Supporting Information for:

Silver-Promoted Synthesis of Vinyl Sulfones from Vinyl Bromides

and Sulfonyl Hydrazides in Water

Ge Zhang,^{*a,b*} Jian-Guo Fu,^{*c*} Qian Zhao,^{*d*} Meng-Yao Li,^{*b*} Gui-Shan Zhang,^{*d*} Chen-Guo Feng,^{**b,c*} Guo-Qiang Lin^{**a,b*}

^a School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China

^c Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

^d Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical CO., LTD. Nanjing, 211112, China

Table of Contents

1. General Information	2				
2. Synthesis of Vinyl Sulfones 3	2				
3. Gram-Scale Synthesis	10				
4. Control Experiments	11				
5. References	12				
6. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra					

1. General Information

All commercially available chemical resources were used as received. Chromatographic purification of products was accomplished using forced flow chromatography on silica gel 60 (300~400 μ m). Thin layer chromatography was performed on silica gel (200~300 μ m). Nuclear Magnetic Resonance (NMR) spectras were acquired on a Varian Mercury 400 operating at 400, 100 and 376 MHz for ¹H, ¹³C, ¹⁹F respectively. Chemical shifts were reported in δ ppm referenced to an internal SiMe₄ standard for ¹H NMR, chloroform-d (δ 77.16) for ¹³C NMR. Multiplicities were reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple, br = broad resonance. 2,2-Diarylvinyl bromides **1a-1q** and **1a'** were prepared according to the reported procedures, ^[1, 2] and **1r-1u** were obtained from commercial resources. Sulfonyl hydrazides **2d-2f**, **2i-2m** and **2p** were prepared according to the reported procedures, ^[3-6] and **2a-2c**, **2g**, **2n** and **2o** were obtained from commercial resources.

2. Synthesis of Vinyl Sulfones 3

General Procedure: To a 25 mL Schlenk tube charged with a stir bar, vinyl bromides **1** (0.2 mmol), sulfonyl hydrazides **2** (0.3 mmol), AgF (50.8 mg, 0.4 mmol), and DPPH (13.6 mg, 0.03 mmol) were added. After filled with argon, water (5 mL) was added via a syringe. After stirred at 80 °C for 10 h, the reaction mixture was cooled down to room temperature, washed with brine (15 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (PE/EA = $5:1\sim2:1$) to afford pure products **3**.

(2-tosylethene-1,1-diyl)dibenzene (3aa)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.0 Hz, 2H), 7.41-7.24 (m, 6H), 7.23-7.07 (m, 6H), 6.99 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.81, 143.86, 139.32, 138.69, 135.67, 130.34, 129.87, 129.44, 129.06, 128.94, 128.67, 128.31, 127.91, 127.79, 21.68; **EI-MS** (m/z, %): 334 (M⁺, 2.09), 84 (100), 86 (62.74), 57 (34.83); **HRMS**

(EI): m/z calcd for: $C_{21}H_{18}O_2S$, 334.1028 [M]⁺; found: 334.1034.

4,4'-(2-tosylethene-1,1-diyl)bis(methylbenzene) (3ba)

White solid; ¹ **H NMR** (400 MHz, CDCl₃): δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.12-7.07 (m, 6H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.90 (s, 1H), 2.39 (s, 3H), 2.38 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.99, 143.72, 140.71, 139.03, 138.94, 136.80, 132.99, 129.91, 129.35, 129.35, 128.55, 128.37, 127.80, 127.66, 21.69, 21.56, 21.39. **EI-MS** (m/z, %): 362 (M⁺, 34.15), 91 (100), 119

(58.6), 148 (38.35); **HRMS** (EI): m/z calcd for: C₂₃H₂₂O₂S, 362.1341 [M]⁺; found: 362.1342.

4,4'-(2-tosylethene-1,1-diyl)bis(fluorobenzene) (3ca)

White solid; ¹ **H** NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.3 Hz, 2H), 7.23-7.14 (m, 4H), 7.14-7.07 (m, 2H), 7.05-6.97 (m, 4H), 6.93 (s, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.14 (d, J = 248.1 Hz), 163.30 (d, J = 248.1 Hz), 152.53, 144.21, 138.52, 135.34 (d, J = 3.3 Hz), 131.92 (d, J = 8.4 Hz), 131.45 (d, J = 3.4 Hz), 130.33 (d, J = 3.4 Hz), 130.34 (d, J = 3.4 Hz), 1

8.6 Hz), 129.57, 129.22, 127.74, 115.90 (d, J = 21.8 Hz), 115.189 (d, J = 21.6 Hz), 21.69. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -109.76, -111.61; **EI-MS** (m/z, %): 370 (M⁺, 0.6), 91 (100), 119 (54.67), 84 (45.21); **HRMS** (EI): m/z calcd for: C₂₁H₁₆O₂F₂S, 370.0839 [M]⁺; found: 370.0834.

