A. Souto and K. Muňiz, Angew. Chem. Int. Ed., 2014, 53, 7349-7353; (b) L. Y. Liu and Z. Y. Wang, Green Chem., 2017, 19, 2076-2079.
- 2. (a) T. L. Richard and W. B. Motherwell, *Tetrahedron*, 1992, **48**, 1465-1484; (b) R. E. Ruscoe, M. Callingham, J. A. Baker, S. E. Korkis and H. W. Lam, *Chem. Commun.*, 2019, **55**, 838-841.
- (a) T. Umemoto and S. Ishihara, J. Am. Chem. Soc., 1993, 115, 2156-2164; (b) A. Harsányi, É. Dorkó, Á. Csapó, T. Bakó,
 C. Peltz and J. Rábai, J. Fluorine Chem., 2011, 132, 1241-1246; (c) T. Zhang, G. Deng, H. Li, B. Liu, Q. Tan and B. Xu,
 Org. Lett., 2018, 20, 5439-5443; (d) R. Tomita, T. Koike and M. Akita, Angew. Chem. Int. Ed., 2015, 54, 12923-12927.