### **SUPPORTING INFORMATION**

# Conformational impact of the aliphatic side chain in local anaesthetics: benzocaine, butamben and isobutamben

A. Insausti,<sup>a,b</sup> C. Calabrese,<sup>a,b</sup> M. Parra,<sup>a,b</sup> I. Usabiaga,<sup>a,c</sup> M. Vallejo-López,<sup>a</sup> P. Écija,<sup>a</sup> F. J. Basterretxea,<sup>a</sup> J.-U. Grabow,<sup>d</sup> W. Caminati,<sup>c</sup> A. Lesarri<sup>e</sup> and E. J. Cocinero<sup>a,b</sup>\*

- a. Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV-EHU), E-48940, Leioa, Spain.
- b. Instituto Biofisika (UPV-EHU/CSIC), E-48940, Leioa, Spain.
- c. Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, I-40126 Bologna, Italy.
- d. Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, D-30167, Hannover, Germany.
- e. Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, E-47011, Valladolid, Spain.

### **Corresponding Author:**

\*Emilio J. Cocinero: emiliojose.cocinero@ehu.eus

#### TABLE OF CONTENTS

| 1. | Studied Systems 3 -                                                                                                                                                                                                                                                                                                     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Figure S1. General molecular structure of benzocaine (BZC), butamben (BTN) and isobutamben (BTI) 3 -                                                                                                                                                                                                                    |
|    | Figure S2. Nomenclature used for the dihedral angles, $\tau$ , represented in Figure S1                                                                                                                                                                                                                                 |
|    | Figure S3. Nomenclature used for the amine hydrogens position with respect to the alkyl chain of each conformer3 -                                                                                                                                                                                                      |
| 2. | Computational Methods 4 -                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                         |
|    | Figure S4. MP2 computed structures of the most stable conformers of BTI in two points of view and with their respective relative energies $(\Delta E_0/kJ \cdot mol^{-1})$ with respect to the most stable conformer. The conformers are labelled following the nomenclature displayed in Figure S2 and S3              |
|    | Table S1. Predicted parameters for BTI at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.         - 6 -                                                                                                                                                                                                     |
|    | Table S2. Predicted nuclear quadrupolar constants of $^{14}N$ (expressed in MHz) for BTI at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis                                                                                                                                                                  |
|    | Figure S5. MP2 computed structures of the most stable conformers of BTN in two points of view and with their respective relative energies ( $\Delta E_0/kJ \cdot mol^{-1}$ ) with respect to the most stable conformer. The conformers are labelled following the nomenclature displayed in Figure S2 and S38 -         |
|    | Figure S5. Continue to previous page9 -                                                                                                                                                                                                                                                                                 |
|    | Table S3. Predicted parameters for BTN at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.         basis.                                                                                                                                                                                                    |
|    | Table S4. Predicted nuclear quadrupolar constants of $^{14}\rm N$ (expressed in MHz) for BTN at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis13 -                                                                                                                                                          |
|    | Figure S6. Methyl rotation energy of the assigned structures of BTI                                                                                                                                                                                                                                                     |
|    | Figure S7. Methyl rotation energy of the assigned structures of BTN 15 -                                                                                                                                                                                                                                                |
|    | 16 -                                                                                                                                                                                                                                                                                                                    |
|    | Figure S8. PES of BTI computed at B3LYP-D3BJ / 6-311++G(d,p) level 16 -                                                                                                                                                                                                                                                 |
|    | Figure S9. PES of BTN computed at B3LYP-D3BJ / 6-311++G(d,p) level 16 -                                                                                                                                                                                                                                                 |
| 3. | Experimental Methods 17 -                                                                                                                                                                                                                                                                                               |
|    | 18 -                                                                                                                                                                                                                                                                                                                    |
|    | Figure S10. $15_{015} \leftarrow 14_{014}$ transition of the assigned rotamers of BTI measured using different carrier gases<br>in the Bilbao spectrometer with laser vaporization. The number of accumulations for each line were 2000<br>for Ne (6+1 bar), Ar (4+1 bar) and Xe (2+1 bar) and 10000 for He (~30+1 bar) |
|    | Table S5. Comparison between the predicted (MP2/6-311++ $G^{**}$ ) data and the experimental spectroscopic parameters and conformational energies for the BTI and BTN rotationally observed conformers                                                                                                                  |
|    | Table S6. BTI relative population results obtained measuring several rotational transitions for each conformer using different carrier gases.       20 -                                                                                                                                                                |
|    | Table S7. Rotational transitions of BTI (TG <sup>+</sup> ↓) 21 -                                                                                                                                                                                                                                                        |
|    | Table S8. Rotational transitions of BTI (G'G' $\downarrow)$ 28 -                                                                                                                                                                                                                                                        |
|    | Table S9. Rotational transitions of BTI (TT) 31 -                                                                                                                                                                                                                                                                       |
|    | Table S10. Rotational transitions of BTN (TG <sup>-</sup> T↓) 34 -                                                                                                                                                                                                                                                      |
|    | REFERENCES 38 -                                                                                                                                                                                                                                                                                                         |

### 1. Studied Systems



Figure S1. General molecular structure of benzocaine (BZC), butamben (BTN) and isobutamben (BTI).



 $C = cis/G^{-} = gauche^{-}/G^{+} = gauche^{+}/T = trans$ 

Figure S2. Nomenclature used for the dihedral angles,  $\tau$ , represented in Figure S1.



Figure S3. Nomenclature used for the amine hydrogens position with respect to the alkyl chain of each conformer.

### 2. Computational Methods

The first step involves an exhaustive conformational search of the system using a molecular mechanics method (Merck Molecular Force Field:  $MMFFs^1$ ). Thus, the relative energy of the three studied molecules in each conformation was estimated within an energy window of 20 kJ mol<sup>-1</sup>. All the geometries found were later fully reoptimized by quantum mechanical methods, such as the MP2<sup>2</sup> *ab initio* method and Density Functional Theory (DFT) procedures (M06-2X<sup>3,4</sup> and B3LYP- D3BJ<sup>5,6</sup>). In both cases, the basis-set used was the *Popple's triple zeta* 6-311 basis increased with polarization and diffusion functions (6-311++G(d,p))<sup>7,8,9</sup>. On the other hand, harmonic frequency calculations were also carried out. All the theoretical calculations were implemented in Gaussian 16.<sup>10</sup>



**Figure S4.** MP2 computed structures of the most stable conformers of BTI in two points of view and with their respective relative energies ( $\Delta E_0/kJ \cdot mol^{-1}$ ) with respect to the most stable conformer. The conformers are labelled following the nomenclature displayed in Figure S2 and S3.

## **Table S1.** Predicted parameters for BTI at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.

|                                                        |        |       |       | MP2 / 6           | 5-311++0          | G( <b>d,p</b> )           |                              |                              |         |         |                                                       |
|--------------------------------------------------------|--------|-------|-------|-------------------|-------------------|---------------------------|------------------------------|------------------------------|---------|---------|-------------------------------------------------------|
|                                                        | A/MHz  | B/MHz | C/MHz | μ <sub>A</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D         | ∆E₀<br>/kJ∙mol <sup>-1</sup> | ∆G₀/<br>kJ∙mol <sup>-1</sup> | $	au_1$ | $	au_2$ | $\mathrm{NH}_{2}\left(\uparrow/\downarrow\right)^{*}$ |
| BTI 1 (TG <sup>+</sup> ↑)                              | 1828.7 | 281.7 | 250.7 | -1.4              | -2.6              | -0.7                      | 0.0                          | 0.0                          | 178.1   | 57.8    | 1                                                     |
| BTI 2 $(G^{-}G^{+}\downarrow)$                         | 1996.5 | 287.0 | 267.6 | -2.0              | -1.5              | 1.0                       | 0.4                          | 2.1                          | -80.0   | +62.7   | $\downarrow$                                          |
| <b>BTI 3</b> (G <sup>+</sup> G <sup>+</sup> )          | 1977.8 | 288.3 | 268.4 | -1.6              | -2.2              | 1.0                       | 0.5                          | 2.3                          | 79.8    | -62.9   | ↑                                                     |
| BTI 4 (TT)                                             | 1501.9 | 314.6 | 276.2 | -1.3              | -2.4              | 1.1                       | 1.6                          | 2.0                          | -179.5  | -180.0  | 1=↓                                                   |
| BTI 5 (TG <sup>-</sup> ↓)                              | 1829.7 | 281.6 | 250.6 | -1.5              | -2.2              | 1.4                       | 2.0                          | 2.9                          | -178.2  | -57.8   | $\downarrow$                                          |
| <b>BTI 6</b> (G <sup>+</sup> T↑)                       | 1593.5 | 324.1 | 295.8 | -1.4              | -2.3              | 1.1                       | 2.4                          | 4.4                          | 102.7   | 179.4   | ↑                                                     |
| BTI 7 (G <sup>+</sup> G <sup>+</sup> ↑)                | 2014.0 | 285.8 | 271.8 | -1.5              | -2.2              | 1.4                       | 2.6                          | 4.2                          | 103.7   | 58.7    | ↑                                                     |
| BTI 8 (G <sup>-</sup> T↓)                              | 1603.5 | 323.1 | 295.0 | -1.8              | -1.8              | -0.9                      | 2.7                          | 4.8                          | -102.8  | -179.4  | $\downarrow$                                          |
| BTI 9 (G <sup>-</sup> G <sup>-</sup> ↓)                | 2021.5 | 285.4 | 271.3 | -1.9              | -1.9              | 0.7                       | 2.8                          | 4.3                          | -104.1  | -58.8   | $\downarrow$                                          |
|                                                        |        |       | B3    | LYP-D3I           | BJ / 6-31         | 1++G(d,]                  | p)                           |                              |         |         |                                                       |
|                                                        | A/MHz  | B/MHz | C/MHz | μ <sub>A</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D         | ∆E₀<br>/kJ∙mol <sup>-1</sup> | ∆G₀⁄<br>kJ∙mol <sup>-1</sup> | $	au_1$ | $	au_2$ | $\mathrm{NH}_{2}\left(\uparrow/\downarrow\right)^{*}$ |
| BTI 1 (TG <sup>+</sup> ↑)                              | 1816.4 | 282.4 | 251.0 | -2.1              | -3.0              | -0.5                      | 0.3                          | 0.0                          | 176.0   | 56.7    | 1                                                     |
| BTI 2 (G <sup>-</sup> G <sup>+</sup> ↓)                | 1978.4 | 286.2 | 265.3 | -2.7              | -1.9              | 0.8                       | 0.0                          | 0.5                          | -83.6   | +61.2   | $\downarrow$                                          |
| <b>BTI 3</b> (G <sup>+</sup> G <sup>+</sup> ↑)         | 1979.7 | 286.2 | 265.2 | -2.4              | -2.5              | 0.8                       | 0.0                          | 0.6                          | 83.6    | -61.2   | ↑                                                     |
| BTI 4 (TT)                                             | 1496.7 | 314.3 | 275.8 | -1.9              | -2.9              | 0.8                       | 1.2                          | 1.0                          | -179.8  | -180.0  | 1=↓                                                   |
| BTI 5 (TG <sup>-</sup> ↓)                              | 1815.7 | 282.4 | 250.9 | -2.1              | -2.7              | 1.2                       | 0.3                          | 0.0                          | -176.4  | -56.8   | Ļ                                                     |
| <b>BTI 6</b> (G <sup>+</sup> <b>T</b> ↑)               | 1586.8 | 321.8 | 292.3 | -2.1              | -2.7              | 1.0                       | 2.3                          | 2.9                          | 106.5   | 178.6   | ↑                                                     |
| <b>BTI 7</b> (G <sup>+</sup> G <sup>+</sup> ↑)         | 1993.5 | 283.6 | 268.9 | -2.3              | -2.6              | 1.1                       | 1.8                          | 1.9                          | 108.6   | 56.9    | ↑                                                     |
| BTI 8 (G <sup>-</sup> T↓)                              | 1585.9 | 321.9 | 292.4 | -2.5              | -2.3              | -0.6                      | 2.2                          | 2.9                          | -106.4  | -178.6  | $\downarrow$                                          |
| BTI9(G <sup>-</sup> G <sup>-</sup> ↓)                  | 1992.1 | 283.7 | 269.0 | -2.6              | -2.3              | -0.5                      | 1.7                          | 1.9                          | -108.6  | -56.9   | Ļ                                                     |
|                                                        |        |       |       | M06-2X            | / 6-311+-         | +G( <b>d</b> , <b>p</b> ) |                              |                              |         |         |                                                       |
|                                                        | A/MHz  | B/MHz | C/MHz | μ <sub>Λ</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D         | ∆E₀<br>/kJ∙mol⁻¹             | ∆G₀/<br>kJ∙mol <sup>-1</sup> | $	au_1$ | $	au_2$ | $\mathrm{NH}_{2}\left(\uparrow/\downarrow\right)^{*}$ |
| BTI 1 (TG <sup>+</sup> ↑)                              | 1836.9 | 284.3 | 252.2 | -1.8              | -2.8              | -0.5                      | 0.0                          | 0.0                          | 178.4   | 57.8    | 1                                                     |
| BTI 2 (G <sup>-</sup> G <sup>+</sup> ↓)                | 2012.3 | 288.0 | 268.0 | -2.4              | -1.8              | 0.8                       | 0.5                          | 1.2                          | -81.0   | 61.5    | t                                                     |
| <b>BTI 3</b> (G <sup>+</sup> G <sup>+</sup> <b>↑</b> ) | 2012.4 | 288.0 | 267.9 | -2.1              | -2.3              | 0.8                       | 0.5                          | 1.3                          | 81.0    | -61.5   | ↑                                                     |
| BTI 4 (TT)                                             | 1509.1 | 317.2 | 278.3 | -1.7              | -2.8              | 0.9                       | 0.9                          | 1.1                          | -180.0  | -180.0  | 1=↓                                                   |
| BTI 5 (TG <sup>-</sup> ↓)                              | 1836.7 | 284.3 | 252.1 | -1.9              | -2.6              | 1.2                       | 0.2                          | 0.5                          | -178.7  | -57.9   | $\downarrow$                                          |
| <b>BTI 6</b> (G <sup>+</sup> T↑)                       | 1612.6 | 326.4 | 297.6 | -1.9              | -2.5              | 1.0                       | 2.7                          | 4.0                          | 101.1   | 179.3   | Ť                                                     |
| BTI 7 $(G^+G^+\uparrow)$                               | 2060.2 | 286.6 | 272.6 | -2.0              | -2.3              | 1.3                       | 2.5                          | 4.0                          | 101.5   | 58.6    | Ť                                                     |
| BTI 8 (G <sup>-</sup> T↓)                              | 1612.9 | 326.4 | 297.7 | -2.2              | -2.1              | -0.7                      | 2.6                          | 3.9                          | -101.0  | -179.3  | $\downarrow$                                          |
| BTI 9 (G <sup>-</sup> G <sup>-</sup> ↓)                | 2060.1 | 286.6 | 272.6 | -1.9              | 0.7               | 2.8                       | 2.5                          | 4.1                          | -101.5  | -58.6   | $\downarrow$                                          |

**Table S2.** Predicted nuclear quadrupolar constants of  ${}^{14}$ N (expressed in MHz) for BTI at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.

|                                                |       | MP2   |        | ]     | B3LYP-D | 3BJ    |                 | M06-2X |        |
|------------------------------------------------|-------|-------|--------|-------|---------|--------|-----------------|--------|--------|
|                                                | Xaa   | Хрр   | Xcc    | Xaa   | χъь     | Xcc    | χ <sub>aa</sub> | Xbb    | Xcc    |
| <b>BTI 1 (TG<sup>+</sup>†</b> )                | 2.202 | 1.999 | -4.201 | 2.378 | 2.258   | -4.636 | 2.300           | 2.200  | -4.500 |
| BTI 5 (TG <sup>-</sup> ↓)                      | 2.467 | 1.638 | -4.105 | 2.601 | 1.974   | -4.576 | 2.500           | 2.000  | -4.500 |
| Planar                                         | 2.846 | 2.208 | -5.054 | 2.811 | 2.352   | -5.163 | 2.749           | 2.314  | -5.064 |
| BTI 2 ( $G^{-}G^{+}\downarrow$ )               | 2.673 | 1.122 | -3.795 | 2.758 | 1.364   | -4.122 | 2.700           | 1.300  | -4.000 |
| <b>BTI 3</b> (G <sup>+</sup> G <sup>-</sup> ↑) | 1.660 | 1.546 | -3.206 | 1.878 | 1.771   | -3.649 | 1.800           | 1.700  | -3.500 |
| Planar                                         | 2.656 | 1.626 | -4.281 | 2.687 | 1.682   | -4.369 | 2.534           | 1.685  | -4.219 |
| BTI 4 (TT)                                     | 2.342 | 2.005 | -4.347 | 2.496 | 2.283   | -4.779 | 2.400           | 2.200  | -4.600 |
| Planar                                         | 2.785 | 2.366 | -5.150 | 2.820 | 2.529   | -5.349 | 2.757           | 2.470  | -5.227 |
| <b>BTI 6</b> (G <sup>+</sup> T↑)               | 1.499 | 1.832 | -3.331 | 1.740 | 2.113   | -3.853 | 1.700           | 2.000  | -3.700 |
| BTI 8 (G <sup>-</sup> T↓)                      | 2.661 | 1.448 | -4.109 | 2.734 | 1.757   | -4.491 | 2.700           | 1.700  | -4.400 |
| BTI 7 $(G^+G^+\uparrow)$                       | 1.655 | 1.944 | -3.599 | 1.875 | 2.173   | -4.048 | 1.800           | 2.200  | -4.000 |
| BTI 9 (G <sup>-</sup> G <sup>-</sup> ↓)        | 2.669 | 1.778 | -4.448 | 2.753 | 1.955   | -4.708 | 2.700           | 2.100  | -4.800 |



**Figure S5.** MP2 computed structures of the most stable conformers of BTN in two points of view and with their respective relative energies ( $\Delta E_0/kJ \cdot mol^{-1}$ ) with respect to the most stable conformer. The conformers are labelled following the nomenclature displayed in Figure S2 and S3.



TG⁺G⁺**↑ (4.6 kJ/mol)** 

G+TG+1 (4.8 kJ/mol)



TTG<sup>-</sup>↑ (5.8 kJ/mol)



Figure S5. Continue to previous page.