4,4'-(2-tosylethene-1,1-diyl)bis(chlorobenzene) (3da)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.3 Hz, 2H), 7.32-7.25 (m, 4H), 7.21 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 8.5 Hz, 2H), 6.95 (s, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 152.01, 144.41, 139.18, 137.37, 136.88, 135.54, 133.73, 131.27, 129.84, 129.66, 129.55, 129.10, 128.41, 127.85, 21.76.

EI-MS (m/z, %): 402 (M⁺, 74.12), 212 (100), 91 (97.2), 176 (86.32); **HRMS** (EI): m/z calcd for: C₂₁H₁₆O₂SCl₂, 402.0248 [M]⁺; found: 402.0243.

1-methoxy-4-(1-phenyl-2-tosylvinyl)benzene (1:1) (3ea)

(Isomer ratio = 1:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.28 (d, J = 7.3 Hz, 1H), 7.24-7,18 (m, 2H), 7.14-7.09 (m, 1.5H), 7.09-7.03 (m, 2.5H), 7.01-6.97 (m, 2H), 6.86 (s, 0.5H), 6.81 (s, 0.5H), 6.76-6.70 (m, 2H), 3.77 (s, 1.5H), 3.71 (s, 1.5H), 2.30 (s, 1.5H), 2.29 (s, 1.5H). ¹³C NMR (100 MHz,

CDCl₃): δ 161.48, 160.39, 154.81, 154.42, 143.77, 143.62, 139.90, 138.98, 138.82, 135.84, 135.81, 131.68, 131.45, 130.24, 129.83, 129.38, 129.34, 128.79, 128.58, 128.54, 128.36, 127.98, 127.82, 127.69, 127.68, 126.78, 114.03, 113.28, 55.47, 55.38, 21.65, 21.63. **EI-MS** (m/z, %): 364 (M⁺, 4.79), 191 (100), 84 (80.93), 86 (50.26); **HRMS** (EI): m/z calcd for: C₂₂H₂₀O₃S, 364.1133 [M]⁺; found: 364.1143.

1-chloro-4-(1-phenyl-2-tosylvinyl)benzene (3fa)

(Isomer ratio = 1:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.41-7.22 (m, 5H), 7.21-7.02 (m, 6H), 6.97 (s, 1H), 2.39 (s, 1.5H), 2.36 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃): δ 153.41, 153.29, 144.20, 144.00, 138.80, 138.45, 138.39, 137.73, 136.52, 135.20, 135.17, 134.10, 131.26, 130.53, 129.79, 129.77, 129.54,

129.46, 129.37, 129.35, 129.13, 128.89, 128.76, 128.24, 128.17, 128.01, 127.77, 127.72, 21.68, 21.65. **EI-MS** (m/z, %): 368 (M⁺, 41.53), 178 (100), 212 (57.73), 176 (55.52); **HRMS** (EI): m/z calcd for: $C_{21}H_{17}O_2SCl$, 368.0638 [M]⁺; found: 368.0646.

4-(1-phenyl-2-tosylvinyl)-1,1'-biphenyl (3ga)

(Isomer ratio = 5:2); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.157(m, 14H), 7.13-7.03 (m, 4H), 6.95 (m, 1H), 2.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.37, 143.88, 143.22, 140.00, 139.38, 138.11, 135.64, 130.52, 130.40, 129.92, 129.47, 129.41, 129.03, 128.80, 128.74, 128.45, 128.07, 127.99, 127.91, 127.85, 127.33, 127.23, 127.19,

126.56, 21.70. **EI-MS** (m/z, %): 410 (M⁺, 3.03), 191 (100), 84 (52.13), 57 (37.56); **HRMS** (EI): m/z calcd for: $C_{27}H_{22}O_2S$, 410.1341 [M]⁺; found: 410.1337.

1-methyl-3-(1-phenyl-2-tosylvinyl)benzene (3ha)

(Isomer ratio = 1:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.46 (dd, J = 8.1, 6.3 Hz, 2H), 7.39-7.33 (m, 1H), 7.32-7.27 (m, 2H), 7.23-7.07 (m, 6H), 7.03 (s, 0.5H), 6.99-6.92 (m, 2H), 6.73 (s, 0.5H), 2.38 (m, 3H), 2.29 (s, 1.5H), 2.25 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃): δ 155.07, 143.80, 143.71, 139.36, 139.28, 138.77, 138.43, 137.51, 135.77,

135.53, 131.14, 130.30, 130.12, 129.86, 129.86, 129.62, 129.41, 129.31, 129.09, 128.90, 128.79, 128.66, 128.55, 128.28, 128.28, 127.86, 127.86, 127.79, 127.12, 125.64, 21.68, 21.65, 21.45, 21.40. **EI-MS** (m/z, %): 348 (M⁺, 66.65), 192 (100), 178 (80.87), 193 (55.08); **HRMS** (EI): m/z calcd for: $C_{22}H_{20}O_2S$, 348.1184 [M]⁺; found: 348.1196.

1-chloro-3-(1-phenyl-2-tosylvinyl)benzene (3ia)

(Isomer ratio = 1:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.0 Hz, 2H), 7.43-7.35 (m, 1H), 7.36-7.27 (m, 3.5H), 7.27-7.03 (m, 6.5H), 6.97 (s, 0.5H), 6.83 (s, 0.5H), 2.40 (s, 1.5H), 2.38 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃): δ 153.23, 152.97, 144.29, 144.11, 141.22, 138.39, 138.33, 137.26, 135.03, 134.77, 134.04, 130.61, 130.23, 130.23,

129.99, 129.92, 129.80, 129.56, 129.52, 129.32, 129.24, 128.96, 128.84, 128.34, 128.22, 128.14, 128.08, 127.83, 127.78, 126.51, 21.69, 21.69. **EI-MS** (m/z, %): 368 (M⁺, 41.53), 178 (100), 212 (57.73), 176 (55.52); **HRMS** (EI): m/z calcd for: $C_{21}H_{17}O_2SCl$, 368.0638 [M]⁺; found: 368.0646.

1-methyl-2-(1-phenyl-2-tosylvinyl)benzene (3ja)

(Isomer ratio = 1:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.2 Hz, 0.33H), 7.41-7.16 (m, 9.16H), 7.16-7.10 (m, 2.66H), 7.08-7.03 (m, 1.66H), 6.59 (s, 0.16H), 2.38 (s, 3H), 2.04 (s, 0.5H), 1.69 (s, 2.5H). ¹³C NMR (100 MHz, CDCl₃): δ 154.48, 143.92, 138.33, 137.74, 136.34, 134.55, 131.37, 131.02, 130.39, 130.09, 130.08, 129.94, 129.51, 129.47, 129.33, 129.15, 128.93, 128.86, 127.99, 127.78, 127.67, 127.37, 125.92, 125.29, 21.68, 20.35, 19.59,

17.79. **EI-MS** (m/z, %): 348 (M⁺, 8.61), 193 (100), 192 (93.17), 115 (55.66); **HRMS** (EI): m/z calcd for: $C_{21}H_{18}O_3S$, 348.1184 [M]⁺; found: 348.1188.

1-chloro-2-(1-phenyl-2-tosylvinyl)benzene (3ka)

(Isomer ratio = 5:1); White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.3 Hz, 0.33H), 7.51 (d, J = 8.3 Hz, 1.66H), 7.39-7.14 (m, 11H), 7.07 (s, 0.83H), 6.71 (s, 0.16H), 2.39 (s, 2.5H), 2.37 (s, 0.5H). ¹³C NMR (100 MHz, CDCl₃): δ 151.24, 144.26, 137.87, 137.15, 134.24, 133.23, 133.09, 131.94, 130.94, 130.44, 130.22, 129.83, 129.75, 129.58, 129.56, 129.49, 129.37, 128.86, 127.98, 127.83, 127.80, 127.40, 126.90, 126.38, 21.73, 21.70. **EI-MS** (m/z, %):

368 (M⁺, 0.16), 333 (100), 334 (46.13), 178 (37.18); **HRMS** (EI): m/z calcd for: $C_{21}H_{17}O_2SCl$, 368.0638 [M]⁺; found: 368.0641.

(*E*)-2-(1-phenyl-2-tosylvinyl)naphthalene (3la)

Withe solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.85 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.55-7.50 (m, 1H), 7.46 (d, J = 6.9 Hz, 1H), 7.36 (s, 1H), 7.34-7.24 (m, 6H), 7.11 (d, J = 8.1 Hz, 2H), 7.03 (dd, J = 12.1, 7.8 Hz, 2H), 6.70 (d, J = 8.1 Hz, 2H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 153.14, 143.35, 138.23, 133.41, 132.12, 131.61, 130.75, 130.71,

130.46, 129.51, 129.46, 128.93, 128.81, 128.15, 127.68, 127.38, 126.08, 125.70, 125.68, 124.99, 21.39. **EI-MS** (m/z, %): 384 (M^+ , 1.02), 229 (100), 228 (93.13), 230 (26.32); **HRMS** (EI): m/z calcd for: C₂₅H₂₀O₂S, 384.1184 [M]⁺; found: 384.1190. The geometry was tentatively assigned according to the proposed mechanism.

(*E*)-1-methyl-4-((2-phenylprop-1-en-1-yl)sulfonyl)benzene (3ma)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.3 Hz, 2H), 7.42-7.32 (m, 7H), 6.60 (d, J = 1.2 Hz, 1H), 2.52 (d, J = 1.2 Hz, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.28, 140.41, 134.77, 129.99, 129.94, 128.85, 128.02, 127.97, 127.45, 126.45, 21.75, 17.31. **EI-MS** (m/z, %): 272 (M⁺, 79.22), 115 (100), 206 (87.43), 105 (74.64); **HRMS** (EI): m/z calcd for: C₁₆H₁₆O₂S, 272.0871 [M]⁺;

found: 272.0870. The data is consistent with the reported literature.^[7]

(E)-1-chloro-4-(1-tosylprop-1-en-2-yl)benzene (3na)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.38-7.30 (m, 6H), 6.59 (d, *J* = 1.2 Hz, 1H), 2.50 (d, *J* = 1.2 Hz, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 151.56, 144.42, 139.05, 138.60, 135.95, 130.00, 128.99, 128.24, 127.72, 127.39, 21.72, 17.13. **EI-MS** (m/z, %): 306 (M⁺, 75.04), 115 (100), 139 (85.18), 240 (66.46); **HRMS** (EI): m/z calcd for:

C₁₆H₁₅O₂ClS, 306.0481 [M]⁺; found: 306.0487. The geometry was determined by NOE analysis.