### **Table S3.** Predicted parameters for BTN at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.

| MP2 / 6-311++G(d,p)                                            |        |       |       |                   |                   |                   |                              |                              |         |         |            |                                                   |
|----------------------------------------------------------------|--------|-------|-------|-------------------|-------------------|-------------------|------------------------------|------------------------------|---------|---------|------------|---------------------------------------------------|
|                                                                | A/MHz  | B/MHz | C/MHz | μ <sub>A</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D | ∆E₀<br>/kJ·mol <sup>-1</sup> | ∆G₀/<br>kJ∙mol <sup>-1</sup> | $	au_1$ | $	au_2$ | <b>7</b> 3 | $\mathrm{NH}_2\left(\uparrow/\downarrow\right)^*$ |
| BTN 1 ( $G^+G^+T^\uparrow$ )                                   | 1420.1 | 299.8 | 279.3 | -1.3              | 2.7               | -0.1              | 0.0                          | 0.1                          | 78.5    | 56.2    | 179.1      | Ť                                                 |
| BTN 2 ( $G^+ G^+ T \downarrow$ )                               | 1437.6 | 297.6 | 278.1 | -1.9              | -1.3              | -1.5              | 0.2                          | 0.5                          | 78.8    | 56.4    | 179.2      | Ļ                                                 |
| BTN 3 (T G T↓)                                                 | 1376.7 | 292.1 | 247.0 | -1.2              | -2.3              | -1.3              | 0.6                          | 0.0                          | -178.3  | 63.3    | 179.3      | Ļ                                                 |
| BTN 4 $(G^+G^+G^+\downarrow)$                                  | 1469.7 | 329.0 | 291.1 | 1.8               | -1.7              | 1.1               | 0.9                          | 2.1                          | 75.1    | 46.2    | 56.5       | $\downarrow$                                      |
| BTN 5 (TG <sup>+</sup> T <sup>†</sup> )                        | 1373.3 | 292.5 | 246.8 | -1.0              | 2.7               | 0.8               | 1.0                          | 0.9                          | -179.2  | 63.3    | 179.3      | Ť                                                 |
| BTN 6 $(G^+G^+G^+\uparrow)$                                    | 1457.3 | 331.2 | 292.2 | 1.4               | -2.5              | -0.8              | 1.1                          | 2.7                          | 75.0    | 46.1    | 56.6       | Ť                                                 |
| BTN 7 (G⁺G⁻T↓)                                                 | 1489.1 | 293.3 | 289.8 | -2.0              | 0.6               | -1.7              | 1.3                          | 1.7                          | 101.0   | -62.2   | -178.0     | $\downarrow$                                      |
| BTN 8 (G <sup>-</sup> G <sup>-</sup> G <sup>-</sup> ↓)         | 1669.8 | 308.7 | 293.2 | 2.2               | 1.8               | -0.1              | 1.3                          | 2.9                          | 106.3   | -64.5   | -67.5      | $\downarrow$                                      |
| BTN 9 (G <sup>+</sup> G <sup>-</sup> G <sup>-</sup> ↑)         | 1662.1 | 309.2 | 293.8 | 1.7               | 1.5               | 2.0               | 1.4                          | 3.2                          | 105.9   | -64.7   | -67.7      | Ť                                                 |
| <b>BTN 10</b> (G <sup>+</sup> G <sup>+</sup> T <sup>↑</sup> )  | 1478.3 | 294.4 | 290.4 | -1.4              | 2.4               | -0.9              | 1.5                          | 2.1                          | 100.7   | -62.4   | -177.9     | ↑                                                 |
| BTN 11 (TG⁺G⁺↓)                                                | 1451.4 | 309.5 | 274.2 | -1.5              | -2.2              | -1.5              | 1.7                          | 1.3                          | -177.4  | 55.9    | 55.7       | $\downarrow$                                      |
| BTN 12 $(TG^+G^+\uparrow)$                                     | 1448.8 | 309.4 | 273.5 | -1.2              | -2.7              | -0.5              | 1.8                          | 1.8                          | -178.5  | 56.1    | 55.8       | ↑                                                 |
| BTN 13 (G⁺TT↓)                                                 | 2193.3 | 241.5 | 233.0 | -1.9              | -1.7              | -0.6              | 2.4                          | 2.5                          | 80.6    | 177.5   | -179.3     | $\downarrow$                                      |
| BTN 14 (G <sup>+</sup> TT <sup>†</sup> )                       | 2158.1 | 242.1 | 233.8 | 1.4               | -1.9              | 1.5               | 2.4                          | 2.6                          | 80.6    | 177.4   | -179.2     | ↑                                                 |
| BTN 15 $(G^+G^+G^-\uparrow)$                                   | 1481.7 | 340.4 | 312.0 | -1.4              | 2.7               | 0.2               | 2.8                          | 3.3                          | 77.3    | 59.7    | -76.9      | ↑                                                 |
| BTN 16 (G <sup>+</sup> G <sup>+</sup> G <sup>-</sup> ↓)        | 1493.0 | 338.3 | 310.1 | -1.9              | 1.3               | -1.4              | 3.5                          | 4.4                          | 77.5    | 60.2    | -76.3      | $\downarrow$                                      |
| <b>BTN 17 (TTT)</b>                                            | 2001.6 | 237.5 | 213.5 | -1.2              | -2.4              | -1.1              | 3.5                          | 2.7                          | 179.2   | 179.9   | -180.0     | 1                                                 |
| <b>BTN 18 (TG</b> <sup>-</sup> G <sup>+</sup> ↑)               | 1404.0 | 327.8 | 275.7 | 1.1               | -2.6              | -0.5              | 4.6                          | 4.1                          | 179.6   | -73.9   | 67.5       | ↑                                                 |
| BTN 19 (TG <sup>-</sup> G <sup>+</sup> ↓)                      | 1407.6 | 327.4 | 276.9 | 1.4               | -2.1              | 1.5               | 4.7                          | 4.0                          | 177.8   | -73.8   | 67.3       | Ļ                                                 |
| BTN 20 (G <sup>+</sup> T G <sup>+</sup> ↑)                     | 2476.1 | 251.0 | 236.2 | 1.6               | -1.8              | 1.4               | 4.8                          | 5.1                          | 81.6    | 173.7   | 64.2       | ↑                                                 |
| BTN 21 ( $G^{+}TG^{+}\downarrow$ )                             | 2502.1 | 250.6 | 235.6 | 1.9               | -1.6              | -0.7              | 5.1                          | 5.4                          | 81.7    | 173.8   | 64.2       | ↓                                                 |
| <b>BTN 22</b> (G <sup>+</sup> T G <sup>+</sup> )               | 2420.3 | 246.8 | 231.9 | 1.4               | -1.9              | 1.4               | 5.4                          | 6.2                          | 81.0    | -176.9  | -62.2      | ↑                                                 |
| <b>BTN 23</b> (G <sup>+</sup> <b>T</b> G <sup>+</sup> ↓)       | 2444.5 | 246.4 | 231.3 | 1.7               | -1.8              | -0.7              | 5.7                          | 6.3                          | 81.1    | -176.9  | -62.2      | $\downarrow$                                      |
| <b>BTN 24 (TTG<sup>+</sup>↑)</b>                               | 2234.3 | 243.2 | 223.2 | -1.3              | 2.2               | -1.1              | 5.8                          | 5.8                          | 179.8   | 174.4   | 62.0       | 1                                                 |
| BTN 25 (TTG <sup>+</sup> ↓)                                    | 2242.8 | 243.2 | 223.1 | -1.4              | -2.3              | -1.0              | 5.9                          | 5.8                          | 178.1   | 174.2   | 61.8       | $\downarrow$                                      |
| <b>BTN 26</b> (G <sup>+</sup> G <sup>-</sup> G <sup>+</sup> ↑) | 1550.5 | 327.9 | 324.9 | -1.5              | -2.5              | 0.0               | 5.9                          | 7.5                          | 102.6   | -63.5   | 86.0       | ↑                                                 |
| BTN 27 ( $G^+G^-G^+\downarrow$ )                               | 1563.7 | 325.6 | 323.6 | -2.0              | -1.2              | -1.3              | 6.2                          | 8.1                          | 102.8   | -63.6   | 85.8       | ¥                                                 |

| B3LYP-D3BJ / 6-311++G(d.p)                                                      |        |       |       |                   |                   |                   |                              |                              |         |                       |            |                                                       |
|---------------------------------------------------------------------------------|--------|-------|-------|-------------------|-------------------|-------------------|------------------------------|------------------------------|---------|-----------------------|------------|-------------------------------------------------------|
|                                                                                 | A/MHz  | B/MHz | C/MHz | μ <sub>A</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D | ΔE₀<br>/kJ∙mol <sup>-1</sup> | ∆G₀/<br>kJ∙mol <sup>-1</sup> | $	au_1$ | <b>T</b> <sub>2</sub> | <b>T</b> 3 | $\mathrm{NH}_{2}\left(\uparrow/\downarrow\right)^{*}$ |
| <b>BTN 1</b> (G <sup>+</sup> G <sup>+</sup> T <sup>↑</sup> )                    | 1434.1 | 294.9 | 272.1 | -2.1              | 2.9               | -0.2              | 0.4                          | 1.1                          | 83.2    | 59.1                  | -179.8     | 1                                                     |
| BTN 2 ( $G^+G^+T\downarrow$ )                                                   | 1433.0 | 295.0 | 272.3 | -2.5              | 1.9               | -1.4              | 0.3                          | 1.1                          | 83.2    | 59.1                  | -179.8     | $\downarrow$                                          |
| BTN 3 (T G <sup>-</sup> T↓)                                                     | 1367.4 | 292.7 | 247.0 | -1.8              | 2.9               | -1.2              | 0.0                          | 0.0                          | -176.7  | 64.3                  | 179.9      | $\downarrow$                                          |
| BTN 4 ( $G^+G^+G^+\downarrow$ )                                                 | 1485.1 | 313.3 | 276.4 | 2.4               | -2.3              | 0.9               | 2.0                          | 2.7                          | 81.9    | 53.7                  | 61.1       | Ļ                                                     |
| BTN 5 (TG⁺T↑)                                                                   | 1367.9 | 292.6 | 247.0 | -1.6              | 3.2               | 0.5               | 0.0                          | 0.0                          | 176.8   | 64.3                  | 179.9      | ↑                                                     |
| <b>BTN 6</b> (G <sup>+</sup> G <sup>+</sup> G <sup>+</sup> ↑)                   | 1486.0 | 313.2 | 276.2 | 2.0               | -2.9              | -0.7              | 2.1                          | 2.7                          | 81.9    | 53.7                  | 61.1       | ↑                                                     |
| BTN 7 (G⁺G⁻T↓)                                                                  | 1480.4 | 290.7 | 283.5 | -2.7              | 1.5               | -1.6              | 1.2                          | 1.9                          | 105.8   | -64.8                 | -178.6     | $\downarrow$                                          |
| BTN 8 (G <sup>-</sup> G <sup>-</sup> G <sup>-</sup> ↓)                          | 1677.3 | 305.3 | 290.2 | 2.9               | 2.0               | 0.3               | 1.3                          | 3.4                          | 108.2   | -65.1                 | -65.3      | $\downarrow$                                          |
| <b>BTN 9</b> (G <sup>+</sup> G <sup>-</sup> G <sup>-</sup> ↑)                   | 1678.5 | 305.2 | 290.1 | 2.5               | 1.8               | 1.9               | 1.3                          | 3.4                          | 108.2   | -65.1                 | -65.3      | ↑                                                     |
| BTN 10 (G <sup>+</sup> G <sup>+</sup> T↑)                                       | 1482.5 | 290.5 | 283.3 | -2.2              | 2.7               | -0.5              | 1.3                          | 1.9                          | 105.9   | -64.8                 | -178.6     | ↑                                                     |
| BTN 11 (TG <sup>+</sup> G <sup>+</sup> $\downarrow$ )                           | 1464.6 | 301.4 | 269.7 | 2.2               | -2.7              | -1.3              | 1.5                          | 1.0                          | -173.8  | 60.5                  | 61.5       | $\downarrow$                                          |
| <b>BTN 12 (TG<sup>+</sup>G<sup>+</sup>↑)</b>                                    | 1465.0 | 301.4 | 269.6 | 1.9               | -3.2              | 0.3               | 1.5                          | 1.0                          | -174.0  | -60.4                 | -61.5      | ↑                                                     |
| BTN 13 (G⁺TT↓)                                                                  | 2191.5 | 240.1 | 231.3 | 2.6               | -2.0              | -0.4              | 1.3                          | 2.0                          | 84.0    | 177.5                 | -179.7     | t                                                     |
| BTN 14 (G <sup>+</sup> TT <sup>+</sup> )                                        | 2194.1 | 240.1 | 231.2 | 2.2               | -2.2              | 1.3               | 1.3                          | 2.0                          | 84.0    | -177.5                | -179.7     | ↑                                                     |
| <b>BTN 15 (G<sup>+</sup>G<sup>+</sup>G<sup>+</sup>G</b> <sup>+</sup> <b>↑</b> ) | 1484.9 | 333.9 | 299.7 | -2.1              | 2.8               | 0.1               | 3.9                          | 5.0                          | 80.9    | 65.0                  | -72.3      | ↑                                                     |
| <b>BTN 16</b> (G <sup>+</sup> G <sup>+</sup> G <sup>+</sup> ↓)                  | 1484.2 | 334.0 | 299.8 | -2.5              | 1.9               | -1.3              | 3.9                          | 5.0                          | 80.8    | 65.0                  | -72.2      | $\downarrow$                                          |
| BTN 17 (TTT)                                                                    | 1978.1 | 238.1 | 213.7 | 1.8               | -2.9              | 0.8               | 1.3                          | 1.2                          | 179.8   | -179.9                | 180.0      | ↑                                                     |
| <b>BTN 18 (TG</b> ' <b>G</b> <sup>+</sup> <b>↑</b> )                            | 1385.7 | 329.7 | 275.9 | 1.8               | -3.1              | -0.3              | 3.8                          | 4.6                          | 178.9   | -72.2                 | 70.3       | ↑                                                     |
| BTN 19 (TG <sup>-</sup> G <sup>+</sup> ↓)                                       | 1385.3 | 329.7 | 275.9 | 1.9               | -2.7              | 1.3               | 3.8                          | 4.6                          | 178.8   | -72.1                 | 70.3       | $\downarrow$                                          |
| BTN 20 (G <sup>+</sup> T G <sup>+</sup> 1)                                      | 2493.1 | 249.2 | 234.1 | 2.4               | -2.1              | 1.2               | 3.9                          | 4.6                          | 84.9    | -174.6                | 65.7       | ↑                                                     |
| BTN 21 (G <sup>+</sup> TG <sup>+</sup> ↓)                                       | 2492.1 | 249.2 | 234.1 | 2.6               | -1.9              | -0.5              | 3.9                          | 4.6                          | 84.9    | 174.6                 | 65.7       | t                                                     |
| BTN 22 (G <sup>+</sup> T G <sup>-</sup> ↑)                                      | 2396.4 | 245.3 | 229.8 | 2.2               | -2.3              | 1.3               | 4.2                          | 5.0                          | 84.1    | -179.4                | -64.7      | ↑                                                     |
| BTN 23 (G <sup>+</sup> T G <sup>-</sup> ↓)                                      | 2395.0 | 245.3 | 229.9 | 2.4               | -2.1              | -0.4              | 4.1                          | 4.9                          | 84.1    | -179.4                | -64.7      | $\downarrow$                                          |
| BTN 24 (TTG <sup>+</sup> 1)                                                     | 2199.7 | 243.1 | 223.1 | -2.0              | 2.7               | -0.9              | 3.8                          | 3.7                          | 178.9   | 176.6                 | 64.5       | ↑                                                     |
| BTN 25 (TTG <sup>+</sup> ↓)                                                     | 2198.9 | 243.2 | 223.1 | -2.1              | 2.7               | 0.7               | 3.8                          | 3.7                          | 178.6   | 176.6                 | 64.5       | t                                                     |
| <b>BTN 26</b> (G <sup>+</sup> G <sup>-</sup> G <sup>+</sup> ↑)                  | 1536.9 | 326.5 | 316.7 | -2.3              | -2.7              | -0.3              | 6.4                          | 6.8                          | 107.6   | -65.6                 | 84.6       | ↑                                                     |
| BTN 27 ( $G^+G^-G^+\downarrow$ )                                                | 1536.9 | 326.4 | 316.7 | -2.7              | -1.6              | -1.5              | 6.4                          | 6.8                          | 107.7   | -65.7                 | 84.5       | t                                                     |

| M06-2X / 6-311++G(d.p)                                               |        |       |       |                   |                   |                   |                              |                              |         |        |            |                                                   |
|----------------------------------------------------------------------|--------|-------|-------|-------------------|-------------------|-------------------|------------------------------|------------------------------|---------|--------|------------|---------------------------------------------------|
|                                                                      | A/MHz  | B/MHz | C/MHz | μ <sub>A</sub> /D | μ <sub>B</sub> /D | μ <sub>C</sub> /D | ∆E₀<br>/kJ∙mol <sup>-1</sup> | ∆G₀/<br>kJ∙mol <sup>-1</sup> | $	au_1$ | $r_2$  | <b>T</b> 3 | $\mathrm{NH}_2\left(\uparrow/\downarrow\right)^*$ |
| BTN 1 ( $G^+G^+T^\uparrow$ )                                         | 1456.7 | 296.8 | 276.4 | -1.8              | 2.8               | -0.2              | 1.0                          | 1.7                          | 80.4    | 58.9   | 179.8      | 1                                                 |
| BTN 2 ( $G^+G^+T\downarrow$ )                                        | 1456.1 | 296.8 | 276.4 | -2.3              | 1.7               | -1.4              | 1.0                          | 1.7                          | 80.4    | 58.9   | 179.8      | Ļ                                                 |
| BTN 3 (TG <sup>-</sup> T↓)                                           | 1379.6 | 295.0 | 248.6 | -1.6              | 2.7               | -1.2              | 0.0                          | 0.0                          | -178.4  | 63.4   | 179.8      | $\downarrow$                                      |
| BTN 4 $(G^+G^+G^+\downarrow)$                                        | 1479.9 | 330.1 | 291.4 | 2.2               | -2.1              | 1.0               | 1.8                          | 2.3                          | 76.3    | 47.5   | 55.2       | $\downarrow$                                      |
| BTN 5 (TG <sup>+</sup> T <sup>†</sup> )                              | 1380.1 | 294.9 | 248.6 | -1.4              | 3.1               | 0.6               | 0.1                          | 0.2                          | -178.4  | 63.4   | 179.7      | ↑                                                 |
| BTN 6 $(G^+G^+G^+\uparrow)$                                          | 1480.4 | 329.9 | 291.2 | 1.9               | -2.7              | -0.7              | 1.9                          | 2.5                          | 76.4    | 47.5   | 55.2       | ↑                                                 |
| BTN 7 (G⁺G⁻T↓)                                                       | 1524.4 | 292.1 | 289.6 | -2.5              | 1.0               | -1.7              | 1.9                          | 3.1                          | 100.3   | -63.2  | -177.7     | $\downarrow$                                      |
| <b>BTN 8</b> (G <sup>-</sup> G <sup>-</sup> G <sup>-</sup> ↓)        | 1750.2 | 307.5 | 289.4 | 2.7               | 1.9               | 0.1               | 1.5                          | 4.2                          | 102.3   | -66.5  | -67.5      | $\downarrow$                                      |
| <b>BTN 9 (G⁺G⁺G⁺G</b> <sup>+</sup> <b>G</b> <sup>+</sup> <b>C†</b> ) | 1752.6 | 307.2 | 289.1 | 2.3               | 1.6               | 1.8               | 1.5                          | 4.2                          | 102.3   | -66.5  | -67.5      | ↑                                                 |
| <b>BTN 10</b> (G <sup>+</sup> G <sup>+</sup> T↑)                     | 1526.6 | 291.8 | 289.4 | -2.0              | 2.5               | -0.8              | 2.0                          | 3.2                          | 100.3   | -63.2  | -177.7     | ↑                                                 |
| BTN 11 (TG <sup>+</sup> G <sup>+</sup> ↓)                            | 1460.5 | 310.0 | 274.7 | 1.9               | -2.5              | -1.3              | 1.4                          | 1.6                          | -178.3  | 56.6   | 56.6       | $\downarrow$                                      |
| <b>BTN 12 (TG<sup>+</sup>G<sup>+</sup>↑)</b>                         | 1460.9 | 310.0 | 274.6 | -1.6              | -3.0              | -0.3              | 1.5                          | 1.6                          | -178.4  | 56.6   | 56.6       | ↑                                                 |
| BTN 13 (G⁺TT↓)                                                       | 2239.9 | 242.0 | 233.2 | 2.3               | -1.9              | -0.4              | 1.7                          | 2.4                          | 81.0    | 177.8  | -179.4     | $\downarrow$                                      |
| BTN 14 (G <sup>+</sup> TT <sup>†</sup> )                             | 2241.8 | 242.0 | 233.1 | 2.0               | -2.0              | 1.4               | 1.6                          | 2.2                          | 81.0    | 177.8  | -179.4     | ↑                                                 |
| BTN 15 (G <sup>+</sup> G <sup>+</sup> G <sup>-</sup> ↑)              | 1501.3 | 338.6 | 300.2 | -1.8              | 2.7               | 0.3               | 4.5                          | 4.4                          | 78.8    | 70.2   | -63.8      | ↑                                                 |
| <b>BTN 16</b> (G <sup>+</sup> G <sup>+</sup> G <sup>+</sup> ↓)       | 1500.5 | 338.6 | 300.2 | -2.2              | 1.9               | -1.2              | 4.5                          | 4.5                          | 78.8    | 70.3   | -63.6      | $\downarrow$                                      |
| <b>BTN 17 (TTT)</b>                                                  | 2009.9 | 239.2 | 214.9 | 1.6               | -2.7              | 0.9               | 1.3                          | 1.1                          | -179.9  | 179.9  | -180.0     | ↑                                                 |
| <b>BTN 18 (TG</b> <sup>-</sup> G <sup>+</sup> ↑)                     | 1408.7 | 332.5 | 278.3 | -1.5              | 2.9               | 0.4               | 3.9                          | 4.5                          | -179.1  | -73.3  | 66.2       | ↑                                                 |
| BTN 19 (TG <sup>-</sup> G <sup>+</sup> ↓)                            | 1408.3 | 332.7 | 278.4 | -1.7              | 2.5               | -1.4              | 3.8                          | 4.4                          | -179.3  | -73.2  | 66.3       | $\downarrow$                                      |
| BTN 20 (G <sup>+</sup> TG <sup>+</sup> ↑)                            | 2551.0 | 250.9 | 236.1 | 2.2               | -2.0              | 1.2               | 4.0                          | 4.6                          | 81.4    | 173.0  | 62.7       | ↑                                                 |
| BTN 21 ( $G^+TG^+\downarrow$ )                                       | 2551.0 | 250.9 | 236.1 | 2.4               | -1.8              | -0.6              | 4.1                          | 4.6                          | 81.4    | 173.0  | 62.7       | $\downarrow$                                      |
| BTN 22 (G <sup>+</sup> TG <sup>-</sup> ↑)                            | 2470.5 | 247.5 | 232.2 | 2.0               | -2.1              | 1.3               | 4.3                          | 5.0                          | 81.1    | -177.2 | -61.5      | ↑                                                 |
| <b>BTN 23</b> (G <sup>+</sup> T G <sup>+</sup> ↓)                    | 2470.6 | 247.5 | 232.3 | 2.2               | -2.0              | -0.5              | 4.3                          | 5.0                          | 81.1    | -177.1 | -61.4      | $\downarrow$                                      |
| BTN 24 (TTG <sup>+</sup> 1)                                          | 2248.8 | 244.9 | 224.6 | -1.8              | 2.6               | -1.0              | 3.6                          | 3.7                          | 179.7   | 174.5  | 61.4       | ↑                                                 |
| BTN 25 (TTG <sup>+</sup> ↓)                                          | 2249.2 | 244.9 | 224.6 | -1.8              | 2.6               | 0.8               | 3.6                          | 3.6                          | 179.7   | 174.5  | 61.3       | Ļ                                                 |
| <b>BTN 26</b> (G <sup>+</sup> G <sup>-</sup> G <sup>+</sup> ↑)       | 1581.8 | 329.1 | 324.4 | -2.1              | -2.5              | 0.0               | 7.4                          | 9.5                          | 100.8   | -63.6  | 87.1       | ↑                                                 |
| BTN 27 ( $G^+G^-G^+\downarrow$ )                                     | 1582.2 | 329.0 | 324.4 | -2.5              | -1.5              | -1.3              | 7.4                          | 9.6                          | 100.8   | -63.6  | 87.1       | Ļ                                                 |

|                                                                      |       | MP2    | 11110(a,p) | B     | 3LYP-D3 | BJ     |       | M06-2X       |        |
|----------------------------------------------------------------------|-------|--------|------------|-------|---------|--------|-------|--------------|--------|
|                                                                      | Xaa   | χъь    | Xec        | Xaa   | Хbb     | Xec    | Xaa   | Хрр          | Xcc    |
| BTN 3 (TG <sup>-</sup><br>T↓)                                        | 2.579 | 1.770  | -4.349     | 2.579 | 1.770   | -4.349 | 2.579 | 1.770        | -4.349 |
| BTN 5<br>(TG⁺T↑)                                                     | 2.094 | 2.251  | -4.346     | 2.094 | 2.251   | -4.346 | 2.094 | 2.251        | -4.346 |
| Planar                                                               | 2.607 | 2.218  | -4.825     | 2.607 | 2.218   | -4.825 | 2.607 | 2.218        | -4.825 |
| BTN 1<br>(G <sup>+</sup> G <sup>+</sup> T↑)                          | 1.011 | -0.041 | -0.970     | 2.647 | 1.784   | -4.432 | 1.165 | 0.122        | -1.287 |
| BTN 2<br>$(G^+G^+T\downarrow)$                                       | 2.613 | -1.396 | -1.216     | 2.137 | 2.290   | -4.427 | 2.607 | -1.117       | -1.490 |
| $\begin{array}{c} \text{BTN 4} \\ (G^+G^+G^+\downarrow) \end{array}$ | 2.645 | 0.735  | -3.381     | 2.732 | 2.221   | -4.953 | 2.667 | 0.962        | -3.629 |
| BTN 6<br>(G <sup>+</sup> G <sup>+</sup> G <sup>+</sup> ↑)            | 1.452 | 1.504  | -2.956     | 1.247 | 0.348   | -1.595 | 1.581 | 1.664        | -3.244 |
| BTN 7<br>(G <sup>+</sup> G <sup>-</sup> T↓)                          | 2.634 | -3.490 | 0.856      | 2.643 | -0.865  | -1.778 | 2.633 | -3.280       | 0.647  |
| BTN 10<br>(G <sup>+</sup> G <sup>+</sup> T↑)                         | 1.022 | -1.938 | 0.916      | 2.711 | 1.147   | -3.858 | 1.189 | -1.775       | 0.585  |
| BTN 8 (G <sup>-</sup><br>G <sup>-</sup> G <sup>-</sup> ↓)            | 2.690 | 1.888  | -4.578     | 1.665 | 1.817   | -3.482 | 2.710 | 2.058        | -4.768 |
| BTN 9<br>(G⁺G⁻G⁻↑)                                                   | 1.384 | 1.827  | -3.210     | 2.653 | -2.295  | -0.358 | 1.598 | 2.017        | -3.615 |
| BTN 11<br>(TG <sup>+</sup> G <sup>+</sup> $\downarrow$ )             | 2.573 | 1.234  | -3.808     | 1.210 | -0.912  | -0.298 | 2.640 | 1.402        | -4.042 |
| BTN 12<br>(TG <sup>+</sup> G <sup>+</sup> ↑)                         | 1.871 | 1.907  | -3.778     | 2.747 | 2.178   | -4.925 | 1.951 | 2.011        | -3.962 |
| BTN 13<br>(G <sup>+</sup> TT↓)                                       | 2.688 | 1.885  | -4.572     | 1.585 | 2.125   | -3.710 | 2.710 | 2.109        | -4.819 |
| BTN 14<br>(G <sup>+</sup> TT↑)                                       | 1.487 | 1.951  | -3.438     | 2.707 | 1.343   | -4.050 | 1.656 | 2.174        | -3.830 |
| BTN 15<br>(G <sup>+</sup> G <sup>+</sup> G <sup>+</sup> )            | 1.241 | -0.001 | -1.239     | 1.927 | 1.992   | -3.918 | 1.537 | 1.090 -2.627 | 1.537  |
| BTN 16<br>( $G^+G^+G^-\downarrow$ )                                  | 2.658 | -1.072 | -1.586     | 2.758 | 2.065   | -4.823 | 2.672 | 0.239 -2.911 | 2.672  |
| BTN 17<br>(TTT)                                                      | 2.342 | 1.996  | -4.338     | 1.705 | 2.192   | -3.897 | 2.420 | 2.219 -4.638 | 2.420  |
| BTN 18<br>(TG <sup>-</sup> G⁺↑)                                      | 1.995 | 1.962  | -3.957     | 1.547 | 0.709   | -2.256 | 2.143 | 2.146 -4.289 | 2.143  |

**Table S4.** Predicted nuclear quadrupolar constants of  $^{14}$ N (expressed in MHz) for BTN at MP2, M06-2X and B3LYP-D3BJ level using 6-311++G(d,p) basis.

| BTN 19<br>(TG <sup>-</sup> G <sup>+</sup> $\downarrow$ )   | 2.545 | 1.192  | -3.737 | 2.716 | -0.252 | -2.464 | 2.587 | 1.628      | -4.215 | 2.587 |
|------------------------------------------------------------|-------|--------|--------|-------|--------|--------|-------|------------|--------|-------|
| BTN 20<br>(G <sup>+</sup> TG <sup>+</sup> ↑)               | 1.907 | 1.930  | -3.837 | 2.503 | 2.282  | -4.785 | 2.075 | 2.140      | -4.215 | 2.075 |
| BTN 21<br>( $G^{+}TG^{+}\downarrow$ )                      | 2.632 | 1.860  | -4.492 | 2.165 | 2.148  | -4.313 | 2.673 | 2.070      | -4.743 | 2.673 |
| BTN 22<br>(G <sup>+</sup> TG <sup>+</sup> )                | 1.887 | 1.987  | -3.874 | 2.663 | 1.588  | -4.251 | 2.023 | 2.198      | -4.221 | 2.023 |
| BTN 23<br>(G <sup>+</sup> T G <sup>-</sup> ↓)              | 2.626 | 1.924  | -4.550 | 2.112 | 2.201  | -4.314 | 2.675 | 2.143      | -4.818 | 2.675 |
| BTN 24<br>(TTG <sup>+</sup> ↑)                             | 2.253 | 1.957  | -4.210 | 2.746 | 2.126  | -4.871 | 2.337 | 2.186      | -4.522 | 2.337 |
| BTN 25<br>(TTG <sup>+</sup> ↓)                             | 2.438 | 2.001  | -4.438 | 2.078 | 2.259  | -4.337 | 2.528 | 2.209      | -4.737 | 2.528 |
| BTN 26<br>(G <sup>+</sup> G <sup>-</sup> G <sup>+</sup> ↑) | 1.280 | -0.593 | -0.688 | 2.738 | 2.173  | -4.911 | 1.507 | 0.198      | -1.704 | 1.507 |
| BTN 27<br>( $G^+G^-G^+\downarrow$ )                        | 2.677 | -0.991 | -1.686 | 2.382 | 2.263  | -4.645 | 2.690 | -<br>0.638 | -2.052 | 2.690 |



Figure S6. Methyl rotation energy of the assigned structures of BTI.



Figure S7. Methyl rotation energy of the assigned structures of BTN.



**Figure S8.** PES of BTI computed at B3LYP-D3BJ / 6-311++G(d,p) level.



**Figure S9.** PES of BTN computed at B3LYP-D3BJ / 6-311++G(d,p) level.

### 3. Experimental Methods

Two different microwave spectrometers (working in the millimetre and centimetre region) and vaporization systems were employed in this work with the objective of obtaining the rotational spectra of BTI and BTN.

The Fourier Transform Microwave spectrometer (FTMW) consists of a Fabry-Pérot resonator where a microwave pulse is guided through two antennas. One of them is fixed to a movable mirror making possible the tuning of all the frequencies in the operating range [4-18] GHz and polarizing the sample previously injected in the vacuum chamber (10<sup>-7</sup>mmbar) using an inert gas through a solenoid pulse valve.<sup>11,12,13</sup> The subsequent free induced decay is recorded in the time domain and Fourier transformed to the frequency domain. The accuracy of the measurements is better than 3 kHz and rotational transitions separated by more than 10 kHz are resolvable.

A Stark and pulse modulated free jet absorption millimetre-wave spectrometer (described elsewhere)<sup>14</sup> working in the region [60-78] GHz has been used to record the transitions corresponding to the higher rotational energy levels in BTN. The spectrometer consists of a vacuum chamber where the sample is injected via Ne carrier gas through a pulsed valve. In order to provide Stark modulation, the valve has two attached parallel discs to which a modulation voltage is applied. Millimetre waves propagate through the expanding plume of vapour causing the polarization of the molecules.

The chemicals used are:

- BTI: Isobutyl 4-Aminobenzoate (193.24 g/mol), purchased by TCI Europe N.V, 25g, >98.0%(GC)(T). It appears as a white to light yellow to dark green powder to crystal. Melting point: 65 °C.
- BTN: Butyl 4-aminobenzoate (193.24 g/mol), purchased by Fluka<sup>™</sup>, 100g, ≥98.0% (NT). It appears as a white, odourless, crystalline powder. Melting point: 58 °C.

In the sample vaporization process two different systems have been employed. When measuring BTI, a conventional home-made heating system was used consisting of an electric resistance wrapped around the sample holder through which the current is driven. After vaporization, the sample is guided into the vacuum chamber where the supersonic expansion takes place. For BTN, the solid sample was prepared under pressure as a solid stick and vaporized by laser ablation from a picosecond Nd-YAG laser operating in the third harmonic.<sup>15</sup> This method avoids the problems of sample decomposition due to heating.

The centimeter-range spectrometers provide higher resolution, so that hyperfine effects due to the quadrupolar coupling can be resolved and analyzed. The millimeter spectrometer allows monitoring transitions with higher rotational energy, so more accurate centrifugal distortion effects can be measured. As regards BTI, an estimation of the relative population of the observed conformers can be obtained by relative intensities (*I*) measurements. This can be done because there is a direct relation between the intensities and the population of each conformer in the jet ( $N_i$ ). The relation between them also includes the values of the dipole moment component involved along each axis ( $\mu_g$  with g=a,b and/or c) according to the following expression:

$$\frac{N_i}{N_0} \propto \frac{I_i \omega_0 \Delta v_i \mu_g(0) \lambda_0 v_0^2}{I_0 \omega_i \Delta v_0 \mu_g(i) \lambda_i v_i^2} \propto \frac{I_i}{I_0} \cdot \frac{\mu_g(0)}{\mu_g(i)}$$

where  $\omega$  is the conformational degeneration,  $\Delta \upsilon$  the line width at half height and  $\gamma$  the line strength.<sup>16</sup> In this way, if the transition intensities are well-known for the different conformers, it is possible to estimate the abundance of each conformer respect to the most stable one.

The analysis was performed considering nearby in frequency  $\mu_a$  and  $\mu_b$ -type transitions (see Table S3) in order to minimize the errors of the estimation, taking into account the MP2 dipole moments values of Table S1. The average of the data corresponding to a single conformer were used to obtain the final ratio in percentage. A visual example of a measured transition is reported in Figure S10.



**Figure S10.**  $15_{015} \leftarrow 14_{014}$  transition of the assigned rotamers of BTI measured using different carrier gases in the Bilbao spectrometer with laser vaporization. The number of accumulations for each line were 2000 for Ne (6+1 bar), Ar (4+1 bar) and Xe (2+1 bar) and 10000 for He (~30+1 bar).

**Table S5.** Comparison between the predicted  $(MP2/6-311++G^{**})$  data and the experimental spectroscopic parameters and conformational energies for the BTI and BTN rotationally observed conformers.

|                                             |                           | BUTAMBEN (BTN) |              |       |              |      |              |       |
|---------------------------------------------|---------------------------|----------------|--------------|-------|--------------|------|--------------|-------|
|                                             | BTI I                     |                | BTI          | п     | BTI III      |      | BTN          | NI    |
|                                             | Experiment                | TG⁻↓           | Experiment   | G⁻G⁺↓ | Experiment   | тт↓  | Experiment   | TG⁻T↓ |
| A / MHz                                     | 1831.7471(2) <sup>a</sup> | 1830           | 1988.596(3)  | 1997  | 1509.466(3)  | 1502 | 1384.5107(1) | 1373  |
| B / MHz                                     | 282.57280(3)              | 282            | 286.80516(9) | 287   | 314.2755(1)  | 315  | 292.04655(6) | 293   |
| C / MHz                                     | 251.02606(2)              | 251            | 265.83363(6) | 268   | 276.27507(8) | 276  | 246.75153(2) | 247   |
| $D_{\rm J}$ / kHz                           | 0.00449(3)                |                | 0.01013(7)   |       | 0.0045(1)    |      | 0.01379(8)   |       |
| $D_{\rm JK}$ / kHz                          | -0.0480(7)                |                | -0.150(5)    |       |              |      | -0.171(1)    |       |
| $D_{\rm K}$ / kHz                           | 0.83(2)                   |                |              |       | 18.(1)       |      | 1.157(2)     |       |
| $d_l$ / kHz                                 | -0.00084(2)               |                | -0.00045(8)  |       |              |      | -0.00364(4)  |       |
| $d_2$ / kHz                                 |                           |                |              |       |              |      | -0.00033(3)  |       |
| χ <sub>aa</sub> / MHz                       | 2.320(6)                  | 2.5            | 2.47(7)      | 2.7   | 1.3(3)       | 2.3  | 2.24(2)      | 2.5   |
| $\chi_{bb}$ / MHz                           | 1.818(5)                  | 1.6            | 1.18(4)      | 1.1   | 2.4(2)       | 2.0  | 2.01(2)      | 1.5   |
| χ <sub>cc</sub> / MHz                       | -4.128(5)                 | -4.1           | -3.65(4)     | -3.8  | -3.7(2)      | -4.3 | -4.01(2)     | -4.0  |
| $\Delta E_0$ MP2/kJmol <sup>-1</sup>        |                           | 2.0            |              | 0.4   |              | 1.6  |              | 0.6   |
| $\Delta G_0^{MP2}/kJmol^{-1}$ (298K)        |                           | 2.9            |              | 2.1   |              | 2.0  |              | 0.0   |
| $\Delta E_{exp.}^{Ne}$ /kJmol <sup>-1</sup> | 0                         |                | 1.5 (5)      |       | 2.8 (5)      |      |              |       |
| $N^{b}$                                     | 261                       |                | 130          |       | 87           |      | 212          |       |
| $\sigma^{\mathrm{c}}/\mathrm{kHz}$          | 2.9                       |                | 3.3          |       | 3.6          |      | 26.4         |       |
| $\sigma / \sigma_{exp}^{d}$                 | 0.6                       |                | 0.7          |       | 0.7          |      | 0.7          |       |

<sup>a</sup> Standard error in parentheses in the units of the last digits. <sup>b</sup> Number of distinct frequencies in fit. <sup>c</sup> Root mean square error of the fit. <sup>d</sup> Reduced deviation of the fit, relative to measurement errors of 200 and 5 kHz for the mmw and FTMW spectrometers, respectively.

|                                 |                 |     |       | 77  | <b>F</b> // | 7/  | 77 | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>F</b> /                                                             |                   | 7               | 7               |
|---------------------------------|-----------------|-----|-------|-----|-------------|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|-----------------|-----------------|
| Conformer                       | Line            | J   | K     | K   | F           | J   | K  | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                      | V <sub>exp.</sub> | I <sub>Ne</sub> | I <sub>Ar</sub> |
|                                 |                 | 14  | 0     | 14  | 15          | 13  | 0  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                     | 7288.3014         | 3.91            | 2.37            |
|                                 |                 |     |       |     | 13          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7288 3938         | 2 14            | 1 23            |
|                                 |                 | 14  | 1     | 14  | 15          | 12  | 1  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                     | 7200.5750         | 2.14            | 2.00            |
|                                 |                 | 14  | 1     | 14  | 15          | 15  | 1  | K         P $V_{con}$ $I_{Ne}$ 13         14         7288.3014         3.91           12         13         7288.3938         2.14           13         14         7205.19         3.66           12         13         7205.22         2.62           14         13         7789.581         5.39           15         16         8289.720         1.33           14         15         8289.720         1.33           14         15         7858.315         0.98           14         7858.542         1.08         13           15         15         7282.770         0.51           16         7383.050         0.90         14           15         7282.770         0.51           16         16         8424.963         0.88           16         16         8425.165         0.81           13         14         7655.33         5.34           12         7570.78         1.55           13         74         7570.80         2.19           14         13         8191.22         3.22           15         8725.72 <td>3.00</td> <td>3.90</td> | 3.00                                                                   | 3.90              |                 |                 |
|                                 |                 |     |       |     | 13          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F'$ $v_{exp.}$ $I_{Nx}$ 14         7288.3014         3.9           12 |                   |                 |                 |
|                                 | ua - lines      |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7205.22           | 2.62            | 3.3             |
|                                 | µa - mes        | 15  | 0     | 15  | 14          | 14  | 0  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                     | 7789 581          | 5 30            | 8 16            |
|                                 |                 | 15  | 0     | 15  | 14          | 14  | 0  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | //0/.501          | 5.57            | 0.10            |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     |                   |                 |                 |
| mo I                            |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7789.6676         | 3.35            | 5.4             |
| IG-↓                            |                 | 16  | 0     | 16  | 17          | 15  | 0  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 8289.637          | 2.15            | 4.42            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     |                   | 1 00            |                 |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 8289.720          | 1.33            | 2.62            |
|                                 |                 | 15  | 0     | 15  | 16          | 14  | 1  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 7858.315          | 0.98            | 1.65            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7858.542          | 1.08            | 3.61            |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7858.567          | 1.02            | 3.51            |
|                                 |                 | 16  | 0     | 16  | 16          | 15  | 1  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 7282 770          | 0.51            | 0.58            |
|                                 | μb - lines      | 10  | Ū     | 10  | 17          | 10  |    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 7282.050          | 0.00            | 1.20            |
|                                 | •               |     |       |     | 17          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                     | 7383.030          | 0.90            | 1.32            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7283.090          | 0.88            | 1.38            |
|                                 |                 | 17  | 0     | 17  | 17          | 16  | 1  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 8424.963          | 0.88            | 0.77            |
|                                 |                 |     |       |     | 18          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                     | 8425.145          | 0.87            | 1.6             |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 8425.165          | 0.81            | 1.36            |
|                                 |                 | 14  | 0     | 14  | 15          | 13  | 0  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                     | 7655.33           | 5.34            | 0               |
|                                 |                 |     | 5     |     | 12          |     | 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                     |                   | 0.01            | 5               |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     |                   | o               | ~               |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7655.40           | 2.65            | 0               |
|                                 |                 | 14  | 1     | 14  | 15          | 13  | 1  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                     | 7570.77           | 2.37            | 0               |
|                                 |                 |     |       |     | 13          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     | 7570.78           | 1.55            | 0               |
|                                 |                 |     |       |     | 1.4         |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     | 7570.90           | 2.10            | 0               |
|                                 | µa - lines      |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | /5/0.80           | 2.19            | 0               |
|                                 |                 | 15  | 0     | 15  | 14          | 14  | 0  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                     | 8191.22           | 3.22            | 0               |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 8191 28           | 1 74            | 0               |
| G <sup>-</sup> G <sup>+</sup> ⊥ |                 | 10  | 0     | 16  | 17          | 1.5 | 0  | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                     | 0705.66           | 1.00            | 0               |
| •                               |                 | 16  | 0     | 16  | 1/          | 15  | 0  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 8/25.66           | 1.23            | 0               |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 8725.72           | 0.59            | 0               |
|                                 |                 | 15  | 0     | 15  | 16          | 14  | 1  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 7938.90           | 0.35            | 0               |
|                                 |                 | 10  | Ū     | 10  | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7020.20           | 0.33            | Ő               |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7939.30           | 0.45            | 0               |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7939.30           | 0.42            | 0               |
|                                 |                 | 16  | 0     | 16  | 16          | 15  | 1  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 7322.10           | 0.48            | 0               |
|                                 | $\mu b$ - lines |     |       |     | 17          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                     | 7322.50           | 0.70            | 0               |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 7322.50           | 0.47            | 0               |
|                                 |                 | 17  | 0     | 17  | 17          | 16  | 1  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 8551.44           | 0.35            | 0               |
|                                 |                 |     |       |     | 18          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                     | 8551 77           | 0.27            | Ő               |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 8551.77           | 0.20            | 0               |
|                                 |                 | 1.4 | 0     | 1.4 | 10          | 12  | 0  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4                                                                    | 7000.52           | 1.25            | 0.00            |
|                                 |                 | 14  | 0     | 14  | 15          | 13  | 0  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                     | 1980.53           | 1.25            | 0.88            |
|                                 |                 |     |       |     | 13          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7980.62           | 0.96            | 0.63            |
|                                 |                 | 14  | 1     | 14  | 15          | 13  | 1  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                     | 7926.69           | 0.85            | 0.31            |
|                                 |                 |     |       |     | 13          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     | 7926.71           | 0.85            | 0.41            |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 7926 73           | 0.55            | 0.36            |
|                                 | µa - lines      | 15  | 0     | 15  | 14          | 14  | 0  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                     | 8529.16           | 0.52            | 0.62            |
|                                 | •               | 15  | 0     | 15  | 14          | 14  | 0  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 0527.10           | 0.52            | 0.02            |
|                                 |                 |     |       |     | 10          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                     | 0500.04           | 0.01            | 0.44            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 8529.24           | 0.31            | 0.44            |
| ТТ                              |                 | 16  | 0     | 16  | 17          | 15  | 0  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 9077.81           | 0.57            | 0.73            |
| 11                              |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     |                   |                 |                 |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 9077.89           | 0.34            | 0.63            |
|                                 |                 | 15  | 0     | 15  | 16          | 14  | 1  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 8909.50           | 0.42            | 0.79            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 8909 57           | 0.26            | 0.66            |
|                                 |                 |     |       |     | 14          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                     | 8000.50           | 0.20            | 0.00            |
|                                 |                 | 16  | 0     | 16  | 14          | 15  | 1  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 8216.10           | 0.27            | 0.47            |
|                                 | ub lines        | 16  | 0     | 16  | 10          | 15  | 1  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                     | 8316.10           | 0.34            | 0.27            |
|                                 | $\mu 0$ - lines |     |       |     | 17          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                     | 8316.20           | 0.30            | 0.47            |
|                                 |                 |     |       |     | 15          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                     | 8316.24           | 0.20            | 0.59            |
|                                 |                 | 17  | 0     | 17  | 17          | 16  | 1  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                     | 9494.98           | 0.27            | 0.37            |
|                                 |                 |     |       |     | 18          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17                                                                     | 9495.03           | 0.38            | 0.43            |
|                                 |                 |     |       |     | 16          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 9495.05           | 0.36            | 0.39            |
|                                 |                 |     |       |     | 10          |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                     | 7475.05           | 0.50            | 0.39            |
|                                 |                 |     |       |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |                   |                 |                 |
| Final Results                   |                 |     | Ne %  |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | Ar %              |                 |                 |
| TG-⊥                            |                 |     | 54(5) |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 82(5)             |                 |                 |
| G <sup>-</sup> G <sup>+</sup> ⊥ |                 |     | 30(5) |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 0                 |                 |                 |
| TT                              |                 |     | 16    |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | 18                |                 |                 |
|                                 |                 |     | -     |     |             |     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |                   |                 |                 |