(E)-1-methyl-4-((2-phenylbut-1-en-1-yl)sulfonyl)benzene (3oa)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 7.4 Hz, 7H), 6.47 (s, 1H), 3.06 (q, *J* = 7.4 Hz, 2H), 2.44 (s, 3H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 159.32, 144.25, 139.54, 139.02, 129.99, 129.76, 128.86, 127.56, 127.40, 126.91, 23.78, 21.77, 13.24. **EI-MS** (m/z, %): 286 (M⁺, 60.79), 220 (100), 91 (79.69), 251 (62.09); **HRMS** (EI): m/z calcd for:

 $C_{17}H_{18}O_2S$, 286.1028 [M]⁺; found: 286.1032. The geometry was determined by NOE analysis.

(Z)-1-((2-cyclohexyl-2-phenylvinyl)sulfonyl)-4-methylbenzene (3pa)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.27 (ddd, J = 22.9, 14.3, 7.5 Hz, 5H), 7.09 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 7.0 Hz, 2H), 6.46 (s, 1H), 2.36 (s, 3H), 2.14 (t, J = 11.0 Hz, 1H), 1.73 (d, J = 10.2 Hz, 4H), 1.63 (d, J = 12.9 Hz, 1H), 1.14 (ddd, J = 23.7, 18.4, 7.0 Hz, 5H). ¹³C NMR (100 MHz, CDCl₃): δ 162.92, 143.51, 138.87, 136.53, 129.26, 128.41, 128.01, 127.96, 127.63, 127.59,

47.85, 31.31, 26.29, 25.88, 21.65. EI-MS (m/z, %): 340 (M⁺, 59.22), 84 (100), 86 (78.18), 141 (23.8); **HRMS** (EI): m/z calcd for: C₂₁H₂₄O₂S, 340.1497 [M]⁺; found: 340.1505. The geometry was determined by NOE analysis.

(*E*)-1-((2-fluoro-2-phenylvinyl)sulfonyl)-4-methylbenzene (3qa)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.94 (d, J = 8.0 Hz, 2H), 7.59-7.32 (m, 7H), 6.56 (d, J = 32.3 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 162.76, 144.73, 132.51, 129.94, 129.13 (d, *J* = 1.5 Hz), 127.81 (d, *J* = 1.3 Hz), 126.02 (d, J = 7.8 Hz), 109.93 (d, J = 12.5 Hz), 21.79. ¹⁹F NMR (376 MHz, CDCl₃) $\delta =$ -93.48 (d, 32.3 Hz); EI-MS (m/z, %): 276 (M⁺, 1.33), 84 (100), 86 (65.01), 47

(15.51); **HRMS** (EI): m/z calcd for: C₁₅H₁₃O₂FS, 276.0620 [M]⁺; found: 276.0630. The geometry was determined by NOE analysis.

ethyl (*E*)-3-tosylacrylate (3ra)

Me

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.80 (d, J = 8.1 Hz, 2H), 7.44-7.24 (m, 3H), 6.80 (d, J = 15.2 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.47 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.66, 145.79, 143.54, 135.50, 130.61, 130.40, 128.52, 62.14, 21.88, 14.17. EI-MS (m/z, %): 254 (M⁺, 24), 139 (100), 91 (28.18), 145 (14.74); **HRMS** (EI): m/z calcd for: $C_{12}H_{14}O_4S$, 254.0613 [M]⁺; found:

254.0618. The data is consistent with the reported literature.^[8]

1-methyl-4-((2-methylprop-1-en-1-yl)sulfonyl)benzene (3sa)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.2 Hz, 2H), 7.33 (d, J =8.2 Hz, 2H), 6.18 (s, 1H), 2.43 (s, 3H), 2.14 (s, 3H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.75, 143.95, 139.57, 129.81, 127.19, 126.62, 27.13, 21.64, 19.23. EI-MS Me 3sa (m/z, %): 210 (M⁺, 63.75), 144 (100), 143 (89.75), 139 (69.06); **HRMS** (EI): m/z calcd for: C₁₁H₁₄O₂S, 210.0715 [M]⁺; found: 210.0716.

1-methyl-4-((3-methylbut-2-en-2-yl)sulfonyl)benzene (3ta)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.74 (d, J = 8.2 Hz, 2H), 7.31 (d, J =J_S Me 8.2 Hz, 2H), 2.43 (s, 3H), 2.21 (d, J = 1.2 Hz, 3H), 2.00 (s, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.84, 143.71, 139.19, 131.36, 129.72, 127.15, 103.58, 24.57, Me Me 3ta 22.22, 21.70, 16.03. EI-MS (m/z, %): 224 (M⁺, 47.43), 158 (100), 159 (62.86), 139

(57.09); **HRMS** (EI): m/z calcd for: C₁₂H₁₆O₂S, 224.0871 [M]⁺; found: 224.0873.