**Table S6.** BTI relative population results obtained measuring several rotational transitions for each conformer using different carrier gases.

| J  | K | K  | F~ | J  | K | K  | F  | V <sub>exp.</sub> | Vcalc.    | V <sub>exp</sub> V <sub>calc</sub> . |
|----|---|----|----|----|---|----|----|-------------------|-----------|--------------------------------------|
| 12 | 0 | 12 | 11 | 11 | 0 | 11 | 10 | 6280.101          | 6280.102  | -0.001                               |
| 12 | 0 | 12 | 13 | 11 | 0 | 11 | 12 | 6280.101          | 6280.100  | 0.001                                |
| 12 | 0 | 12 | 12 | 11 | 0 | 11 | 11 | 6280.202          | 6280.199  | 0.003                                |
| 13 | 0 | 13 | 14 | 12 | 0 | 12 | 13 | 6785.308          | 6785.310  | -0.002                               |
| 13 | 0 | 13 | 12 | 12 | 0 | 12 | 11 | 6785.316          | 6785.317  | -0.001                               |
| 13 | 0 | 13 | 13 | 12 | 0 | 12 | 12 | 6785.411          | 6785.411  | 0.000                                |
| 14 | 0 | 14 | 15 | 13 | 0 | 13 | 14 | 7288.301          | 7288.302  | 0.000                                |
| 14 | 0 | 14 | 13 | 13 | 0 | 13 | 12 | 7288.301          | 7288.302  | -0.001                               |
| 14 | 0 | 14 | 14 | 13 | 0 | 13 | 13 | 7288.394          | 7288.394  | 0.000                                |
| 15 | 0 | 15 | 14 | 14 | 0 | 14 | 13 | 7789.581          | 7789.581  | 0.000                                |
| 15 | 0 | 15 | 16 | 14 | 0 | 14 | 15 | 7789.581          | 7789.579  | 0.002                                |
| 15 | 0 | 15 | 15 | 14 | 0 | 14 | 14 | 7789.668          | 7789.667  | 0.000                                |
| 16 | 0 | 16 | 17 | 15 | 0 | 15 | 16 | 8289.637          | 8289.636  | 0.001                                |
| 16 | 0 | 16 | 15 | 15 | 0 | 15 | 14 | 8289.637          | 8289.639  | -0.002                               |
| 16 | 0 | 16 | 16 | 15 | 0 | 15 | 15 | 8289.720          | 8289.719  | 0.002                                |
| 17 | 0 | 17 | 18 | 16 | 0 | 16 | 17 | 8788.923          | 8788.921  | 0.002                                |
| 17 | 0 | 17 | 16 | 16 | 0 | 16 | 15 | 8788.923          | 8788.924  | -0.001                               |
| 17 | 0 | 17 | 17 | 16 | 0 | 16 | 16 | 8788.996          | 8788.997  | 0.000                                |
| 18 | 0 | 18 | 19 | 17 | 0 | 17 | 18 | 9287.804          | 9287.802  | 0.001                                |
| 18 | 0 | 18 | 17 | 17 | 0 | 17 | 16 | 9287.804          | 9287.805  | -0.001                               |
| 18 | 0 | 18 | 18 | 17 | 0 | 17 | 17 | 9287.869          | 9287.871  | -0.002                               |
| 19 | 0 | 19 | 20 | 18 | 0 | 18 | 19 | 9786.564          | 9786.562  | 0.002                                |
| 19 | 0 | 19 | 18 | 18 | 0 | 18 | 17 | 9786.564          | 9786.565  | -0.001                               |
| 19 | 0 | 19 | 19 | 18 | 0 | 18 | 18 | 9786.624          | 9786.624  | 0.000                                |
| 20 | 0 | 20 | 21 | 19 | 0 | 19 | 20 | 10285.404         | 10285.402 | 0.002                                |
| 20 | 0 | 20 | 19 | 19 | 0 | 19 | 18 | 10285.404         | 10285.405 | -0.001                               |
| 20 | 0 | 20 | 20 | 19 | 0 | 19 | 19 | 10285.458         | 10285.458 | 0.001                                |
| 21 | 0 | 21 | 22 | 20 | 0 | 20 | 21 | 10784.450         | 10784.449 | 0.000                                |
| 21 | 0 | 21 | 20 | 20 | 0 | 20 | 19 | 10784.450         | 10784.452 | -0.003                               |
| 21 | 0 | 21 | 21 | 20 | 0 | 20 | 20 | 10784.499         | 10784.499 | 0.000                                |
| 22 | 0 | 22 | 23 | 21 | 0 | 21 | 22 | 11283.777         | 11283.776 | 0.002                                |
| 22 | 0 | 22 | 21 | 21 | 0 | 21 | 20 | 11283.777         | 11283.779 | -0.001                               |
| 22 | 0 | 22 | 22 | 21 | 0 | 21 | 21 | 11283.819         | 11283.820 | -0.001                               |
| 23 | 0 | 23 | 24 | 22 | 0 | 22 | 23 | 11783.414         | 11783.412 | 0.002                                |
| 23 | 0 | 23 | 22 | 22 | 0 | 22 | 21 | 11783.414         | 11783.415 | 0.000                                |
| 23 | 0 | 23 | 23 | 22 | 0 | 22 | 22 | 11783.443         | 11783.452 | -0.009                               |
| 14 | 1 | 14 | 13 | 13 | 1 | 13 | 12 | 7205.193          | 7205.194  | -0.001                               |
| 14 | 1 | 14 | 15 | 13 | 1 | 13 | 14 | 7205.193          | 7205.190  | 0.003                                |
| 14 | 1 | 14 | 14 | 13 | 1 | 13 | 13 | 7205.220          | 7205.222  | -0.002                               |
| 15 | 1 | 15 | 14 | 14 | 1 | 14 | 13 | 7714.167          | 7714.163  | 0.004                                |
| 15 | 1 | 15 | 15 | 14 | 1 | 14 | 14 | 7714.181          | 7714.182  | -0.002                               |
| 15 | 1 | 15 | 16 | 14 | 1 | 14 | 15 | 7714.150          | 7714.150  | -0.001                               |
| 16 | 1 | 16 | 17 | 15 | 1 | 15 | 16 | 8222.324          | 8222.319  | 0.005                                |
| 16 | 1 | 16 | 15 | 15 | 1 | 15 | 14 | 8222.324          | 8222.326  | -0.002                               |
| 16 | 1 | 16 | 16 | 15 | 1 | 15 | 15 | 8222.354          | 8222.350  | 0.004                                |
| 17 | 1 | 17 | 18 | 16 | 1 | 16 | 17 | 8729.742          | 8729.742  | 0.000                                |

| 17 | 1 | 17 | 16 | 16 | 1 | 16 | 15 | 8729.742  | 8729.748  | -0.006 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 17 | 1 | 17 | 17 | 16 | 1 | 16 | 16 | 8729.775  | 8729.772  | 0.003  |
| 18 | 1 | 18 | 19 | 17 | 1 | 17 | 18 | 9236.469  | 9236.470  | -0.001 |
| 18 | 1 | 18 | 17 | 17 | 1 | 17 | 16 | 9236.469  | 9236.476  | -0.007 |
| 18 | 1 | 18 | 18 | 17 | 1 | 17 | 17 | 9236.505  | 9236.500  | 0.004  |
| 19 | 1 | 19 | 20 | 18 | 1 | 18 | 19 | 9742.567  | 9742.562  | 0.004  |
| 19 | 1 | 19 | 18 | 18 | 1 | 18 | 17 | 9742.567  | 9742.567  | -0.001 |
| 20 | 1 | 20 | 21 | 19 | 1 | 19 | 20 | 10248.079 | 10248.076 | 0.003  |
| 20 | 1 | 20 | 19 | 19 | 1 | 19 | 18 | 10248.079 | 10248.081 | -0.002 |
| 20 | 1 | 20 | 20 | 19 | 1 | 19 | 19 | 10248.102 | 10248.104 | -0.003 |
| 19 | 1 | 19 | 19 | 18 | 1 | 18 | 18 | 9742.587  | 9742.591  | -0.004 |
| 21 | 1 | 21 | 22 | 20 | 1 | 20 | 21 | 10753.076 | 10753.072 | 0.004  |
| 21 | 1 | 21 | 20 | 20 | 1 | 20 | 19 | 10753.076 | 10753.076 | 0.000  |
| 21 | 1 | 21 | 21 | 20 | 1 | 20 | 20 | 10753.106 | 10753.099 | 0.007  |
| 22 | 1 | 22 | 23 | 21 | 1 | 21 | 22 | 11257.607 | 11257.607 | 0.000  |
| 22 | 1 | 22 | 21 | 21 | 1 | 21 | 20 | 11257.607 | 11257.611 | -0.004 |
| 22 | 1 | 22 | 22 | 21 | 1 | 21 | 21 | 11257.628 | 11257.633 | -0.005 |
| 23 | 1 | 23 | 24 | 22 | 1 | 22 | 23 | 11761.740 | 11761.739 | 0.001  |
| 23 | 1 | 23 | 22 | 22 | 1 | 22 | 21 | 11761.740 | 11761.742 | -0.003 |
| 23 | 1 | 23 | 23 | 22 | 1 | 22 | 22 | 11761.765 | 11761.764 | 0.001  |
| 13 | 1 | 12 | 12 | 12 | 1 | 11 | 11 | 7092.281  | 7092.276  | 0.005  |
| 13 | 1 | 12 | 14 | 12 | 1 | 11 | 13 | 7092.281  | 7092.280  | 0.001  |
| 13 | 1 | 12 | 13 | 12 | 1 | 11 | 12 | 7092.326  | 7092.328  | -0.002 |
| 14 | 1 | 13 | 13 | 13 | 1 | 12 | 12 | 7627.765  | 7627.762  | 0.003  |
| 14 | 1 | 13 | 15 | 13 | 1 | 12 | 14 | 7627.765  | 7627.765  | -0.001 |
| 14 | 1 | 13 | 14 | 13 | 1 | 12 | 13 | 7627.817  | 7627.819  | -0.002 |
| 15 | 1 | 14 | 14 | 14 | 1 | 13 | 13 | 8160.614  | 8160.610  | 0.005  |
| 15 | 1 | 14 | 16 | 14 | 1 | 13 | 15 | 8160.614  | 8160.613  | 0.001  |
| 15 | 1 | 14 | 15 | 14 | 1 | 13 | 14 | 8160.667  | 8160.672  | -0.005 |
| 16 | 1 | 15 | 15 | 15 | 1 | 14 | 14 | 8690.538  | 8690.535  | 0.003  |
| 16 | 1 | 15 | 17 | 15 | 1 | 14 | 16 | 8690.538  | 8690.538  | 0.000  |
| 16 | 1 | 15 | 16 | 15 | 1 | 14 | 15 | 8690.600  | 8690.603  | -0.002 |
| 17 | 1 | 16 | 16 | 16 | 1 | 15 | 15 | 9217.272  | 9217.269  | 0.003  |
| 17 | 1 | 16 | 18 | 16 | 1 | 15 | 17 | 9217.272  | 9217.272  | 0.000  |
| 17 | 1 | 16 | 17 | 16 | 1 | 15 | 16 | 9217.342  | 9217.342  | -0.001 |
| 18 | 1 | 17 | 17 | 17 | 1 | 16 | 16 | 9740.583  | 9740.579  | 0.004  |
| 18 | 1 | 17 | 19 | 17 | 1 | 16 | 18 | 9740.583  | 9740.582  | 0.001  |
| 18 | 1 | 17 | 18 | 17 | 1 | 16 | 17 | 9740.658  | 9740.658  | 0.000  |
| 19 | 1 | 18 | 18 | 18 | 1 | 17 | 17 | 10260.294 | 10260.290 | 0.004  |
| 19 | 1 | 18 | 20 | 18 | 1 | 17 | 19 | 10260.294 | 10260.293 | 0.000  |
| 19 | 1 | 18 | 19 | 18 | 1 | 17 | 18 | 10260.375 | 10260.374 | 0.001  |
| 20 | 1 | 19 | 19 | 19 | 1 | 18 | 18 | 10776.317 | 10776.314 | 0.003  |
| 20 | 1 | 19 | 21 | 19 | 1 | 18 | 20 | 10776.317 | 10776.315 | 0.002  |
| 20 | 1 | 19 | 20 | 19 | 1 | 18 | 19 | 10776.405 | 10776.402 | 0.002  |
| 21 | 1 | 20 | 20 | 20 | 1 | 19 | 19 | 11288.662 | 11288.658 | 0.004  |
| 21 | 1 | 20 | 22 | 20 | 1 | 19 | 21 | 11288.662 | 11288.662 | 0.000  |
| 21 | 1 | 20 | 21 | 20 | 1 | 19 | 20 | 11288.744 | 11288.750 | -0.007 |
| 22 | 1 | 21 | 21 | 21 | 1 | 20 | 20 | 11797.474 | 11797.470 | 0.004  |
| 22 | 1 | 21 | 23 | 21 | 1 | 20 | 22 | 11797.474 | 11797.473 | 0.001  |
| 22 | 1 | 21 | 22 | 21 | 1 | 20 | 21 | 11797.569 | 11797.565 | 0.003  |
|    |   |    |    |    |   |    |    |           |           |        |

| 13 | 2 | 12 | 14 | 12 | 2 | 11 | 13 | 6909.355  | 6909.353  | 0.003  |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 13 | 2 | 12 | 12 | 12 | 2 | 11 | 11 | 6909.355  | 6909.354  | 0.001  |
| 13 | 2 | 12 | 13 | 12 | 2 | 11 | 12 | 6909.387  | 6909.388  | 0.000  |
| 14 | 2 | 13 | 15 | 13 | 2 | 12 | 14 | 7435.933  | 7435.931  | 0.003  |
| 14 | 2 | 13 | 13 | 13 | 2 | 12 | 12 | 7435.933  | 7435.933  | 0.000  |
| 14 | 2 | 13 | 14 | 13 | 2 | 12 | 13 | 7435.964  | 7435.965  | -0.001 |
| 15 | 2 | 14 | 16 | 14 | 2 | 13 | 15 | 7961.463  | 7961.458  | 0.006  |
| 15 | 2 | 14 | 16 | 14 | 2 | 13 | 15 | 7961.463  | 7961.458  | 0.006  |
| 15 | 2 | 14 | 16 | 14 | 2 | 13 | 15 | 7961.454  | 7961.458  | -0.003 |
| 19 | 2 | 18 | 20 | 18 | 2 | 17 | 19 | 10052.066 | 10052.061 | 0.004  |
| 19 | 2 | 18 | 18 | 18 | 2 | 17 | 17 | 10052.066 | 10052.063 | 0.003  |
| 19 | 2 | 18 | 19 | 18 | 2 | 17 | 18 | 10052.100 | 10052.098 | 0.003  |
| 20 | 2 | 19 | 21 | 19 | 2 | 18 | 20 | 10571.665 | 10571.661 | 0.004  |
| 20 | 2 | 19 | 19 | 19 | 2 | 18 | 18 | 10571.665 | 10571.662 | 0.003  |
| 20 | 2 | 19 | 20 | 19 | 2 | 18 | 19 | 10571.701 | 10571.698 | 0.003  |
| 21 | 2 | 20 | 22 | 20 | 2 | 19 | 21 | 11090.007 | 11090.003 | 0.004  |
| 21 | 2 | 20 | 20 | 20 | 2 | 19 | 19 | 11090.007 | 11090.004 | 0.003  |
| 21 | 2 | 20 | 21 | 20 | 2 | 19 | 20 | 11090.046 | 11090.040 | 0.006  |
| 22 | 2 | 21 | 23 | 21 | 2 | 20 | 22 | 11607.096 | 11607.088 | 0.008  |
| 22 | 2 | 21 | 21 | 21 | 2 | 20 | 20 | 11607.096 | 11607.089 | 0.007  |
| 22 | 2 | 21 | 22 | 21 | 2 | 20 | 21 | 11607.128 | 11607.126 | 0.002  |
| 13 | 2 | 11 | 12 | 12 | 2 | 10 | 11 | 7060.384  | 7060.389  | -0.005 |
| 13 | 2 | 11 | 14 | 12 | 2 | 10 | 13 | 7060.384  | 7060.384  | 0.000  |
| 13 | 2 | 11 | 13 | 12 | 2 | 10 | 12 | 7060.323  | 7060.323  | 0.000  |
| 17 | 2 | 15 | 17 | 16 | 2 | 14 | 16 | 9288.597  | 9288.596  | 0.001  |
| 17 | 2 | 15 | 16 | 16 | 2 | 14 | 15 | 9288.630  | 9288.631  | -0.002 |
| 17 | 2 | 15 | 18 | 16 | 2 | 14 | 17 | 9288.630  | 9288.631  | -0.002 |
| 18 | 2 | 16 | 18 | 17 | 2 | 15 | 17 | 9844.055  | 9844.059  | -0.004 |
| 18 | 2 | 16 | 19 | 17 | 2 | 15 | 18 | 9844.090  | 9844.086  | 0.005  |
| 18 | 2 | 16 | 17 | 17 | 2 | 15 | 16 | 9844.090  | 9844.089  | 0.002  |
| 19 | 2 | 17 | 19 | 18 | 2 | 16 | 18 | 10397.901 | 10397.905 | -0.005 |
| 19 | 2 | 17 | 20 | 18 | 2 | 16 | 19 | 10397.924 | 10397.923 | 0.001  |
| 19 | 2 | 17 | 18 | 18 | 2 | 16 | 17 | 10397.924 | 10397.924 | 0.000  |
| 20 | 2 | 18 | 20 | 19 | 2 | 17 | 19 | 10949.777 | 10949.767 | 0.009  |
| 20 | 2 | 18 | 21 | 19 | 2 | 17 | 20 | 10949.777 | 10949.777 | 0.000  |
| 20 | 2 | 18 | 19 | 19 | 2 | 17 | 18 | 10949.777 | 10949.777 | 0.000  |
| 21 | 2 | 19 | 21 | 20 | 2 | 18 | 20 | 11499.330 | 11499.331 | -0.001 |
| 21 | 2 | 19 | 20 | 20 | 2 | 18 | 19 | 11499.330 | 11499.332 | -0.002 |
| 21 | 2 | 19 | 22 | 20 | 2 | 18 | 21 | 11499.330 | 11499.332 | -0.002 |
| 13 | 3 | 10 | 13 | 12 | 3 | 9  | 12 | 6966.476  | 6966.478  | -0.002 |
| 13 | 3 | 10 | 14 | 12 | 3 | 9  | 13 | 6966.476  | 6966.485  | -0.008 |
| 13 | 3 | 10 | 12 | 12 | 3 | 9  | 11 | 6966.488  | 6966.489  | -0.001 |
| 13 | 3 | 11 | 14 | 12 | 3 | 10 | 13 | 6953.263  | 6953.265  | -0.002 |
| 13 | 3 | 11 | 12 | 12 | 3 | 10 | 11 | 6953.275  | 6953.273  | 0.002  |
| 13 | 3 | 11 | 13 | 12 | 3 | 10 | 12 | 6953.290  | 6953.285  | 0.005  |
| 15 | 3 | 12 | 16 | 15 | 2 | 13 | 16 | 7200.438  | 7200.435  | 0.003  |
| 15 | 3 | 12 | 15 | 15 | 2 | 13 | 15 | 7200.948  | 7200.944  | 0.003  |
| 15 | 3 | 12 | 14 | 15 | 2 | 13 | 14 | 7200.405  | 7200.401  | 0.004  |
| 15 | 3 | 13 | 16 | 14 | 3 | 12 | 15 | 8025.940  | 8025.947  | -0.008 |
| 15 | 3 | 13 | 14 | 14 | 3 | 12 | 13 | 8025.947  | 8025.950  | -0.003 |
|    |   |    |    |    |   |    |    |           |           |        |