(E)-1-methyl-4-(styrylsulfonyl)benzene (3ua)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 15.4 Hz, 1H), 7.51-7.45 (m, 2H), 7.36 (dd, J = 18.2, 7.6 Hz, 5H), 6.85 (d, J = 15.4 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.50, 142.04, 137.84, 132.55, 131.21, 130.07, 129.16, 128.62, 127.81, 127.73, 21.73. **EI-MS** (m/z, %): 258 (M⁺, 53.86), 91 (100), 139 (78.84), 77 (39.22); **HRMS** (EI): m/z calcd for:

 $C_{15}H_{14}O_2S$, 258.0715 [M]⁺; found: 258.0724.

(2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene (3ab)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.32-7.16 (m, 8H), 7.13 (d, J = 7.3 Hz, 2H), 7.00 (d, J = 7.1 Hz, 2H), 6.95 (s, 1H). ¹³**C** NMR (100 MHz, CDCl₃): δ 155.31, 141.53, 139.16, 135.54, 132.94, 130.44, 129.84, 128.97, 128.83, 128.77, 128.69, 128.30, 127.95, 127.71. **EI-MS** (m/z, %): 320 (M⁺, 14.3), 191 (100), 178 (31.18), 57 (28.6); **HRMS** (EI): m/z calcd for: C₂₀H₁₆O₂S, 320.0871 [M]⁺; found: 320.0878.

(2-((4-methoxyphenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ac)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.9 Hz, 2H), 7.32-7.26 (m, 1H), 7.26-7.19 (m, 4H), 7.15-7.10 (m, 2H), 7.05-7.00 (m, 2H), 6.93 (s, 1H), 6.73 (d, J = 8.9 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.22, 154.40, 139.32, 135.70, 133.20, 130.29, 129.95, 129.89, 129.45, 128.92, 128.67, 128.27, 127.95, 114.01, 55.73. **EI-MS** (m/z, %): 350 (M⁺, 34.15), 178 (100), 286 (58.18), 179 (35.4); **HRMS** (EI): m/z calcd for: C₂₁H₁₈O₃S,

350.0977 [M]⁺; found: 350.0985.

(2-((4-(*tert*-butyl)phenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ad)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.6 Hz, 2H), 7.40-7.24 (m, 8H), 7.23-7.19 (m, 2H), 7.11-7.05 (m, 2H), 7.02 (s, 1H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.72, 154.62, 139.28, 138.35, 135.69, 130.32, 129.86, 129.22, 128.85, 128.66, 128.30, 127.91, 127.62, 125.76, 35.20, 31.14. **EI-MS** (m/z, %): 376 (M⁺, 32.15), 178 (100), 167 (50), 179 (41.89); **HRMS** (EI): m/z calcd for: C₂₄H₂₄O₂S, 376.1497 [M]⁺; found: 376.1500.

(2-((4-chlorophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ae)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.46 (d, J = 8.6 Hz, 2H), 7.37 (dt, J = 4.9, 4.0 Hz, 2H), 7.34-7.26 (m, 6H), 7.23-7.18 (m, 2H), 7.08-7.04 (m, 2H), 7.02 (s, 1H). ¹³**C** NMR (100 MHz, CDCl₃): δ 155.70, 139.89, 139.46, 138.82, 135.36, 130.58, 129.79, 129.16, 129.08, 128.93, 128.69, 128.55, 128.25, 127.96. **EI-MS** (m/z, %): 354 (M⁺, 25.72), 178 (100), 179 (42.76), 115 (40.19); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂SCl, 354.0481 [M]⁺; found: 354.0476.

(2-((4-fluorophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3af)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.51 (m, 2H), 7.41-7.35 (m, 2H), 7.34-7.27 (m, 4H), 7.23-7.18 (m, 2H), 7.09-7.05 (m, 2H), 7.04 (s, 1H), 6.99 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 165.29 (d, *J* = 257.9 Hz), 155.49, 138.95, 135.46, 130.58, 130.57 (d, *J* = 9.5 Hz), 129.86, 129.10, 128.89, 128.74, 128.29, 128.03, 115.94 (d, *J* = 22.5 Hz). **EI-MS** (m/z, %): 338 (M⁺, 40.83), 178 (100), 179 (45.29), 167 (34.39); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂FS,

338.0777 [M]⁺; found: 338.0772.

(2-((4-iodophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ag)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.42-7.17 (m, 10H), 7.05 (d, *J* = 7.2 Hz, 2H), 7.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 155.78, 141.14, 138.90, 137.95, 135.42, 130.63, 129.85, 129.14, 129.12, 128.75, 128.53, 128.31, 128.02, 100.72. **EI-MS** (m/z, %): 446 (M⁺, 24.29), 57 (100), 71 (82.35), 178 (76.66); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂IS, 445.9838 [M]⁺; found: 445.9840.