| 15 | 3 | 13 | 15 | 14 | 3 | 12 | 14 | 8025.955  | 8025.956  | -0.001 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 19 | 3 | 17 | 20 | 18 | 3 | 16 | 19 | 10169.151 | 10169.149 | 0.002  |
| 19 | 3 | 17 | 18 | 18 | 3 | 16 | 17 | 10169.151 | 10169.152 | -0.001 |
| 19 | 3 | 17 | 19 | 18 | 3 | 16 | 18 | 10169.151 | 10169.156 | -0.006 |
| 19 | 3 | 16 | 19 | 18 | 3 | 15 | 18 | 10250.514 | 10250.516 | -0.001 |
| 19 | 3 | 16 | 20 | 18 | 3 | 15 | 19 | 10250.563 | 10250.562 | 0.001  |
| 19 | 3 | 16 | 18 | 18 | 3 | 15 | 17 | 10250.563 | 10250.566 | -0.003 |
| 20 | 3 | 17 | 20 | 19 | 3 | 16 | 19 | 10806.129 | 10806.133 | -0.004 |
| 20 | 3 | 17 | 21 | 19 | 3 | 16 | 20 | 10806.183 | 10806.184 | -0.001 |
| 20 | 3 | 17 | 19 | 19 | 3 | 16 | 18 | 10806.183 | 10806.187 | -0.004 |
| 20 | 3 | 18 | 21 | 19 | 3 | 17 | 20 | 10703.863 | 10703.863 | 0.001  |
| 20 | 3 | 18 | 19 | 19 | 3 | 17 | 18 | 10703.863 | 10703.863 | 0.001  |
| 20 | 3 | 18 | 20 | 19 | 3 | 17 | 19 | 10703.877 | 10703.872 | 0.005  |
| 21 | 3 | 19 | 22 | 20 | 3 | 18 | 21 | 11237.907 | 11237.907 | 0.000  |
| 21 | 3 | 19 | 20 | 20 | 3 | 18 | 19 | 11237.907 | 11237.908 | -0.001 |
| 21 | 3 | 19 | 21 | 20 | 3 | 18 | 20 | 11237.923 | 11237.917 | 0.006  |
| 21 | 3 | 18 | 21 | 20 | 3 | 17 | 20 | 11364.179 | 11364.182 | -0.003 |
| 21 | 3 | 18 | 22 | 20 | 3 | 17 | 21 | 11364.236 | 11364.236 | 0.000  |
| 21 | 3 | 18 | 20 | 20 | 3 | 17 | 19 | 11364.236 | 11364.239 | -0.003 |
| 22 | 3 | 20 | 23 | 21 | 3 | 19 | 22 | 11771.178 | 11771.175 | 0.003  |
| 22 | 3 | 20 | 21 | 21 | 3 | 19 | 20 | 11771.178 | 11771.176 | 0.002  |
| 22 | 3 | 20 | 22 | 21 | 3 | 19 | 21 | 11771.195 | 11771.187 | 0.008  |
| 22 | 3 | 19 | 22 | 21 | 3 | 18 | 21 | 11924.445 | 11924.448 | -0.003 |
| 22 | 3 | 19 | 23 | 21 | 3 | 18 | 22 | 11924.502 | 11924.504 | -0.002 |
| 22 | 3 | 19 | 21 | 21 | 3 | 18 | 20 | 11924.502 | 11924.507 | -0.005 |
| 13 | 4 | 10 | 14 | 12 | 4 | 9  | 13 | 6949.262  | 6949.261  | 0.001  |
| 13 | 4 | 10 | 12 | 12 | 4 | 9  | 11 | 6949.262  | 6949.262  | 0.000  |
| 13 | 4 | 10 | 13 | 12 | 4 | 9  | 12 | 6949.286  | 6949.290  | -0.004 |
| 13 | 4 | 9  | 14 | 12 | 4 | 8  | 13 | 6949.662  | 6949.662  | 0.000  |
| 13 | 4 | 9  | 12 | 12 | 4 | 8  | 11 | 6949.662  | 6949.664  | -0.001 |
| 13 | 4 | 9  | 13 | 12 | 4 | 8  | 12 | 6949.689  | 6949.691  | -0.002 |
| 19 | 4 | 16 | 20 | 18 | 4 | 15 | 19 | 10173.701 | 10173.700 | 0.001  |
| 19 | 4 | 16 | 19 | 18 | 4 | 15 | 18 | 10173.701 | 10173.702 | -0.001 |
| 20 | 4 | 17 | 20 | 19 | 4 | 16 | 19 | 10712.379 | 10712.378 | 0.001  |
| 20 | 4 | 17 | 21 | 19 | 4 | 16 | 20 | 10712.379 | 10712.378 | 0.001  |
| 20 | 4 | 17 | 19 | 19 | 4 | 16 | 18 | 10712.379 | 10712.379 | 0.000  |
| 20 | 4 | 16 | 20 | 19 | 4 | 15 | 19 | 10720.671 | 10720.676 | -0.005 |
| 20 | 4 | 16 | 21 | 19 | 4 | 15 | 20 | 10720.687 | 10720.685 | 0.002  |
| 20 | 4 | 16 | 19 | 19 | 4 | 15 | 18 | 10720.687 | 10720.687 | 0.000  |
| 19 | 4 | 16 | 18 | 18 | 4 | 15 | 17 | 10173.701 | 10173.702 | -0.001 |
| 21 | 4 | 18 | 21 | 20 | 4 | 17 | 20 | 11251.351 | 11251.349 | 0.002  |
| 21 | 4 | 18 | 22 | 20 | 4 | 17 | 21 | 11251.351 | 11251.350 | 0.000  |
| 21 | 4 | 18 | 20 | 20 | 4 | 17 | 19 | 11251.351 | 11251.352 | -0.001 |
| 21 | 4 | 17 | 21 | 20 | 4 | 16 | 20 | 11262.951 | 11262.956 | -0.005 |
| 21 | 4 | 17 | 22 | 20 | 4 | 16 | 21 | 11262.969 | 11262.968 | 0.001  |
| 21 | 4 | 17 | 20 | 20 | 4 | 16 | 19 | 11262.969 | 11262.970 | -0.001 |
| 13 | 5 | 9  | 13 | 12 | 5 | 8  | 12 | 6945.129  | 6945.125  | 0.004  |
| 13 | 5 | 9  | 12 | 12 | 5 | 8  | 11 | 6945.074  | 6945.071  | 0.003  |
| 13 | 5 | 9  | 14 | 12 | 5 | 8  | 13 | 6945.074  | 6945.072  | 0.002  |
| 10 | 5 | 15 | 20 | 18 | 5 | 14 | 19 | 10162.513 | 10162.515 | -0.001 |

| 19 | 5 | 15 | 18 | 18 | 5 | 14 | 17 | 10162.513 | 10162.516 | -0.002 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 19 | 5 | 15 | 19 | 18 | 5 | 14 | 18 | 10162.529 | 10162.525 | 0.004  |
| 19 | 5 | 14 | 20 | 18 | 5 | 13 | 19 | 10162.714 | 10162.716 | -0.002 |
| 19 | 5 | 14 | 18 | 18 | 5 | 13 | 17 | 10162.714 | 10162.718 | -0.003 |
| 19 | 5 | 14 | 19 | 18 | 5 | 13 | 18 | 10162.730 | 10162.727 | 0.003  |
| 21 | 5 | 17 | 22 | 20 | 5 | 16 | 21 | 11237.741 | 11237.739 | 0.002  |
| 21 | 5 | 17 | 20 | 20 | 5 | 16 | 19 | 11237.741 | 11237.740 | 0.001  |
| 21 | 5 | 17 | 21 | 20 | 5 | 16 | 20 | 11237.741 | 11237.744 | -0.003 |
| 21 | 5 | 16 | 22 | 20 | 5 | 15 | 21 | 11238.224 | 11238.232 | -0.008 |
| 21 | 5 | 16 | 20 | 20 | 5 | 15 | 19 | 11238.242 | 11238.241 | 0.001  |
| 21 | 5 | 16 | 21 | 20 | 5 | 15 | 20 | 11238.242 | 11238.244 | -0.002 |
| 13 | 7 | 7  | 12 | 12 | 7 | 6  | 11 | 6941.444  | 6941.437  | 0.007  |
| 13 | 7 | 7  | 14 | 12 | 7 | 6  | 13 | 6941.444  | 6941.445  | -0.001 |
| 13 | 7 | 7  | 13 | 12 | 7 | 6  | 12 | 6941.551  | 6941.555  | -0.003 |
| 15 | 0 | 15 | 16 | 14 | 1 | 14 | 15 | 7283.059  | 7283.055  | 0.004  |
| 15 | 0 | 15 | 15 | 14 | 1 | 14 | 14 | 7282.782  | 7282.778  | 0.004  |
| 15 | 0 | 15 | 14 | 14 | 1 | 14 | 13 | 7283.090  | 7283.089  | 0.001  |
| 16 | 0 | 16 | 16 | 15 | 1 | 15 | 15 | 7858.315  | 7858.315  | 0.000  |
| 16 | 0 | 16 | 17 | 15 | 1 | 15 | 16 | 7858.542  | 7858.541  | 0.001  |
| 16 | 0 | 16 | 15 | 15 | 1 | 15 | 14 | 7858.567  | 7858.565  | 0.003  |
| 17 | 0 | 17 | 17 | 16 | 1 | 16 | 16 | 8424.963  | 8424.961  | 0.001  |
| 17 | 0 | 17 | 18 | 16 | 1 | 16 | 17 | 8425.145  | 8425.143  | 0.002  |
| 17 | 0 | 17 | 16 | 16 | 1 | 16 | 15 | 8425.165  | 8425.162  | 0.002  |
| 21 | 0 | 21 | 21 | 20 | 1 | 20 | 20 | 10612.447 | 10612.445 | 0.002  |
| 21 | 0 | 21 | 22 | 20 | 1 | 20 | 21 | 10612.505 | 10612.509 | -0.004 |
| 21 | 0 | 21 | 20 | 20 | 1 | 20 | 19 | 10612.523 | 10612.517 | 0.006  |
| 22 | 0 | 22 | 22 | 21 | 1 | 21 | 21 | 11143.169 | 11143.167 | 0.002  |
| 22 | 0 | 22 | 23 | 21 | 1 | 21 | 22 | 11143.210 | 11143.213 | -0.003 |
| 22 | 0 | 22 | 21 | 21 | 1 | 21 | 20 | 11143.210 | 11143.220 | -0.010 |
| 23 | 0 | 23 | 23 | 22 | 1 | 22 | 22 | 11668.989 | 11668.986 | 0.003  |
| 23 | 0 | 23 | 24 | 22 | 1 | 22 | 23 | 11669.016 | 11669.018 | -0.002 |
| 23 | 0 | 23 | 22 | 22 | 1 | 22 | 21 | 11669.016 | 11669.024 | -0.008 |
| 11 | 1 | 11 | 10 | 10 | 0 | 10 | 9  | 6547.047  | 6547.050  | -0.003 |
| 11 | 1 | 11 | 12 | 10 | 0 | 10 | 11 | 6547.098  | 6547.097  | 0.001  |
| 11 | 1 | 11 | 11 | 10 | 0 | 10 | 10 | 6547.756  | 6547.755  | 0.001  |
| 12 | 1 | 12 | 11 | 11 | 0 | 11 | 10 | 6959.604  | 6959.605  | -0.001 |
| 12 | 1 | 12 | 13 | 11 | 0 | 11 | 12 | 6959.643  | 6959.643  | 0.000  |
| 12 | 1 | 12 | 12 | 11 | 0 | 11 | 11 | 6960.232  | 6960.236  | -0.004 |
| 12 | 1 | 12 | 11 | 11 | 0 | 11 | 10 | 6959.600  | 6959.605  | -0.005 |
| 12 | 1 | 12 | 13 | 11 | 0 | 11 | 12 | 6959.645  | 6959.643  | 0.002  |
| 12 | 1 | 12 | 12 | 11 | 0 | 11 | 11 | 6960.234  | 6960.236  | -0.002 |
| 13 | 1 | 13 | 12 | 12 | 0 | 12 | 11 | 7374.918  | 7374.916  | 0.002  |
| 13 | 1 | 13 | 13 | 12 | 0 | 12 | 12 | 7375.469  | 7375.472  | -0.003 |
| 13 | 1 | 13 | 14 | 12 | 0 | 12 | 13 | 7374.941  | 7374.945  | -0.004 |
| 14 | 1 | 14 | 13 | 13 | 0 | 13 | 12 | 7794.795  | 7794.794  | 0.001  |
| 14 | 1 | 14 | 15 | 13 | 0 | 13 | 14 | 7794.823  | 7794.825  | -0.003 |
| 14 | 1 | 14 | 14 | 13 | 0 | 13 | 13 | 7795.281  | 7795.283  | -0.003 |
| 15 | 1 | 15 | 14 | 14 | 0 | 14 | 13 | 8220.653  | 8220.655  | -0.002 |
| 15 | 1 | 15 | 16 | 14 | 0 | 14 | 15 | 8220.673  | 8220.674  | -0.001 |
| 15 | 1 | 15 | 15 | 14 | 0 | 14 | 14 | 8221.071  | 8221.071  | 0.000  |

| 16 | 1 | 16 | 15 | 15 | 0 | 15 | 14 | 8653.397  | 8653.400  | -0.003 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 16 | 1 | 16 | 17 | 15 | 0 | 15 | 16 | 8653.414  | 8653.414  | 0.000  |
| 16 | 1 | 16 | 16 | 15 | 0 | 15 | 15 | 8653.753  | 8653.754  | -0.001 |
| 17 | 1 | 17 | 16 | 16 | 0 | 16 | 15 | 9093.505  | 9093.509  | -0.004 |
| 17 | 1 | 17 | 18 | 16 | 0 | 16 | 17 | 9093.521  | 9093.519  | 0.001  |
| 17 | 1 | 17 | 17 | 16 | 0 | 16 | 16 | 9093.805  | 9093.807  | -0.002 |
| 20 | 1 | 20 | 19 | 19 | 0 | 19 | 18 | 10457.341 | 10457.340 | 0.001  |
| 20 | 1 | 20 | 21 | 19 | 0 | 19 | 20 | 10457.341 | 10457.343 | -0.002 |
| 20 | 1 | 20 | 20 | 19 | 0 | 19 | 19 | 10457.510 | 10457.511 | -0.002 |
| 21 | 1 | 21 | 20 | 20 | 0 | 20 | 19 | 10925.010 | 10925.011 | -0.001 |
| 21 | 1 | 21 | 22 | 20 | 0 | 20 | 21 | 10925.010 | 10925.012 | -0.002 |
| 21 | 1 | 21 | 21 | 20 | 0 | 20 | 20 | 10925.152 | 10925.152 | 0.000  |
| 22 | 1 | 22 | 21 | 21 | 0 | 21 | 20 | 11398.171 | 11398.170 | 0.001  |
| 22 | 1 | 22 | 23 | 21 | 0 | 21 | 22 | 11398.171 | 11398.170 | 0.001  |
| 22 | 1 | 22 | 22 | 21 | 0 | 21 | 21 | 11398.286 | 11398.286 | -0.001 |
| 23 | 1 | 23 | 24 | 22 | 0 | 22 | 23 | 11876.133 | 11876.133 | 0.000  |
| 23 | 1 | 23 | 22 | 22 | 0 | 22 | 21 | 11876.133 | 11876.133 | 0.000  |
| 23 | 1 | 23 | 23 | 22 | 0 | 22 | 22 | 11876.228 | 11876.230 | -0.001 |
| 7  | 2 | 6  | 8  | 6  | 1 | 5  | 7  | 8098.584  | 8098.581  | 0.003  |
| 7  | 2 | 6  | 6  | 6  | 1 | 5  | 5  | 8098.437  | 8098.443  | -0.006 |
| 7  | 2 | 6  | 7  | 6  | 1 | 5  | 6  | 8099.499  | 8099.497  | 0.001  |
| 8  | 2 | 6  | 8  | 7  | 1 | 7  | 7  | 9502.780  | 9502.780  | -0.001 |
| 8  | 2 | 6  | 9  | 7  | 1 | 7  | 8  | 9504.293  | 9504.288  | 0.005  |
| 8  | 2 | 6  | 7  | 7  | 1 | 7  | 6  | 9504.515  | 9504.512  | 0.003  |
| 9  | 2 | 8  | 8  | 8  | 1 | 7  | 7  | 8931.311  | 8931.312  | -0.001 |
| 9  | 2 | 8  | 10 | 8  | 1 | 7  | 9  | 8931.425  | 8931.422  | 0.002  |
| 9  | 2 | 8  | 9  | 8  | 1 | 7  | 8  | 8932.381  | 8932.379  | 0.002  |
| 5  | 3 | 2  | 5  | 4  | 2 | 3  | 4  | 10495.814 | 10495.815 | -0.001 |
| 5  | 3 | 2  | 6  | 4  | 2 | 3  | 5  | 10496.084 | 10496.082 | 0.002  |
| 5  | 3 | 2  | 4  | 4  | 2 | 3  | 3  | 10496.155 | 10496.154 | 0.001  |
| 5  | 3 | 3  | 5  | 4  | 2 | 2  | 4  | 10488.608 | 10488.611 | -0.003 |
| 5  | 3 | 3  | 6  | 4  | 2 | 2  | 5  | 10488.784 | 10488.785 | -0.001 |
| 5  | 3 | 3  | 4  | 4  | 2 | 2  | 3  | 10488.829 | 10488.833 | -0.004 |
| 6  | 3 | 3  | 6  | 5  | 2 | 4  | 5  | 11033.245 | 11033.246 | -0.001 |
| 6  | 3 | 3  | 7  | 5  | 2 | 4  | 6  | 11033.488 | 11033.487 | 0.001  |
| 6  | 3 | 3  | 5  | 5  | 2 | 4  | 4  | 11033.547 | 11033.545 | 0.002  |
| 6  | 3 | 4  | 6  | 5  | 2 | 3  | 5  | 11016.321 | 11016.323 | -0.002 |
| 6  | 3 | 4  | 7  | 5  | 2 | 3  | 6  | 11016.416 | 11016.417 | -0.001 |
| 6  | 3 | 4  | 5  | 5  | 2 | 3  | 4  | 11016.442 | 11016.445 | -0.002 |
| 7  | 3 | 4  | 7  | 6  | 2 | 5  | 6  | 11573.256 | 11573.256 | 0.000  |
| 7  | 3 | 4  | 8  | 6  | 2 | 5  | 7  | 11573.486 | 11573.482 | 0.004  |
| 7  | 3 | 4  | 6  | 6  | 2 | 5  | 5  | 11573.528 | 11573.530 | -0.002 |
| 10 | 2 | 9  | 9  | 9  | 1 | 8  | 8  | 9325.750  | 9325.755  | -0.005 |
| 10 | 2 | 9  | 11 | 9  | 1 | 8  | 10 | 9325.859  | 9325.854  | 0.005  |
| 10 | 2 | 9  | 10 | 9  | 1 | 8  | 9  | 9326.819  | 9326.819  | 0.000  |
| 11 | 2 | 10 | 10 | 10 | 1 | 9  | 9  | 9706.252  | 9706.249  | 0.003  |
| 11 | 2 | 10 | 12 | 10 | 1 | 9  | 11 | 9706.340  | 9706.339  | 0.000  |
| 11 | 2 | 10 | 11 | 10 | 1 | 9  | 10 | 9707.303  | 9707.306  | -0.002 |
| 13 | 2 | 12 | 12 | 12 | 1 | 11 | 11 | 10428.434 | 10428.427 | 0.008  |
| 13 | 2 | 12 | 14 | 12 | 1 | 11 | 13 | 10428.498 | 10428.500 | -0.002 |

| 13 | 2 | 12 | 13 | 12 | 1 | 11 | 12 | 10429.454 | 10429.453 | 0.001  |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 15 | 2 | 14 | 14 | 14 | 1 | 13 | 13 | 11105.786 | 11105.782 | 0.004  |
| 15 | 2 | 14 | 16 | 14 | 1 | 13 | 15 | 11105.840 | 11105.843 | -0.003 |
| 15 | 2 | 14 | 15 | 14 | 1 | 13 | 14 | 11106.761 | 11106.763 | -0.002 |
| 16 | 2 | 15 | 15 | 15 | 1 | 14 | 14 | 11431.052 | 11431.053 | -0.001 |
| 16 | 2 | 15 | 17 | 15 | 1 | 14 | 16 | 11431.112 | 11431.108 | 0.003  |
| 16 | 2 | 15 | 16 | 15 | 1 | 14 | 15 | 11432.004 | 11432.004 | 0.000  |
| 14 | 3 | 11 | 13 | 14 | 2 | 12 | 13 | 7322.448  | 7322.445  | 0.002  |
| 14 | 3 | 11 | 15 | 14 | 2 | 12 | 15 | 7322.476  | 7322.480  | -0.003 |
| 14 | 3 | 11 | 14 | 14 | 2 | 12 | 14 | 7322.963  | 7322.961  | 0.003  |
| 6  | 3 | 3  | 6  | 6  | 2 | 4  | 6  | 7800.651  | 7800.652  | -0.001 |
| 6  | 3 | 3  | 7  | 6  | 2 | 4  | 7  | 7800.794  | 7800.795  | -0.001 |
| 6  | 3 | 3  | 5  | 6  | 2 | 4  | 5  | 7800.821  | 7800.819  | 0.002  |
| 7  | 3 | 4  | 7  | 7  | 2 | 5  | 7  | 7782.350  | 7782.349  | 0.002  |
| 7  | 3 | 4  | 8  | 7  | 2 | 5  | 8  | 7782.374  | 7782.372  | 0.002  |
| 7  | 3 | 4  | 6  | 7  | 2 | 5  | 6  | 7782.374  | 7782.375  | -0.001 |
| 7  | 3 | 5  | 7  | 7  | 2 | 6  | 7  | 7840.786  | 7840.785  | 0.001  |
| 7  | 3 | 5  | 8  | 7  | 2 | 6  | 8  | 7841.079  | 7841.080  | -0.001 |
| 8  | 3 | 5  | 7  | 8  | 2 | 6  | 7  | 7755.292  | 7755.296  | -0.004 |
| 8  | 3 | 5  | 9  | 8  | 2 | 6  | 9  | 7755.310  | 7755.306  | 0.004  |
| 8  | 3 | 5  | 8  | 8  | 2 | 6  | 8  | 7755.383  | 7755.383  | 0.000  |
| 8  | 3 | 6  | 8  | 8  | 2 | 7  | 8  | 7851.800  | 7851.798  | 0.002  |
| 8  | 3 | 6  | 9  | 8  | 2 | 7  | 9  | 7852.072  | 7852.069  | 0.003  |
| 8  | 3 | 6  | 7  | 8  | 2 | 7  | 7  | 7852.102  | 7852.103  | -0.001 |
| 9  | 3 | 7  | 9  | 9  | 2 | 8  | 9  | 7867.325  | 7867.326  | -0.002 |
| 9  | 3 | 7  | 10 | 9  | 2 | 8  | 10 | 7867.590  | 7867.589  | 0.001  |
| 9  | 3 | 7  | 8  | 9  | 2 | 8  | 8  | 7867.616  | 7867.619  | -0.003 |
| 10 | 3 | 8  | 10 | 10 | 2 | 9  | 10 | 7888.364  | 7888.366  | -0.002 |
| 10 | 3 | 8  | 11 | 10 | 2 | 9  | 11 | 7888.633  | 7888.631  | 0.002  |
| 10 | 3 | 8  | 9  | 10 | 2 | 9  | 9  | 7888.652  | 7888.658  | -0.006 |
| 11 | 3 | 9  | 11 | 11 | 2 | 10 | 11 | 7915.954  | 7915.954  | 0.000  |
| 11 | 3 | 9  | 12 | 11 | 2 | 10 | 12 | 7916.230  | 7916.230  | 0.000  |
| 11 | 3 | 9  | 10 | 11 | 2 | 10 | 10 | 7916.250  | 7916.256  | -0.006 |
| 12 | 3 | 9  | 11 | 12 | 2 | 10 | 11 | 7524.963  | 7524.961  | 0.003  |
| 12 | 3 | 9  | 13 | 12 | 2 | 10 | 13 | 7524.990  | 7524.993  | -0.003 |
| 12 | 3 | 9  | 12 | 12 | 2 | 10 | 12 | 7525.377  | 7525.378  | 0.000  |
| 12 | 3 | 10 | 12 | 12 | 2 | 11 | 12 | 7951.163  | 7951.165  | -0.002 |
| 12 | 3 | 10 | 13 | 12 | 2 | 11 | 13 | 7951.456  | 7951.460  | -0.004 |
| 12 | 3 | 10 | 11 | 12 | 2 | 11 | 11 | 7951.481  | 7951.477  | 0.003  |
| 18 | 4 | 14 | 17 | 18 | 3 | 15 | 17 | 10704.609 | 10704.612 | -0.003 |
| 18 | 4 | 14 | 19 | 18 | 3 | 15 | 19 | 10704.625 | 10704.622 | 0.003  |
| 18 | 4 | 14 | 18 | 18 | 3 | 15 | 18 | 10704.806 | 10704.806 | 0.000  |