(2-((4-bromophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ah)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.5 Hz, 2H), 7.41-7.35 (m, 4H), 7.30 (td, J = 7.6, 2.2 Hz, 4H), 7.20 (d, J = 7.4 Hz, 2H), 7.06 (d, J = 7.4 Hz, 2H), 7.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 155.77, 140.45, 138.85, 135.39, 131.94, 130.61, 129.82, 129.27, 129.12, 128.86, 128.73, 128.53, 128.10, 128.00. **EI-MS** (m/z, %): 398 (M⁺, 17.76), 178 (100), 179 (42.98), 167 (31.61); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂SBr, 397.9976 [M]⁺; found:

397.9977.

(2-((4-nitrophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ai)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.7 Hz, 2H), 7.41 (dd, J = 12.7, 7.2 Hz, 2H), 7.36-7.25 (m, 4H), 7.22 (d, J = 7.7 Hz, 2H), 7.07 (s, 1H), 7.03 (d, J = 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 157.21, 150.07, 147.04, 138.47, 135.18, 131.03, 129.90, 129.46, 129.08, 128.85, 128.38, 128.13, 127.77, 123.76. **EI-MS** (m/z, %): 365 (M⁺, 32.24), 178 (100), 179 (45.28), 167 (19.85); **HRMS** (EI): m/z calcd for: C₂₀H₁₅NO4S,

365.0722 [M]⁺; found: 365.0729.

(2-((4-(trifluoromethyl)phenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3aj)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.44-7.18 (m, 8H), 7.06 (s, 1H), 7.02 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.47, 144.83, 138.68, 135.31, 134.59, 134.27, 130.85, 129.87, 129.26, 128.82, 128.37, 128.33, 128.25, 128.09, 125.77 (q, J = 3.7 Hz). ¹⁹F NMR (376 MHz,

CDCl₃) δ -63.25; **EI-MS** (m/z, %): 388 (M⁺, 5.4), 84 (100), 86 (69.93), 191 (28.22); **HRMS** (EI): m/z calcd for: C₂₁H₁₅F₃O₂S, 388.0745 [M]⁺; found: 388.0752.

$(2-((3-chlorophenyl)sulfonyl)ethene-1, 1-diyl) dibenzene\ (3ak)$

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.37 (m, 5H), 7.31 (dd, J = 14.8, 7.8 Hz, 5H), 7.24-7.20 (m, 2H), 7.06 (s, 1H), 7.04 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 156.19, 143.17, 138.83, 135.20, 134.91, 133.07, 130.73, 130.05, 129.84, 129.35, 128.80, 128.53, 128.35, 128.17, 128.06, 125.87. **EI-MS** (m/z, %): 354 (M⁺, 32.79), 178 (100), 179 (48.67), 167 (31.3); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂SCl, 354.0481 [M]⁺; found: 354.0885.

$(2-(o-tolyl sulfonyl) ethene-1, 1-diyl) dibenzene\ (3al)$

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.45-7.36 (m, 2H), 7.31 (dd, J = 14.3, 7.4 Hz, 3H), 7.27-7.21 (m, 4H), 7.17 (t, J = 7.4 Hz, 3H), 7.06 (s, 1H), 7.03-6.96 (m, 3H), 2.65 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃): δ 153.96, 138.23, 136.23, 134.37, 131.89, 130.97, 129.47, 128.67, 128.50, 127.96, 127.87, 127.80, 127.31, 126.87, 125.01, 19.70. **EI-MS** (m/z, %): 334 (M⁺, 11.13), 178 (100), 57 (67.38), 191 (53.13); **HRMS** (EI): m/z calcd for: C₂₁H₁₈O₂S, 334.1028 [M]⁺; found: 334.1037.

(2-((2-chlorophenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3am)

White solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (dd, J = 8.0, 1.3 Hz, 1H), 7.41-7.31 (m, 5H), 7.29-7.20 (m, 3H), 7.18 (s, 1H), 7.13 (t, J = 7.6 Hz, 2H), 7.05 (td, J = 8.1, 1.4 Hz, 1H), 6.99 (d, J = 7.1 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃): δ 155.41, 139.13, 135.33, 133.75, 132.21, 131.18, 130.97, 130.55, 129.60, 128.96, 128.77, 128.46, 128.24, 127.79, 126.74. **EI-MS** (m/z, %): 354 (M⁺, 29.38), 178 (100), 167 (43.14), 179 (42.59); **HRMS** (EI): m/z calcd for: C₂₀H₁₅O₂SCl, 354.0481 [M]⁺; found: 354.0488.

(2-(mesitylsulfonyl)ethene-1,1-diyl)dibenzene (3an)

White solid; ¹**H** NMR (400 MHz, CDCl₃): δ 7.40-7.24 (m, 4H), 7.24-7.16 (m, 4H), 7.06 (s, 1H), 6.98 (d, *J* = 7.2 Hz, 2H), 6.75 (m, 2H), 2.44 (s, 6H), 2.24 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃): δ 153.19, 142.60, 139.45, 139.25, 135.58, 135.51, 131.77, 131.28, 130.20, 129.21, 128.74, 128.61, 128.09, 127.89, 22.60, 21.03. **EI-MS** (m/z, %): 362 (M⁺, 4.33), 178 (100), 297 (89.71), 165 (61.43); **HRMS** (EI): m/z calcd for: C₂₃H₂₂O₂S, 362.1341 [M]⁺; found: 364.1343.