| $J^{\prime\prime}$ | K | K  | F~ | J´ | K | K  | F  | V <sub>exp</sub> . | V <sub>calc</sub> . | V <sub>exp.</sub> - V <sub>calc.</sub> |
|--------------------|---|----|----|----|---|----|----|--------------------|---------------------|----------------------------------------|
| 12                 | 0 | 12 | 13 | 11 | 0 | 11 | 12 | 6578.691           | 6578.688            | 0.003                                  |
| 12                 | 0 | 12 | 11 | 11 | 0 | 11 | 10 | 6578.691           | 6578.692            | -0.001                                 |
| 12                 | 0 | 12 | 12 | 11 | 0 | 11 | 11 | 6578.742           | 6578.748            | -0.006                                 |
| 13                 | 0 | 13 | 14 | 12 | 0 | 12 | 13 | 7117.854           | 7117.852            | 0.002                                  |
| 13                 | 0 | 13 | 12 | 12 | 0 | 12 | 11 | 7117.854           | 7117.859            | -0.005                                 |
| 13                 | 0 | 13 | 13 | 12 | 0 | 12 | 12 | 7117.917           | 7117.917            | 0.000                                  |
| 14                 | 0 | 14 | 15 | 13 | 0 | 13 | 14 | 7655.333           | 7655.332            | 0.000                                  |
| 14                 | 0 | 14 | 13 | 13 | 0 | 13 | 12 | 7655.333           | 7655.333            | 0.000                                  |
| 14                 | 0 | 14 | 14 | 13 | 0 | 13 | 13 | 7655.398           | 7655.394            | 0.004                                  |
| 15                 | 0 | 15 | 16 | 14 | 0 | 14 | 15 | 8191.222           | 8191.221            | 0.001                                  |
| 15                 | 0 | 15 | 14 | 14 | 0 | 14 | 13 | 8191.222           | 8191.223            | -0.002                                 |
| 15                 | 0 | 15 | 15 | 14 | 0 | 14 | 14 | 8191.285           | 8191.284            | 0.000                                  |
| 16                 | 0 | 16 | 17 | 15 | 0 | 15 | 16 | 8725.660           | 8725.655            | 0.004                                  |
| 16                 | 0 | 16 | 15 | 15 | 0 | 15 | 14 | 8725.660           | 8725.657            | 0.002                                  |
| 16                 | 0 | 16 | 16 | 15 | 0 | 15 | 15 | 8725.719           | 8725.718            | 0.000                                  |
| 17                 | 0 | 17 | 18 | 16 | 0 | 16 | 17 | 9258.806           | 9258.807            | -0.001                                 |
| 17                 | 0 | 17 | 16 | 16 | 0 | 16 | 15 | 9258.806           | 9258.809            | -0.003                                 |
| 17                 | 0 | 17 | 17 | 16 | 0 | 16 | 16 | 9258.868           | 9258.869            | -0.002                                 |
| 18                 | 0 | 18 | 19 | 17 | 0 | 17 | 18 | 9790.873           | 9790.872            | 0.000                                  |
| 18                 | 0 | 18 | 17 | 17 | 0 | 17 | 16 | 9790.873           | 9790.874            | -0.002                                 |
| 18                 | 0 | 18 | 18 | 17 | 0 | 17 | 17 | 9790.934           | 9790.932            | 0.002                                  |
| 19                 | 0 | 19 | 20 | 18 | 0 | 18 | 19 | 10322.056          | 322.055             | 0.001                                  |
| 19                 | 0 | 19 | 18 | 18 | 0 | 18 | 17 | 10322.056          | 322.057             | -0.001                                 |
| 19                 | 0 | 19 | 19 | 18 | 0 | 18 | 18 | 10322.113          | 322.113             | 0.001                                  |
| 20                 | 0 | 20 | 21 | 19 | 0 | 19 | 20 | 10852.561          | 852.558             | 0.003                                  |
| 20                 | 0 | 20 | 19 | 19 | 0 | 19 | 18 | 10852.561          | 852.560             | 0.001                                  |
| 20                 | 0 | 20 | 20 | 19 | 0 | 19 | 19 | 10852.607          | 852.612             | -0.006                                 |
| 21                 | 0 | 21 | 22 | 20 | 0 | 20 | 21 | 11382.570          | 1382.569            | 0.001                                  |
| 21                 | 0 | 21 | 20 | 20 | 0 | 20 | 19 | 11382.570          | 1382.571            | -0.001                                 |
| 21                 | 0 | 21 | 21 | 20 | 0 | 20 | 20 | 11382.619          | 1382.620            | -0.001                                 |
| 22                 | 0 | 22 | 23 | 21 | 0 | 21 | 22 | 11912.254          | 1912.254            | 0.001                                  |
| 22                 | 0 | 22 | 21 | 21 | 0 | 21 | 20 | 11912.254          | 1912.255            | -0.001                                 |
| 22                 | 0 | 22 | 22 | 21 | 0 | 21 | 21 | 11912.302          | 1912.301            | 0.001                                  |
| 13                 | 1 | 13 | 14 | 12 | 1 | 12 | 13 | 7032.282           | 7032.285            | -0.003                                 |
| 13                 | 1 | 13 | 12 | 12 | 1 | 12 | 11 | 7032.295           | 7032.295            | 0.000                                  |
| 13                 | 1 | 13 | 13 | 12 | 1 | 12 | 12 | 7032.310           | 7032.306            | 0.003                                  |
| 14                 | 1 | 14 | 15 | 13 | 1 | 13 | 14 | 7570.768           | 7570.771            | -0.003                                 |
| 14                 | 1 | 14 | 13 | 13 | 1 | 13 | 12 | 7570.781           | 7570.782            | -0.001                                 |
| 14                 | 1 | 14 | 14 | 13 | 1 | 13 | 13 | 7570.796           | 7570.792            | 0.004                                  |
| 15                 | 1 | 15 | 14 | 14 | 1 | 14 | 13 | 8108.808           | 8108.813            | -0.005                                 |
| 15                 | 1 | 15 | 16 | 14 | 1 | 14 | 15 | 8108.808           | 8108.807            | 0.001                                  |
| 15                 | 1 | 15 | 15 | 14 | 1 | 14 | 14 | 8108.830           | 8108.828            | 0.002                                  |
| 16                 | 1 | 16 | 17 | 15 | 1 | 15 | 16 | 8646.392           | 8646.390            | 0.002                                  |
| 16                 | 1 | 16 | 15 | 15 | 1 | 15 | 14 | 8646.392           | 8646.397            | -0.005                                 |
| 16                 | 1 | 16 | 16 | 15 | 1 | 15 | 15 | 8646.416           | 8646.411            | 0.005                                  |
| 17                 | 1 | 17 | 18 | 16 | 1 | 16 | 17 | 9183.525           | 9183.524            | 0.000                                  |

| 17 | 1 | 17 | 16 | 16 | 1 | 16 | 15 | 9183.525  | 9183.530 | -0.006 |
|----|---|----|----|----|---|----|----|-----------|----------|--------|
| 17 | 1 | 17 | 17 | 16 | 1 | 16 | 16 | 9183.550  | 9183.545 | 0.005  |
| 18 | 1 | 18 | 19 | 17 | 1 | 17 | 18 | 9720.210  | 9720.216 | -0.006 |
| 18 | 1 | 18 | 17 | 17 | 1 | 17 | 16 | 9720.225  | 9720.221 | 0.004  |
| 18 | 1 | 18 | 18 | 17 | 1 | 17 | 17 | 9720.240  | 9720.236 | 0.004  |
| 19 | 1 | 19 | 20 | 18 | 1 | 18 | 19 | 10256.476 | 256.476  | 0.000  |
| 19 | 1 | 19 | 18 | 18 | 1 | 18 | 17 | 10256.476 | 256.481  | -0.005 |
| 19 | 1 | 19 | 19 | 18 | 1 | 18 | 18 | 10256.499 | 256.496  | 0.003  |
| 20 | 1 | 20 | 21 | 19 | 1 | 19 | 20 | 10792.319 | 792.319  | 0.000  |
| 20 | 1 | 20 | 19 | 19 | 1 | 19 | 18 | 10792.319 | 792.324  | -0.004 |
| 20 | 1 | 20 | 20 | 19 | 1 | 19 | 19 | 10792.344 | 792.339  | 0.005  |
| 21 | 1 | 21 | 22 | 20 | 1 | 20 | 21 | 11327.763 | 1327.762 | 0.000  |
| 21 | 1 | 21 | 20 | 20 | 1 | 20 | 19 | 11327.763 | 1327.766 | -0.004 |
| 21 | 1 | 21 | 21 | 20 | 1 | 20 | 20 | 11327.786 | 1327.782 | 0.004  |
| 22 | 1 | 22 | 23 | 21 | 1 | 21 | 22 | 11862.823 | 1862.825 | -0.002 |
| 22 | 1 | 22 | 21 | 21 | 1 | 21 | 20 | 11862.823 | 1862.829 | -0.006 |
| 22 | 1 | 22 | 22 | 21 | 1 | 21 | 21 | 11862.845 | 1862.844 | 0.001  |
| 12 | 1 | 11 | 11 | 11 | 1 | 10 | 10 | 6742.811  | 6742.808 | 0.003  |
| 12 | 1 | 11 | 13 | 11 | 1 | 10 | 12 | 6742.811  | 6742.809 | 0.002  |
| 12 | 1 | 11 | 12 | 11 | 1 | 10 | 11 | 6742.826  | 6742.831 | -0.005 |
| 13 | 1 | 12 | 12 | 12 | 1 | 11 | 11 | 7301.618  | 7301.616 | 0.002  |
| 13 | 1 | 12 | 14 | 12 | 1 | 11 | 13 | 7301.618  | 7301.617 | 0.001  |
| 13 | 1 | 12 | 13 | 12 | 1 | 11 | 12 | 7301.644  | 7301.640 | 0.004  |
| 14 | 1 | 13 | 13 | 13 | 1 | 12 | 12 | 7859.590  | 7859.589 | 0.002  |
| 14 | 1 | 13 | 15 | 13 | 1 | 12 | 14 | 7859.590  | 7859.590 | 0.000  |
| 14 | 1 | 13 | 14 | 13 | 1 | 12 | 13 | 7859.612  | 7859.615 | -0.003 |
| 15 | 1 | 14 | 14 | 14 | 1 | 13 | 13 | 8416.630  | 8416.629 | 0.001  |
| 15 | 1 | 14 | 16 | 14 | 1 | 13 | 15 | 8416.630  | 8416.630 | 0.000  |
| 15 | 1 | 14 | 15 | 14 | 1 | 13 | 14 | 8416.660  | 8416.657 | 0.003  |
| 16 | 1 | 15 | 15 | 15 | 1 | 14 | 14 | 8972.634  | 8972.632 | 0.002  |
| 16 | 1 | 15 | 17 | 15 | 1 | 14 | 16 | 8972.634  | 8972.633 | 0.001  |
| 16 | 1 | 15 | 16 | 15 | 1 | 14 | 15 | 8972.658  | 8972.663 | -0.005 |
| 17 | 1 | 16 | 16 | 16 | 1 | 15 | 15 | 9527.492  | 9527.489 | 0.003  |
| 17 | 1 | 16 | 18 | 16 | 1 | 15 | 17 | 9527.492  | 9527.490 | 0.002  |
| 17 | 1 | 16 | 17 | 16 | 1 | 15 | 16 | 9527.515  | 9527.522 | -0.006 |
| 18 | 1 | 17 | 17 | 17 | 1 | 16 | 16 | 10081.087 | 81.085   | 0.002  |
| 18 | 1 | 17 | 19 | 17 | 1 | 16 | 18 | 10081.087 | 81.086   | 0.001  |
| 18 | 1 | 17 | 18 | 17 | 1 | 16 | 17 | 10081.119 | 81.120   | -0.001 |
| 19 | 1 | 18 | 18 | 18 | 1 | 17 | 17 | 10633.305 | 633.304  | 0.001  |
| 19 | 1 | 18 | 20 | 18 | 1 | 17 | 19 | 10633.305 | 633.305  | 0.000  |
| 19 | 1 | 18 | 19 | 18 | 1 | 17 | 18 | 10633.339 | 633.342  | -0.003 |
| 20 | 1 | 19 | 19 | 19 | 1 | 18 | 18 | 11184.032 | 1184.032 | 0.000  |
| 20 | 1 | 19 | 21 | 19 | 1 | 18 | 20 | 11184.032 | 1184.033 | -0.001 |
| 20 | 1 | 19 | 20 | 19 | 1 | 18 | 19 | 11184.068 | 1184.072 | -0.004 |
| 21 | 1 | 20 | 20 | 20 | 1 | 19 | 19 | 11733.157 | 1733.155 | 0.002  |
| 21 | 1 | 20 | 22 | 20 | 1 | 19 | 21 | 11733.157 | 1733.156 | 0.000  |
| 21 | 1 | 20 | 21 | 20 | 1 | 19 | 20 | 11733.192 | 1733.199 | -0.006 |
| 12 | 2 | 11 | 13 | 11 | 2 | 10 | 12 | 6622.950  | 6622.943 | 0.006  |
| 12 | 2 | 11 | 11 | 11 | 2 | 10 | 10 | 6622.950  | 6622.951 | -0.001 |
| 12 | 2 | 11 | 12 | 11 | 2 | 10 | 11 | 6622.973  | 6622.969 | 0.005  |

| 13                   | 2                     | 12             | 14             | 12             | 2           | 11             | 13             | 7173.122                            | 7173.119                    | 0.002                   |
|----------------------|-----------------------|----------------|----------------|----------------|-------------|----------------|----------------|-------------------------------------|-----------------------------|-------------------------|
| 13                   | 2                     | 12             | 12             | 12             | 2           | 11             | 11             | 7173.122                            | 7173.122                    | 0.000                   |
| 13                   | 2                     | 12             | 13             | 12             | 2           | 11             | 12             | 7173.146                            | 7173.144                    | 0.003                   |
| 14                   | 2                     | 13             | 15             | 13             | 2           | 12             | 14             | 7722.879                            | 7722.875                    | 0.004                   |
| 14                   | 2                     | 13             | 13             | 13             | 2           | 12             | 12             | 7722.879                            | 7722.879                    | 0.001                   |
| 14                   | 2                     | 13             | 14             | 13             | 2           | 12             | 13             | 7722.896                            | 7722.898                    | -0.002                  |
| 15                   | 2                     | 14             | 14             | 14             | 2           | 13             | 13             | 8272.191                            | 8272.192                    | -0.001                  |
| 15                   | 2                     | 14             | 16             | 14             | 2           | 13             | 15             | 8272.191                            | 8272.189                    | 0.002                   |
| 15                   | 2                     | 14             | 15             | 14             | 2           | 13             | 14             | 8272.214                            | 8272.211                    | 0.003                   |
| 16                   | 2                     | 15             | 17             | 15             | 2           | 14             | 16             | 8821.032                            | 8821.031                    | 0.000                   |
| 16                   | 2                     | 15             | 15             | 15             | 2           | 14             | 14             | 8821.032                            | 8821.034                    | -0.002                  |
| 16                   | 2                     | 15             | 16             | 15             | 2           | 14             | 15             | 8821.032                            | 8821.052                    | -0.021                  |
| 17                   | 2                     | 16             | 18             | 16             | 2           | 15             | 17             | 9369.375                            | 9369.374                    | 0.001                   |
| 17                   | 2                     | 16             | 16             | 16             | 2           | 15             | 15             | 9369.375                            | 9369.377                    | -0.001                  |
| 17                   | 2                     | 16             | 17             | 16             | 2           | 15             | 16             | 9369.399                            | 9369.395                    | 0.004                   |
| 18                   | 2                     | 17             | 19             | 17             | 2           | 16             | 18             | 9917.194                            | 9917.192                    | 0.002                   |
| 18                   | 2                     | 17             | 17             | 17             | 2           | 16             | 16             | 9917.194                            | 9917.194                    | 0.000                   |
| 18                   | 2                     | 17             | 18             | 17             | 2           | 16             | 17             | 9917.217                            | 9917.213                    | 0.004                   |
| 19                   | 2                     | 18             | 20             | 18             | 2           | 17             | 19             | 10464.462                           | 464.461                     | 0.001                   |
| 19                   | 2                     | 18             | 18             | 18             | 2           | 17             | 17             | 10464.462                           | 464.463                     | -0.001                  |
| 19                   | 2                     | 18             | 19             | 18             | 2           | 17             | 18             | 10464.487                           | 464.482                     | 0.005                   |
| 20                   | 2                     | 19             | 21             | 19             | 2           | 18             | 20             | 11011.158                           | 1011.158                    | 0.000                   |
| 20                   | 2                     | 19             | 19             | 19             | 2           | 18             | 18             | 11011.158                           | 1011.160                    | -0.002                  |
| 20                   | 2                     | 19             | 20             | 19             | 2           | 18             | 19             | 11011.182                           | 1011.179                    | 0.002                   |
| 21                   | 2                     | 20             | 22             | 20             | 2           | 19             | 21             | 11557.264                           | 1557.263                    | 0.001                   |
| 21                   | 2                     | 20             | 20             | 20             | 2           | 19             | 19             | 11557.264                           | 1557.264                    | 0.000                   |
| 21                   | 2                     | 20             | 21             | 20             | 2           | 19             | 20             | 11557.288                           | 1557.285                    | 0.003                   |
| 12                   | 2                     | 10             | 12             | 11             | 2           | 9              | 11             | 6675.788                            | 6675.786                    | 0.002                   |
| 12                   | 2                     | 10             | 13             | 11             | 2           | 9              | 12             | 6675.816                            | 6675.817                    | -0.001                  |
| 12                   | 2                     | 10             | 11             | 11             | 2           | 9              | 10             | 6675.829                            | 6675.824                    | 0.005                   |
| 13                   | 2                     | 11             | 13             | 12             | 2           | 10             | 12             | 7239.380                            | 7239.382                    | -0.002                  |
| 13                   | 2                     | 11             | 14             | 12             | 2           | 10             | 13             | 7239.414                            | 7239.418                    | -0.005                  |
| 13                   | 2                     | 11             | 12             | 12             | 2           | 10             | 11             | 7239.421                            | 7239.424                    | -0.004                  |
| 14                   | 2                     | 12             | 14             | 13             | 2           | 11             | 13             | 7804.232                            | 7804.232                    | 0.000                   |
| 14                   | 2                     | 12             | 15             | 13             | 2           | 11             | 14             | 7804.270                            | 7804.270                    | 0.000                   |
| 14                   | 2                     | 12             | 13             | 13             | 2           | 11             | 12             | 7804.270                            | 7804.276                    | -0.006                  |
| 15                   | 2                     | 13             | 15             | 14             | 2           | 12             | 14             | 8370.207                            | 8370.205                    | 0.002                   |
| 15                   | 2                     | 13             | 14             | 14             | 2           | 12             | 13             | 8370.245                            | 8370.249                    | -0.004                  |
| 15                   | 2                     | 13             | 16             | 14             | 2           | 12             | 15             | 8370.245                            | 8370.244                    | 0.000                   |
| 16                   | 2                     | 14             | 16             | 15             | 2           | 13             | 15             | 8937.126                            | 8937.125                    | 0.001                   |
| 16                   | 2                     | 14             | 17             | 15             | 2           | 13             | 16             | 8937.165                            | 8937.165                    | 0.000                   |
| 16                   | 2                     | 14             | 15             | 15             | 2           | 13             | 14             | 8937.165                            | 8937.169                    | -0.005                  |
| 17                   | 2                     | 15             | 17             | 16             | 2           | 14             | 16             | 9504.785                            | 9504.782                    | 0.003                   |
| 17                   | 2                     | 15             | 18             | 16             | 2           | 14             | 17             | 9504.818                            | 9504.820                    | -0.003                  |
| 17                   | 2                     | 15             | 16             | 16             | 2           | 14             | 15             | 9504.818                            | 9504.824                    | -0.007                  |
| 18                   | •                     | 16             | 18             | 17             | 2           | 15             | 17             | 10072.941                           | 72.937                      | 0.004                   |
| 10                   | 2                     |                |                |                |             |                |                | 10072 070                           |                             |                         |
| 18                   | 2                     | 16             | 19             | 17             | 2           | 15             | 18             | 10072.978                           | 72.974                      | 0.005                   |
| 18<br>18<br>18       | 2<br>2<br>2           | 16<br>16       | 19<br>17       | 17<br>17       | 2<br>2      | 15<br>15       | 18<br>16       | 10072.978                           | 72.974<br>72.977            | 0.005<br>0.002          |
| 18<br>18<br>18<br>19 | 2<br>2<br>2<br>2<br>2 | 16<br>16<br>17 | 19<br>17<br>19 | 17<br>17<br>18 | 2<br>2<br>2 | 15<br>15<br>16 | 18<br>16<br>18 | 10072.978<br>10072.978<br>10641.346 | 72.974<br>72.977<br>641.342 | 0.005<br>0.002<br>0.004 |