(2-((2,4,6-triisopropylphenyl)sulfonyl)ethene-1,1-diyl)dibenzene (3ao)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.15 (m, 4H), 7.14-7.07 (m, 4H), 7.04 (s, 1H), 6.96 (d, J = 7.3 Hz, 2H), 6.91 (s, 2H), 3.93 (dt, J = 13.4, 6.7 Hz, 2H), 2.77 (dt, J = 13.8, 6.9 Hz, 1H), 1.15 (d, J = 6.9 Hz, 6H), 1.10 (d, J = 6.7 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 153.21, 150.37, 139.61, 132.86, 130.04, 129.60, 128.72, 128.58, 128.09, 127.85, 123.26, 123.26, 34.41, 29.88, 24.93, 23.78. **EI-MS** (m/z, %): 446 (M⁺, 1.55), 180 (100), 191 (72.5), 57 (29.85); **HRMS** (EI): m/z

calcd for: C₂₉H₃₄O₂S, 446.2280 [M]⁺; found: 446.2284.

2-((2,2-diphenylvinyl)sulfonyl)naphthalene (3ap)

White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.90-7.80 (m, 2H), 7.76 (d, J = 7.9 Hz, 1H), 7.60 (ddd, J = 31.2, 15.8, 7.8 Hz, 3H), 7.39-7.32 (m, 1H), 7.28 (t, J = 7.3 Hz, 3H), 7.18 (dd, J =13.4, 7.1 Hz, 4H), 7.10 (s, 1H), 7.03 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 155.46, 139.08, 138.04, 135.34, 134.91, 131.97, 130.46, 129.81, 129.74, 129.45, 129.10, 129.07, 129.03, 128.84, 128.68,

128.29, 127.87, 127.82, 127.39, 122.61. **EI-MS** (m/z, %): 370 (M⁺, 1.98), 84 (100), 86 (79.14), 47 (26.24); **HRMS** (EI): m/z calcd for: C₂₄H₁₈O₂S, 370.1028 [M]⁺; found: 370.1034.

3. Gram-Scale Synthesis

To a 250 mL Schlenk tube charged with a stir bar, 2,2-diphenylethenyl bromide (1a) (5 mmol), 4-methylbenzenesulfonohydrazide (2a) (7.5 mmol), AgF (1.27 g, 10 mmol), and DPPH (340 mg, 0.75 mmol) were added. After stirred at 80 °C for 10 h, the reaction mixture was cooled down to room temperature, washed with brine (15 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (PE/EA = 5:1) to afford pure products **3aa** in 90% yield.

4. Control Experiments

To a 25 mL Schlenk tube charged with a stir bar, 2,2-diphenylethenyl bromide (**1a**) (0.2 mmol), 4-methylbenzenesulfonohydrazide (**2a**) (0.3 mmol), AgF (50.8 mg, 0.4 mmol), DPPH (13.6 mg, 0.03 mmol) and TEMPO (62.4 mg, 2 equiv) were added. After filled with argon, water (5 mL) was added via a syringe. The mixture was stirred at 80 °C for 10 h. Upon completion, the yield of the product was detected by ¹**H NMR** with CH₂Br₂ as the internal standard.

To a 25 mL Schlenk tube charged with a stir bar, 1,1-diphenylethene (**1a**) (0.2 mmol), 4-methylbenzenesulfonohydrazide (**2a**) (0.3 mmol), AgF (50.8 mg, 0.4 mmol), DPPH (13.6 mg, 0.03 mmol) were added. After filled with argon, water (5 mL) was added via a syringe. The mixture was stirred at 80 °C for 10 h. Upon completion, the yield of the product was detected by ¹**H NMR** with CH₂Br₂ as the internal standard.

To a 25 mL Schlenk tube charged with a stir bar, 2,2-diphenylethenyl bromide (**1a**) (0.2 mmol), sodium *p*-tolylsulfinate (**5**) (0.3 mmol), AgF (50.8 mg, 0.4 mmol), DPPH (13.6 mg, 0.03 mmol) were added. After filled with argon, water (5 mL) was added via a syringe. The mixture was stirred at 80 °C for 10 h. Upon completion, the yield of the product was detected by ¹H NMR with CH_2Br_2 as the internal standard.

To a 25 mL Schlenk tube charged with a stir bar, Z- β -bromostyrene (Z-**1u**) or β -bromostyrene (Z-**1u**:E-**1u** = 1:5) (0.2 mmol), 4-methylbenzenesulfonohydrazide (**2a**) (0.3 mmol), AgF (50.8 mg, 0.4 mmol), DPPH (13.6 mg, 0.03 mmol) were added. After filled with argon, water (5 mL) was added via a syringe. The mixture was stirred at 80 °C for 10 h. Upon completion, the reaction mixture was washed with brine (15 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (PE/EA = 5:1) to afford pure products (**3ua**).