| 19 | 2 | 17 | 18 | 18 | 2 | 16 | 17 | 10641.374 | 641.378  | -0.005 |
|----|---|----|----|----|---|----|----|-----------|----------|--------|
| 20 | 2 | 18 | 20 | 19 | 2 | 17 | 19 | 11209.748 | 1209.748 | 0.001  |
| 20 | 2 | 18 | 21 | 19 | 2 | 17 | 20 | 11209.775 | 1209.778 | -0.003 |
| 20 | 2 | 18 | 19 | 19 | 2 | 17 | 20 | 11209.775 | 1209.767 | 0.008  |
| 21 | 2 | 19 | 21 | 20 | 2 | 18 | 20 | 11777.921 | 1777.916 | 0.005  |
| 21 | 2 | 19 | 22 | 20 | 2 | 18 | 21 | 11777.940 | 1777.942 | -0.002 |
| 21 | 2 | 19 | 20 | 20 | 2 | 18 | 19 | 11777.940 | 1777.944 | -0.004 |
| 13 | 3 | 10 | 14 | 12 | 3 | 9  | 13 | 7195.170  | 7195.168 | 0.002  |
| 13 | 3 | 10 | 12 | 12 | 3 | 9  | 11 | 7195.170  | 7195.172 | -0.001 |
| 13 | 3 | 10 | 13 | 12 | 3 | 9  | 12 | 7195.181  | 7195.181 | 0.001  |
| 13 | 3 | 11 | 14 | 12 | 3 | 10 | 13 | 7191.876  | 7191.876 | 0.000  |
| 13 | 3 | 11 | 12 | 12 | 3 | 10 | 11 | 7191.876  | 7191.878 | -0.001 |
| 13 | 3 | 11 | 13 | 12 | 3 | 10 | 12 | 7191.894  | 7191.893 | 0.001  |
| 13 | 5 | 9  | 14 | 12 | 5 | 8  | 13 | 7187.648  | 7187.650 | -0.003 |
| 13 | 5 | 9  | 12 | 12 | 5 | 8  | 11 | 7187.648  | 7187.649 | -0.001 |
| 13 | 5 | 9  | 13 | 12 | 5 | 8  | 12 | 7187.707  | 7187.711 | -0.004 |
| 15 | 0 | 15 | 16 | 14 | 1 | 14 | 15 | 7322.501  | 7322.503 | -0.002 |
| 15 | 0 | 15 | 15 | 14 | 1 | 14 | 14 | 7322.094  | 7322.096 | -0.002 |
| 15 | 0 | 15 | 14 | 14 | 1 | 14 | 13 | 7322.533  | 7322.538 | -0.005 |
| 16 | 0 | 16 | 16 | 15 | 1 | 15 | 15 | 7938.986  | 7938.987 | -0.001 |
| 16 | 0 | 16 | 17 | 15 | 1 | 15 | 16 | 7939.361  | 7939.352 | 0.009  |
| 16 | 0 | 16 | 15 | 15 | 1 | 15 | 14 | 7939.383  | 7939.383 | 0.000  |
| 17 | 0 | 17 | 17 | 16 | 1 | 16 | 16 | 8551.447  | 8551.445 | 0.002  |
| 17 | 0 | 17 | 18 | 16 | 1 | 16 | 17 | 8551.774  | 8551.769 | 0.006  |
| 17 | 0 | 17 | 16 | 16 | 1 | 16 | 15 | 8551.792  | 8551.795 | -0.003 |
| 19 | 0 | 19 | 19 | 18 | 1 | 18 | 18 | 9760.702  | 9760.709 | -0.007 |
| 19 | 0 | 19 | 20 | 18 | 1 | 18 | 19 | 9760.947  | 9760.956 | -0.009 |
| 19 | 0 | 19 | 18 | 18 | 1 | 18 | 17 | 9760.979  | 9760.975 | 0.004  |
| 13 | 1 | 13 | 12 | 12 | 0 | 12 | 11 | 8071.089  | 8071.096 | -0.006 |
| 13 | 1 | 13 | 13 | 12 | 0 | 12 | 12 | 8071.706  | 8071.707 | -0.001 |
| 13 | 1 | 13 | 14 | 12 | 0 | 12 | 13 | 8071.136  | 8071.131 | 0.005  |
| 18 | 1 | 18 | 17 | 17 | 0 | 17 | 16 | 10351.955 | 351.957  | -0.002 |
| 18 | 1 | 18 | 19 | 17 | 0 | 17 | 18 | 10351.973 | 351.972  | 0.001  |
| 18 | 1 | 18 | 18 | 17 | 0 | 17 | 17 | 10352.333 | 352.336  | -0.003 |
|    |   |    |    |    |   |    |    |           |          |        |

Table S9. Rotational transitions of BTI (TT)

| J″ | K | K  | F~ | J  | K | K  | F  | V <sub>exp.</sub> | V <sub>calc</sub> . | V <sub>exp</sub> V <sub>calc</sub> . |
|----|---|----|----|----|---|----|----|-------------------|---------------------|--------------------------------------|
| 12 | 0 | 12 | 13 | 11 | 0 | 11 | 12 | 6881.403          | 6881.401            | 0.001                                |
| 12 | 0 | 12 | 11 | 11 | 0 | 11 | 10 | 6881.403          | 6881.403            | 0.000                                |
| 12 | 0 | 12 | 12 | 11 | 0 | 11 | 11 | 6881.517          | 6881.515            | 0.001                                |
| 13 | 0 | 13 | 14 | 12 | 0 | 12 | 13 | 7431.496          | 7431.492            | 0.005                                |
| 13 | 0 | 13 | 12 | 12 | 0 | 12 | 11 | 7431.496          | 7431.493            | 0.003                                |
| 13 | 0 | 13 | 13 | 12 | 0 | 12 | 12 | 7431.598          | 7431.595            | 0.003                                |
| 14 | 0 | 14 | 15 | 13 | 0 | 13 | 14 | 7980.532          | 7980.530            | 0.002                                |
| 14 | 0 | 14 | 13 | 13 | 0 | 13 | 12 | 7980.532          | 7980.532            | -0.001                               |
| 14 | 0 | 14 | 14 | 13 | 0 | 13 | 13 | 7980.623          | 7980.623            | 0.000                                |
| 15 | 0 | 15 | 16 | 14 | 0 | 14 | 15 | 8529.158          | 8529.157            | 0.001                                |
| 15 | 0 | 15 | 14 | 14 | 0 | 14 | 13 | 8529.158          | 8529.160            | -0.002                               |

| 15 | 0 | 15 | 15 | 14 | 0 | 14 | 14 | 8529.238 | 8529.239 | -0.001 |
|----|---|----|----|----|---|----|----|----------|----------|--------|
| 16 | 0 | 16 | 17 | 15 | 0 | 15 | 16 | 9077.813 | 9077.814 | -0.001 |
| 16 | 0 | 16 | 15 | 15 | 0 | 15 | 14 | 9077.813 | 9077.817 | -0.004 |
| 16 | 0 | 16 | 16 | 15 | 0 | 15 | 15 | 9077.894 | 9077.886 | 0.008  |
| 12 | 1 | 12 | 13 | 11 | 1 | 11 | 12 | 6808.059 | 6808.063 | -0.004 |
| 12 | 1 | 12 | 11 | 11 | 1 | 11 | 10 | 6808.078 | 6808.073 | 0.005  |
| 12 | 1 | 12 | 12 | 11 | 1 | 11 | 11 | 6808.109 | 6808.103 | 0.005  |
| 13 | 1 | 13 | 14 | 12 | 1 | 12 | 13 | 7367.932 | 7367.934 | -0.002 |
| 13 | 1 | 13 | 12 | 12 | 1 | 12 | 11 | 7367.947 | 7367.942 | 0.004  |
| 13 | 1 | 13 | 13 | 12 | 1 | 12 | 12 | 7367.971 | 7367.973 | -0.003 |
| 14 | 1 | 14 | 15 | 13 | 1 | 13 | 14 | 7926.693 | 7926.697 | -0.004 |
| 14 | 1 | 14 | 13 | 13 | 1 | 13 | 12 | 7926.710 | 7926.705 | 0.006  |
| 14 | 1 | 14 | 14 | 13 | 1 | 13 | 13 | 7926.734 | 7926.736 | -0.001 |
| 15 | 1 | 15 | 16 | 14 | 1 | 14 | 15 | 8484.462 | 8484.454 | 0.008  |
| 15 | 1 | 15 | 14 | 14 | 1 | 14 | 13 | 8484.462 | 8484.461 | 0.002  |
| 15 | 1 | 15 | 15 | 14 | 1 | 14 | 14 | 8484.485 | 8484.491 | -0.007 |
| 16 | 1 | 16 | 17 | 15 | 1 | 15 | 16 | 9041.316 | 9041.313 | 0.003  |
| 16 | 1 | 16 | 15 | 15 | 1 | 15 | 14 | 9041.316 | 9041.319 | -0.003 |
| 16 | 1 | 16 | 16 | 15 | 1 | 15 | 15 | 9041.342 | 9041.349 | -0.008 |
| 12 | 1 | 11 | 11 | 11 | 1 | 10 | 10 | 7238.939 | 7238.941 | -0.002 |
| 12 | 1 | 11 | 13 | 11 | 1 | 10 | 12 | 7238.954 | 7238.949 | 0.005  |
| 12 | 1 | 11 | 12 | 11 | 1 | 10 | 11 | 7239.027 | 7239.022 | 0.005  |
| 13 | 1 | 12 | 12 | 12 | 1 | 11 | 11 | 7824.890 | 7824.882 | 0.008  |
| 13 | 1 | 12 | 14 | 12 | 1 | 11 | 13 | 7824.890 | 7824.890 | 0.000  |
| 13 | 1 | 12 | 13 | 12 | 1 | 11 | 12 | 7824.976 | 7824.972 | 0.004  |
| 14 | 1 | 13 | 13 | 13 | 1 | 12 | 12 | 8405.958 | 8405.961 | -0.003 |
| 14 | 1 | 13 | 15 | 13 | 1 | 12 | 14 | 8405.978 | 8405.975 | 0.004  |
| 14 | 1 | 13 | 14 | 13 | 1 | 12 | 13 | 8406.059 | 8406.061 | -0.002 |
| 15 | 1 | 14 | 16 | 14 | 1 | 13 | 15 | 8981.792 | 8981.798 | -0.006 |
| 15 | 1 | 14 | 14 | 14 | 1 | 13 | 13 | 8981.792 | 8981.798 | -0.006 |
| 15 | 1 | 14 | 15 | 14 | 1 | 13 | 14 | 8981.900 | 8981.904 | -0.004 |
| 16 | 1 | 15 | 15 | 15 | 1 | 14 | 14 | 9552.112 | 9552.110 | 0.001  |
| 16 | 1 | 15 | 17 | 15 | 1 | 14 | 16 | 9552.112 | 9552.117 | -0.006 |
| 16 | 1 | 15 | 16 | 15 | 1 | 14 | 15 | 9552.227 | 9552.225 | 0.002  |
| 13 | 2 | 12 | 14 | 12 | 2 | 11 | 13 | 7626.304 | 7626.300 | 0.004  |
| 13 | 2 | 12 | 12 | 12 | 2 | 11 | 11 | 7626.304 | 7626.300 | 0.004  |
| 13 | 2 | 12 | 13 | 12 | 2 | 11 | 12 | 7626.337 | 7626.343 | -0.006 |
| 13 | 2 | 11 | 13 | 12 | 2 | 10 | 12 | 7870.077 | 7870.076 | 0.001  |
| 13 | 2 | 11 | 14 | 12 | 2 | 10 | 13 | 7870.131 | 7870.132 | -0.001 |
| 13 | 2 | 11 | 12 | 12 | 2 | 10 | 11 | 7870.131 | 7870.134 | -0.003 |
| 14 | 2 | 13 | 15 | 13 | 2 | 12 | 14 | 8204.022 | 8204.018 | 0.004  |
| 14 | 2 | 13 | 13 | 13 | 2 | 12 | 12 | 8204.022 | 8204.020 | 0.002  |
| 14 | 2 | 13 | 14 | 13 | 2 | 12 | 13 | 8204.065 | 8204.062 | 0.003  |
| 15 | 2 | 14 | 16 | 14 | 2 | 13 | 15 | 8779.919 | 8779.919 | 0.000  |
| 15 | 2 | 14 | 14 | 14 | 2 | 13 | 13 | 8779.919 | 8779.920 | -0.001 |
| 15 | 2 | 14 | 15 | 14 | 2 | 13 | 14 | 8779.965 | 8779.965 | 0.001  |
| 16 | 2 | 15 | 17 | 15 | 2 | 14 | 16 | 9353.953 | 9353.955 | -0.003 |
| 16 | 2 | 15 | 15 | 15 | 2 | 14 | 14 | 9353.953 | 9353.956 | -0.003 |
| 16 | 2 | 15 | 16 | 15 | 2 | 14 | 15 | 9354.000 | 9354.002 | -0.002 |
| 14 | 2 | 12 | 14 | 13 | 2 | 11 | 13 | 8488.069 | 8488.073 | -0.004 |

| 14 | 2 | 12 | 15 | 13 | 2 | 11 | 14 | 8488.109  | 8488.116  | -0.006 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 14 | 2 | 12 | 13 | 13 | 2 | 11 | 12 | 8488.109  | 8488.116  | -0.007 |
| 15 | 2 | 13 | 15 | 14 | 2 | 12 | 14 | 9104.010  | 9104.011  | -0.001 |
| 15 | 2 | 13 | 16 | 14 | 2 | 12 | 15 | 9104.042  | 9104.039  | 0.003  |
| 15 | 2 | 13 | 14 | 14 | 2 | 12 | 13 | 9104.042  | 9104.038  | 0.004  |
| 16 | 2 | 14 | 16 | 15 | 2 | 13 | 15 | 9717.141  | 9717.144  | -0.003 |
| 16 | 2 | 14 | 17 | 15 | 2 | 13 | 16 | 9717.162  | 9717.158  | 0.004  |
| 16 | 2 | 14 | 15 | 15 | 2 | 13 | 14 | 9717.162  | 9717.157  | 0.005  |
| 13 | 3 | 11 | 14 | 12 | 3 | 10 | 13 | 7702.301  | 7702.297  | 0.004  |
| 13 | 3 | 11 | 12 | 12 | 3 | 10 | 11 | 7702.301  | 7702.293  | 0.008  |
| 13 | 3 | 11 | 13 | 12 | 3 | 10 | 12 | 7702.301  | 7702.306  | -0.004 |
| 13 | 0 | 13 | 13 | 12 | 1 | 12 | 12 | 7100.951  | 7100.951  | 0.000  |
| 13 | 0 | 13 | 14 | 12 | 1 | 12 | 13 | 7101.156  | 7101.160  | -0.004 |
| 13 | 0 | 13 | 12 | 12 | 1 | 12 | 11 | 7101.188  | 7101.188  | -0.001 |
| 15 | 0 | 15 | 15 | 14 | 1 | 14 | 14 | 8316.100  | 8316.103  | -0.004 |
| 15 | 0 | 15 | 16 | 14 | 1 | 14 | 15 | 8316.217  | 8316.217  | 0.000  |
| 15 | 0 | 15 | 14 | 14 | 1 | 14 | 13 | 8316.241  | 8316.233  | 0.007  |
| 16 | 0 | 16 | 16 | 15 | 1 | 15 | 15 | 8909.499  | 8909.498  | 0.001  |
| 16 | 0 | 16 | 17 | 15 | 1 | 15 | 16 | 8909.571  | 8909.577  | -0.006 |
| 16 | 0 | 16 | 15 | 15 | 1 | 15 | 14 | 8909.590  | 8909.590  | 0.000  |
| 17 | 0 | 17 | 17 | 16 | 1 | 16 | 16 | 9494.977  | 9494.980  | -0.003 |
| 17 | 0 | 17 | 18 | 16 | 1 | 16 | 17 | 9495.026  | 9495.032  | -0.006 |
| 17 | 0 | 17 | 16 | 16 | 1 | 16 | 15 | 9495.045  | 9495.042  | 0.003  |
| 19 | 0 | 19 | 19 | 18 | 1 | 18 | 18 | 10647.000 | 10646.996 | 0.004  |
| 19 | 0 | 19 | 20 | 18 | 1 | 18 | 19 | 10647.020 | 10647.014 | 0.007  |
| 19 | 0 | 19 | 18 | 18 | 1 | 18 | 17 | 10647.024 | 10647.021 | 0.003  |
| 20 | 0 | 20 | 20 | 19 | 1 | 19 | 19 | 11215.702 | 11215.706 | -0.004 |
| 20 | 0 | 20 | 21 | 19 | 1 | 19 | 20 | 11215.718 | 11215.713 | 0.006  |
| 20 | 0 | 20 | 19 | 19 | 1 | 19 | 18 | 11215.718 | 11215.718 | 0.000  |
| 13 | 1 | 13 | 12 | 12 | 0 | 12 | 11 | 7698.246  | 7698.247  | -0.002 |
| 13 | 1 | 13 | 14 | 12 | 0 | 12 | 13 | 7698.268  | 7698.265  | 0.003  |
| 13 | 1 | 13 | 13 | 12 | 0 | 12 | 12 | 7698.612  | 7698.618  | -0.006 |
| 14 | 1 | 14 | 13 | 13 | 0 | 13 | 12 | 8193.457  | 8193.458  | -0.001 |
| 14 | 1 | 14 | 15 | 13 | 0 | 13 | 14 | 8193.472  | 8193.470  | 0.002  |
| 14 | 1 | 14 | 14 | 13 | 0 | 13 | 13 | 8193.758  | 8193.758  | 0.000  |
| 15 | 1 | 15 | 14 | 14 | 0 | 14 | 13 | 8697.389  | 8697.387  | 0.003  |
| 15 | 1 | 15 | 16 | 14 | 0 | 14 | 15 | 8697.389  | 8697.394  | -0.005 |
| 15 | 1 | 15 | 15 | 14 | 0 | 14 | 14 | 8697.629  | 8697.627  | 0.002  |
| 16 | 1 | 16 | 15 | 15 | 0 | 15 | 14 | 9209.548  | 9209.546  | 0.002  |
| 16 | 1 | 16 | 17 | 15 | 0 | 15 | 16 | 9209.548  | 9209.551  | -0.003 |
| 16 | 1 | 16 | 16 | 15 | 0 | 15 | 15 | 9209.739  | 9209.737  | 0.002  |
| 17 | 1 | 17 | 16 | 16 | 0 | 16 | 15 | 9729.120  | 9729.121  | -0.002 |
| 17 | 1 | 17 | 18 | 16 | 0 | 16 | 17 | 9729.120  | 9729.123  | -0.003 |
| 17 | 1 | 17 | 17 | 16 | 0 | 16 | 16 | 9729.272  | 9729.273  | -0.001 |
| 18 | 1 | 18 | 19 | 17 | 0 | 17 | 18 | 10255.137 | 10255.139 | -0.003 |
| 18 | 1 | 18 | 17 | 17 | 0 | 17 | 16 | 10255.137 | 10255.139 | -0.002 |
| 18 | 1 | 18 | 18 | 17 | 0 | 17 | 17 | 10255.259 | 10255.259 | 0.000  |
| 19 | 1 | 19 | 20 | 18 | 0 | 18 | 19 | 10786.595 | 10786.597 | -0.002 |
| 19 | 1 | 19 | 18 | 18 | 0 | 18 | 17 | 10786.595 | 10786.598 | -0.003 |
| 19 | 1 | 19 | 19 | 18 | 0 | 18 | 18 | 10786.690 | 10786.693 | -0.003 |

| 20 | 1 | 20 | 21 | 19 | 0 | 19 | 20 | 11322.550 | 11322.548 | 0.002 |
|----|---|----|----|----|---|----|----|-----------|-----------|-------|
| 20 | 1 | 20 | 19 | 19 | 0 | 19 | 18 | 11322.550 | 11322.550 | 0.000 |
| 20 | 1 | 20 | 20 | 19 | 0 | 19 | 19 | 11322.631 | 11322.626 | 0.005 |

### Table S10. Rotational transitions of BTN (TG $T\downarrow$ )

| <i>J</i> | K  | K  | F~ | J´ | K  | K  | F  | V <sub>exp.</sub> | Vcalc.    | V <sub>exp</sub> V <sub>calc</sub> . |
|----------|----|----|----|----|----|----|----|-------------------|-----------|--------------------------------------|
| 39       | 18 | 21 | 40 | 38 | 17 | 22 | 39 | 60024.980         | 60024.770 | 0.210                                |
| 39       | 18 | 21 | 38 | 38 | 17 | 22 | 37 | 60024.980         | 60024.771 | 0.209                                |
| 39       | 18 | 21 | 39 | 38 | 17 | 22 | 38 | 60024.980         | 60024.742 | 0.238                                |
| 35       | 19 | 16 | 36 | 34 | 18 | 17 | 35 | 60100.400         | 60100.396 | 0.004                                |
| 35       | 19 | 16 | 35 | 34 | 18 | 17 | 34 | 60100.400         | 60100.363 | 0.037                                |
| 35       | 19 | 16 | 34 | 34 | 18 | 17 | 33 | 60100.400         | 60100.397 | 0.003                                |
| 31       | 20 | 12 | 32 | 30 | 19 | 11 | 31 | 60170.590         | 60170.658 | -0.067                               |
| 31       | 20 | 12 | 31 | 30 | 19 | 11 | 30 | 60170.590         | 60170.622 | -0.032                               |
| 31       | 20 | 12 | 30 | 30 | 19 | 11 | 29 | 60170.590         | 60170.658 | -0.068                               |
| 27       | 21 | 6  | 28 | 26 | 20 | 7  | 27 | 60238.060         | 60237.974 | 0.086                                |
| 27       | 21 | 6  | 27 | 26 | 20 | 7  | 26 | 60238.060         | 60237.941 | 0.119                                |
| 27       | 21 | 6  | 26 | 26 | 20 | 7  | 25 | 60238.060         | 60237.974 | 0.086                                |
| 23       | 22 | 1  | 24 | 22 | 21 | 2  | 23 | 60303.730         | 60303.694 | 0.037                                |
| 23       | 22 | 1  | 23 | 22 | 21 | 2  | 22 | 60303.730         | 60303.680 | 0.050                                |
| 23       | 22 | 1  | 22 | 22 | 21 | 2  | 21 | 60303.730         | 60303.691 | 0.039                                |
| 40       | 18 | 23 | 41 | 39 | 17 | 22 | 40 | 60562.180         | 60562.306 | -0.126                               |
| 40       | 18 | 23 | 40 | 39 | 17 | 22 | 39 | 60562.180         | 60562.279 | -0.099                               |
| 40       | 18 | 23 | 39 | 39 | 17 | 22 | 38 | 60562.180         | 60562.307 | -0.127                               |
| 36       | 19 | 18 | 37 | 35 | 18 | 17 | 36 | 60639.250         | 60639.057 | 0.193                                |
| 36       | 19 | 18 | 36 | 35 | 18 | 17 | 35 | 60639.250         | 60639.025 | 0.225                                |
| 36       | 19 | 18 | 35 | 35 | 18 | 17 | 34 | 60639.250         | 60639.058 | 0.192                                |
| 32       | 20 | 12 | 33 | 31 | 19 | 13 | 32 | 60709.900         | 60709.927 | -0.027                               |
| 32       | 20 | 12 | 32 | 31 | 19 | 13 | 31 | 60709.900         | 60709.892 | 0.008                                |
| 32       | 20 | 12 | 31 | 31 | 19 | 13 | 30 | 60709.900         | 60709.928 | -0.028                               |
| 28       | 21 | 8  | 29 | 27 | 20 | 7  | 28 | 60777.490         | 60777.537 | -0.047                               |
| 28       | 21 | 8  | 28 | 27 | 20 | 7  | 27 | 60777.490         | 60777.503 | -0.013                               |
| 28       | 21 | 8  | 27 | 27 | 20 | 7  | 26 | 60777.490         | 60777.537 | -0.047                               |
| 24       | 22 | 3  | 25 | 23 | 21 | 2  | 24 | 60843.300         | 60843.360 | -0.060                               |
| 24       | 22 | 3  | 24 | 23 | 21 | 2  | 23 | 60843.300         | 60843.341 | -0.041                               |
| 24       | 22 | 3  | 23 | 23 | 21 | 2  | 22 | 60843.300         | 60843.359 | -0.059                               |
| 41       | 18 | 23 | 42 | 40 | 17 | 24 | 41 | 61099.500         | 61099.604 | -0.104                               |
| 41       | 18 | 23 | 41 | 40 | 17 | 24 | 40 | 61099.500         | 61099.579 | -0.079                               |
| 41       | 18 | 23 | 40 | 40 | 17 | 24 | 39 | 61099.500         | 61099.605 | -0.105                               |
| 37       | 19 | 18 | 38 | 36 | 18 | 19 | 37 | 61177.580         | 61177.579 | 0.001                                |
| 37       | 19 | 18 | 37 | 36 | 18 | 19 | 36 | 61177.580         | 61177.548 | 0.032                                |
| 37       | 19 | 18 | 36 | 36 | 18 | 19 | 35 | 61177.580         | 61177.580 | 0.000                                |
| 29       | 21 | 8  | 30 | 28 | 20 | 9  | 29 | 61316.990         | 61317.070 | -0.080                               |
| 29       | 21 | 8  | 29 | 28 | 20 | 9  | 28 | 61316.990         | 61317.035 | -0.045                               |
| 29       | 21 | 8  | 28 | 28 | 20 | 9  | 27 | 61316.990         | 61317.070 | -0.080                               |
| 25       | 22 | 4  | 26 | 24 | 21 | 3  | 25 | 61382.940         | 61383.025 | -0.085                               |

| 25         | 22     | 4  | 25         | 24 | 21     | 3  | 24       | 61382.940 | 61383.001 | -0.061 |
|------------|--------|----|------------|----|--------|----|----------|-----------|-----------|--------|
| 25         | 22     | 4  | 24         | 24 | 21     | 3  | 23       | 61382.940 | 61383.024 | -0.084 |
| 7          | 4      | 3  | 7          | 6  | 3      | 4  | 6        | 11577.995 | 11577.992 | 0.004  |
| 7          | 4      | 3  | 8          | 6  | 3      | 4  | 7        | 11578.152 | 11578.148 | 0.004  |
| 7          | 4      | 3  | 6          | 6  | 3      | 4  | 5        | 11578.179 | 11578.176 | 0.003  |
| 8          | 4      | 5  | 8          | 7  | 3      | 4  | 7        | 12111.050 | 12111.052 | -0.002 |
| 8          | 4      | 5  | 9          | 7  | 3      | 4  | 8        | 12111.156 | 12111.158 | -0.002 |
| 8          | 4      | 5  | 7          | 7  | 3      | 4  | 6        | 12111.174 | 12111.177 | -0.003 |
| 8          | 4      | 4  | 8          | 7  | 3      | 5  | 7        | 12116.721 | 12116.720 | 0.000  |
| 8          | 4      | 4  | 9          | 7  | 3      | 5  | 8        | 12116.855 | 12116.854 | 0.001  |
| 8          | 4      | 4  | 7          | 7  | 3      | 5  | 6        | 12116.876 | 12116.876 | -0.001 |
| 9          | 4      | 6  | 9          | 8  | 3      | 5  | 8        | 12643.073 | 12643.075 | -0.002 |
| 9          | 4      | 6  | 10         | 8  | 3      | 5  | 9        | 12643.142 | 12643.143 | -0.001 |
| 9          | 4      | 6  | 8          | 8  | 3      | 5  | 7        | 12643.156 | 12643.155 | 0.000  |
| 9          | 4      | 5  | 9          | 8  | 3      | 6  | 8        | 12655.585 | 12655.585 | 0.000  |
| 9          | 4      | 5  | 10         | 8  | 3      | 6  | 9        | 12655.699 | 12655.699 | 0.000  |
| 9          | 4      | 5  | 8          | 8  | 3      | 6  | 7        | 12655.717 | 12655.718 | -0.001 |
| 18         | 2      | 16 | 17         | 17 | 2      | 15 | 16       | 10035.030 | 10035.030 | 0.000  |
| 18         | 2      | 16 | 19         | 17 | 2      | 15 | 18       | 10035.034 | 10035.033 | 0.001  |
| 18         | 2      | 16 | 18         | 17 | 2      | 15 | 17       | 10035.080 | 10035.080 | 0.000  |
| 20         | 1      | 20 | 21         | 19 | 1      | 19 | 20       | 10094.573 | 10094.573 | 0.000  |
| 20         | 1      | 20 | 19         | 19 | 1      | 19 | 18       | 10094.578 | 10094.578 | 0.001  |
| 20         | 1      | 20 | 20         | 19 | 1      | 19 | 19       | 10094.600 | 10094.600 | 0.000  |
| 20         | 0      | 20 | 21         | 19 | 0      | 19 | 20       | 10101.831 | 10101.831 | 0.000  |
| 20         | 0      | 20 | 19         | 19 | 0      | 19 | 18       | 10101.836 | 10101.836 | 0.001  |
| 20         | 0      | 20 | 20         | 19 | 0      | 19 | 19       | 10101.864 | 10101.864 | 0.000  |
| 21         | 0      | 21 | 22         | 20 | 0      | 20 | 21       | 10594.167 | 10594.167 | -0.001 |
| 21         | 0      | 21 | 20         | 20 | 0      | 20 | 19       | 10594.172 | 10594.171 | 0.001  |
| 21         | 0      | 21 | 21         | 20 | 0      | 20 | 20       | 10594.196 | 10594.197 | 0.000  |
| 20         | 1      | 19 | 19         | 19 | 1      | 18 | 18       | 10619.056 | 10619.054 | 0.002  |
| 20         | 1      | 19 | 21         | 19 | 1      | 18 | 20       | 10619.056 | 10619.057 | -0.001 |
| 20         | 1      | 19 | 20         | 19 | 1      | 18 | 19       | 10619.168 | 10619.167 | 0.000  |
| 20         | 3      | 18 | 21         | 19 | 3      | 17 | 20       | 10784.707 | 10784.707 | 0.001  |
| 20         | 3      | 18 | 19         | 19 | 3      | 17 | 18       | 10784.707 | 10784.707 | 0.000  |
| 20         | 3      | 18 | 20         | 19 | 3      | 17 | 19       | 10784.740 | 10784.740 | 0.000  |
| 20         | 4      | 17 | 20         | 19 | 4      | 16 | 20       | 10868.055 | 10868.056 | 0.000  |
| 20         | 4      | 17 | 20         | 19 | 4      | 16 | 19       | 10868.055 | 10868.059 | -0.003 |
| 20         | 4      | 17 | 19         | 19 | 4      | 16 | 18       | 10868.055 | 10868.056 | -0.001 |
| 20         | 5      | 16 | 21         | 19 | 5      | 15 | 20       | 10854.996 | 10854.996 | 0.000  |
| 20         | 5      | 15 | 20         | 10 | 5      | 14 | 19       | 10862.190 | 10862.192 | -0.001 |
| 20         | 5      | 15 | 20         | 10 | 5      | 14 | 20       | 10862.199 | 10862.198 | 0.001  |
| 20         | 1      | 20 | 21         | 20 | 1      | 19 | 20       | 11103.180 | 11103.181 | 0.000  |
| 21         | 1      | 20 | 20         | 20 | 1      | 19 | 10       | 11103.180 | 11103.179 | 0.002  |
| 21         | 1      | 20 | 20         | 20 | 1      | 19 | 20       | 11103.281 | 11103.281 | 0.000  |
| 21         | 1      | 10 | 21         | 20 | 1      | 19 | 20       | 11310.613 | 11310.612 | 0.000  |
| 21<br>21   | с<br>С | 19 | 22         | 20 | с<br>2 | 10 | 21<br>10 | 11310.613 | 11310.612 | 0.000  |
| 21<br>21   | 3<br>2 | 19 | 20         | 20 | 3<br>2 | 10 | 19<br>20 | 11310.648 | 11310.649 | 0.000  |
| 21<br>21   | Л      | 19 | 21<br>22   | 20 | с<br>1 | 10 | 20       | 11413.972 | 11413.972 | 0.000  |
| 21         | 4      | 10 | 22         | 20 | 4      | 17 | 21<br>10 | 11413.972 | 11413.973 | -0.001 |
| 21         | 4      | 10 | 20         | 20 | 4      | 17 | 19       | 11413.976 | 11413 976 | 0.001  |
| <i>∠</i> 1 | 4      | 10 | <i>∠</i> 1 | 20 | 4      | 1/ | 20       |           |           |        |

| 22     | 2  | 21 | 23     | 21     | 2 | 20     | 22     | 11514.654 | 11514.653 | 0.001  |
|--------|----|----|--------|--------|---|--------|--------|-----------|-----------|--------|
| 22     | 2  | 21 | 21     | 21     | 2 | 20     | 20     | 11514.654 | 11514.654 | 0.000  |
| 22     | 2  | 21 | 22     | 21     | 2 | 20     | 21     | 11514.706 | 11514.705 | 0.001  |
| 23     | 0  | 23 | 24     | 22     | 0 | 22     | 23     | 11579.579 | 11579.580 | 0.000  |
| 23     | 0  | 23 | 22     | 22     | 0 | 22     | 21     | 11579.584 | 11579.584 | 0.001  |
| 23     | 0  | 23 | 23     | 22     | 0 | 22     | 22     | 11579.604 | 11579.604 | 0.000  |
| 22     | 1  | 21 | 23     | 21     | 1 | 20     | 22     | 11587.514 | 11587.515 | -0.001 |
| 22     | 1  | 21 | 21     | 21     | 1 | 20     | 20     | 11587.514 | 11587.513 | 0.001  |
| 22     | 1  | 21 | 22     | 21     | 1 | 20     | 21     | 11587.605 | 11587.606 | 0.000  |
| 21     | 2  | 19 | 20     | 20     | 2 | 18     | 19     | 11619.221 | 11619.223 | -0.002 |
| 21     | 2  | 19 | 22     | 20     | 2 | 18     | 21     | 11619.221 | 11619.227 | -0.006 |
| 21     | 2  | 19 | 21     | 20     | 2 | 18     | 20     | 11619.311 | 11619.311 | 0.000  |
| 22     | 3  | 20 | 23     | 21     | 3 | 19     | 22     | 11833.653 | 11833.652 | 0.001  |
| 22     | 3  | 20 | 21     | 21     | 3 | 19     | 20     | 11833.653 | 11833.652 | 0.001  |
| 22     | 3  | 20 | 22     | 21     | 3 | 19     | 21     | 11833.691 | 11833.691 | 0.000  |
| 22     | 5  | 18 | 23     | 21     | 5 | 17     | 22     | 11955.330 | 11955.328 | 0.002  |
| 22     | 5  | 18 | 22     | 21     | 5 | 17     | 21     | 11955.330 | 11955.325 | 0.005  |
| 22     | 5  | 18 | 21     | 21     | 5 | 17     | 20     | 11955.330 | 11955.330 | 0.000  |
| 22     | 6  | 16 | 23     | 21     | 6 | 15     | 22     | 11929.642 | 11929.643 | -0.001 |
| 22     | 6  | 16 | 22     | 21     | 6 | 15     | 21     | 11929.642 | 11929.646 | -0.004 |
| 22     | 6  | 16 | 21     | 21     | 6 | 15     | 20     | 11929.642 | 11929.644 | -0.002 |
| 22     | 4  | 19 | 23     | 21     | 4 | 18     | 22     | 11958.693 | 11958.693 | -0.001 |
| 22     | 4  | 19 | 21     | 21     | 4 | 18     | 20     | 11958.693 | 11958.694 | -0.001 |
| 22     | 4  | 19 | 22     | 21     | 4 | 18     | 21     | 11958.700 | 11958.700 | 0.001  |
| 28     | 2  | 27 | 29     | 27     | 2 | 26     | 28     | 14497.770 | 14497.769 | 0.000  |
| 28     | 2  | 27 | 27     | 27     | 2 | 26     | 26     | 14497.770 | 14497.770 | 0.000  |
| 28     | -2 | 27 | 28     | 2.7    | 2 | 26     | 2.7    | 14497.810 | 14497.810 | 0.000  |
| 28     | 3  | 26 | 29     | 27     | - | 25     | 28     | 14912.881 | 14912.881 | 0.000  |
| 28     | 3  | 26 | 27     | 27     | 3 | 25     | 26     | 14912.881 | 14912.880 | 0.000  |
| 28     | 3  | 26 | 28     | 27     | 3 | 25     | 27     | 14912.928 | 14912.928 | 0.000  |
| 21     | 3  | 18 | 21     | 20     | 3 | 17     | 20     | 11736.086 | 11736.084 | 0.002  |
| 21     | 3  | 18 | 22     | 20     | 3 | 17     | 21     | 11736.117 | 11736.116 | 0.000  |
| 21     | 3  | 18 | 20     | 20     | 3 | 17     | 19     | 11736.117 | 11736.117 | -0.001 |
| 24     | 0  | 24 | 25     | 23     | 0 | 23     | 24     | 12072.543 | 12072.544 | -0.001 |
| 24     | 0  | 24 | 23     | 23     | 0 | 23     | 22     | 12072.548 | 12072.548 | 0.001  |
| 24     | 0  | 24 | 24     | 23     | 0 | 23     | 23     | 12072.565 | 12072.566 | -0.001 |
| 23     | 1  | 22 | 24     | 22     | 1 | 21     | 23     | 12072.610 | 12072.610 | -0.001 |
| 23     | 1  | 22 | 22     | 22     | 1 | 21     | 21     | 12072.610 | 12072.610 | 0.000  |
| 23     | 1  | 22 | 23     | 22     | 1 | 21     | 22     | 12072.694 | 12072.692 | 0.001  |
| 8      | 4  |    | 8      | 7      | 3 | 4      | 7      | 12111.049 | 12111.052 | -0.003 |
| 8      | 4  | 5  | 9      | 7      | 3 | 4      | . 8    | 12111.158 | 12111.158 | 0.000  |
| 8      | 4  | 5  | 7      | 7      | 3 | 4      | 6      | 12111.172 | 12111.177 | -0.005 |
| 7      | 4  | 4  | 7      | ,<br>6 | 3 | 3      | 6      | 11575.729 | 11575.734 | -0.005 |
| ,<br>7 | 4  | 4  | ,<br>8 | 6      | 3 | 3      | 7      | 11575.872 | 11575.876 | -0.005 |
| ,<br>7 | 4  | 4  | 6      | 6      | 3 | 3      | 5      | 11575.896 | 11575.902 | -0.006 |
| ,<br>9 | 5  | 5  | 9      | 8      | 4 | 4      | 8      | 14884.762 | 14884.764 | -0.002 |
| 9      | 5  | 5  | 10     | 8      | 4 | 4      | 9      | 14884.879 | 14884.883 | -0.004 |
| 9      | 5  | 5  | 8      | 8      | 4 | 4      | 7      | 14884.879 | 14884.899 | -0.020 |
| 9      | 5  | 4  | 9      | 8      | 4 | -<br>5 | ,<br>8 | 14884.975 | 14884.974 | 0.001  |
| 9      | 5  | 4  | 10     | 8      | 4 | 5      | 9      | 14885.094 | 14885.094 | 0.000  |
|        | -  |    | - 0    | 0      |   | 2      |        |           |           |        |

| 9  | 5 | 4  | 8  | 8  | 4 | 5  | 7  | 14885.109 | 14885.110 | -0.001 |
|----|---|----|----|----|---|----|----|-----------|-----------|--------|
| 10 | 5 | 6  | 10 | 9  | 4 | 5  | 9  | 15422.047 | 15422.049 | -0.002 |
| 10 | 5 | 6  | 11 | 9  | 4 | 5  | 10 | 15422.148 | 15422.149 | -0.002 |
| 10 | 5 | 6  | 9  | 9  | 4 | 5  | 8  | 15422.148 | 15422.163 | -0.015 |
| 10 | 5 | 5  | 10 | 9  | 4 | 6  | 9  | 15422.594 | 15422.596 | -0.002 |
| 10 | 5 | 5  | 11 | 9  | 4 | 6  | 10 | 15422.698 | 15422.699 | -0.001 |
| 10 | 5 | 5  | 9  | 9  | 4 | 6  | 8  | 15422.709 | 15422.713 | -0.003 |
| 11 | 5 | 7  | 11 | 10 | 4 | 6  | 10 | 15958.131 | 15958.134 | -0.003 |
| 11 | 5 | 7  | 12 | 10 | 4 | 6  | 11 | 15958.213 | 15958.215 | -0.002 |
| 11 | 5 | 7  | 10 | 10 | 4 | 6  | 9  | 15958.213 | 15958.226 | -0.013 |
| 12 | 5 | 8  | 12 | 11 | 4 | 7  | 11 | 16492.542 | 16492.543 | -0.001 |
| 12 | 5 | 8  | 13 | 11 | 4 | 7  | 12 | 16492.605 | 16492.607 | -0.002 |
| 12 | 5 | 8  | 11 | 11 | 4 | 7  | 10 | 16492.615 | 16492.616 | 0.000  |
| 32 | 2 | 31 | 33 | 31 | 1 | 30 | 32 | 16492.864 | 16492.864 | 0.000  |
| 32 | 2 | 31 | 31 | 31 | 1 | 30 | 30 | 16492.864 | 16492.865 | -0.001 |
| 32 | 2 | 31 | 32 | 31 | 1 | 30 | 31 | 16492.905 | 16492.905 | 0.000  |
| 12 | 5 | 7  | 12 | 11 | 4 | 8  | 11 | 16495.297 | 16495.291 | 0.005  |
| 12 | 5 | 7  | 13 | 11 | 4 | 8  | 12 | 16495.369 | 16495.363 | 0.006  |
| 12 | 5 | 7  | 11 | 11 | 4 | 8  | 10 | 16495.379 | 16495.372 | 0.007  |

### REFERENCES

- 1 T. A. Halgren, J. Comput. Chem., 1999, 20, 720–729.
- 2 C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 618–622.
- 3 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 4 Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167.
- 5 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 6 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 7 A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.
- 8 T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. V. R. Schleyer, *J. Comput. Chem.*, 1983, **4**, 294–301.
- 9 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650– 654.
- "Gaussian 16 Revision D0.1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
  B. M. M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, H. P. H. G. A. Petersson,
  H. Nakatsuji, M. Caricato, X. Li, M. H. A. F. Izmaylov, J. Bloino, G. Zheng, J. L., *Gaussian, Inc., Wallingford CT*, 2016.
- 11 T. J. Balle and W. H. Flygare, *Rev. Sci. Instrum.*, 1981, **52**, 33–45.
- 12 U. Andresen, H. Dreizler, J. -U. Grabow and W. Stahl, *Rev. Sci. Instrum.*, 1990, **61**, 3694–3699.
- 13 E. J. Cocinero, A. Lesarri, P. Écija, J. U. Grabow, J. A. Fernández and F. Castaño, *Phys. Chem. Chem. Phys.*, 2010, **12**, 12486–12493.
- 14 S. Melandri, W. Camianti, L. B. Favero, A. Millemaggi and P. G. Favero, *J. Mol. Struct.*, 1995, **352/353**, 253–258.
- 15 A. Lesarri, S. Mata, J. C. López and J. L. Alonso, *Rev. Sci. Instrum.*, 2003, **74**, 4799–4804.
- 16 J.-U. Grabow and W. Caminati, in *Frontiers of Molecular Spectroscopy*, 2009, pp. 383–454.