5. References

[1] G. Zhang, R. X. Bai, C. H. Li, C. G. Feng, G. Q. Lin, Tetrahedron 2019, 75, 1658.

[2] J. J. Molloy, J. B. Metternich, C. G. Daniliuc, A. J. B. Watson, R. Gilmour, *Angew. Chem. Int. Ed.* 2018, **57**, 3168.

[3] G. L. Backes, D. M. Neumann, B. S. Jursic, Bioorg. Med. Chem. 2014, 22, 4629.

[4] L. Y. Fu, T. M. Xian, K. T. Shi, Chem. Eur. J. 2012, 18, 1582.

[5] B. Wang, Z. C. Yan, Y. Y. Liu, J. W. Wang, Z. G. Zha, Z. Y. Wang, Green Chem. 2019, 21, 205.

[6] X. Zhao, L. P. Zhang, T. J. Li, G. Y. Liu, H. M. Wang, K. Lu, *Chem. Commun.* 2014, **50**, 13121.

[7] A. O. Terent'ev, O. M. Mulina, D. A. Pirgach, A. I. Ilovaisky, M. A. Syroeshkin, N. I. Kapustina, G. I. Nikishin, *Tetrahedron* 2017, **73**, 6871.

[8] K. Kiyokawa, T. Nagata, J. Hayakawa, S. Minakata, Chem. Eur. J. 2014, 20, 1.

6. Copies of ¹HNMR, ¹³CNNMR and ¹⁹F NMR

Ts 3aa

Insulation (State of the state	4004) 19-19 -14414914914	kinininininininininininininini		(Net back of the three back of	Hydanildy, Yyn Affrid y dyn	langhyddilayddur yn yngalagd	liti valitionatalitati	(N.Degaliyy))ggaliqyy),gala	1999 THE OWNER OF TH	vanjeleckopanjikajemerojendj	qavuqaannuayahalalad	neuropycki (dry itrau	woodpartingfysonalityanayfasty	1941-1441-1411-1441-1441-1441-1441-1441	of self-or the descent of the	haven and the
170	160	150	140	130	120	110	100	90 f1 (ppm) 16	80	70	60	50	40	30	20	10

-154.99 -154.99 -154.99 -138.94 -132.99 -132.99 -122.99 -122.935 -122.35 -122.35

h

f1 (ppm) 32

28	41	45 99 97 97 97 97 97 97 97 97
44.	40.	24. 29. 28. 28. 27. 26.
- <u>N</u> -	$\overline{\Sigma}$	

56	42	$\begin{array}{c} 0.5 \\ 0.5 \\ 0.05 \\ 0.0 $
151.	144	139. 135. 135. 135. 128. 127. 127.
Ì	Ì	

fl (ppm)

— I	160	155	150	145	140	135 1	30	125	120	115	110	105	100	95	90	85	80
ten Alfra II. al	alı balalı a Ander Ander Ander Ander Ander	an a na ann a na ann ann ann ann ann an	All harden and the second s	u Annali I anna an Anna Anna Anna Anna Anna Anna	la bahahaha ang ang ang ang ang ang ang ang ang an	ten all and family and all any definition of the second second second second second second second second second	alwai .ihi.h ihaa	עייין איזעי איזעי איזייין איייי	al dadaa ah a	k. L c (M. 11. 11 Much dl Mul	Linddinhaan kur miliithadiku)	dan luti luti la nutra la tan la t	dalandi ad Aliste al Aliste al Alistadi al Al	an ala ang ang ang ang ang ang ang ang ang an	ur hetter fot titte het en eine	ann, Ninan a Mhranngar	Aredablian),
والمعا وال	Mich. Lathi Inc. Anicology Marchen	Merkinsel II. Jahrsteinsen	hadishandaka, Madhadasad	الملاحقية المراقطة المراقطة المراقطة المراقع	and the state of the	Malikatati wa asimiki da kuta as	al de la	and all the later to the sector	laterin horas south of the	and all the state of	Hurdania Marina Ashidada (Ad	Manual II.	لد مالا بدينية (براية مارية الله بدالله.	us har ide in this in the survey	a Maria di Kamila ati sasa da sa di	uhan), Artholisea, Ini, Anadia.	Lilli Liter Later V
I																	
	-	F															
	\bigcirc																
	Ts 🔍	ו															
— 162.9				— 143.5	— 138.8 — 136. <u>9</u>	129.2	128.0										
92				51	87 53	56	14 10 10 10 10 10 10 10 10 10 10 10 10 10	n C									

f1 (ppm) 47

F 3qa

~-93.431 ~-93.517

fl (ppm)

⁵²

—21.64 —19.23

--2.43

---0.00

128.5

130.5

130.0

129.5

129.0

fl (ppm)

127.5

128.0

CF₃ S^SO Saj

100 80 60 -320 -360 40 20 -20-100 -120 -140 -220 -240 -260 -340 -60 -80 -160 -180 -200 -280 -300 Ò -40

---63.25

142.60 139.45 139.45 139.25 131.77 131.28 131.77 128.09 128.09 127.89

