Electronic Supplementary Information

For

Silver Ion-Induced Chiral Enhancement by Argentivorous Molecules

Eunji Lee,^a Yasuhiro Hosoi,^a Honoka Temma,^a Huiyeong Ju,^a Mari Ikeda,^b Shunsuke Kuwahara ^{a,c} and Yoichi Habata^{*a,c}

^{a.}Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan ^{b.}Education Centre, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan ^{c.}Research Centre for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Table of Contents

Experimental Procedures						
General .	General					
Synthesis	Synthesis of (R or S)-6-9					
Preparat	Preparation of (R)-6-AgPF ₆ 6					
Preparat	ion of (S)-6-AgPF ₆	6				
Preparat	ion of (S)-7-AgBF₄	6				
Preparat	ion of (<i>R</i>)-8-AgPF ₆	6				
Preparat	ion of (<i>R</i>)-6-Zn(NO ₃) ₂	6				
Results and	Discussion	7				
Fig. S1	Four isomers of metal complexes with a tetra-armed cyclen.	7				
Fig. S2	¹ H and ¹³ C NMR spectra of (<i>R</i>)-6	7				
Fig. S3	¹ H and ¹³ C NMR spectra of (S)-6	8				
Fig. S4	¹ H and ¹³ C NMR spectra of (<i>R</i>)-7	9				
Fig. S5	¹ H and ¹³ C NMR spectra of (S)-7	10				
Fig. S6	¹ H and ¹³ C NMR spectra of (<i>R</i>)-8	11				
Fig. S7	¹ H and ¹³ C NMR spectra of (S)-8	12				
Fig. S8	¹ H and ¹³ C NMR spectra of (<i>R</i>)-9	13				
Fig. S9	¹ H and ¹ °C NMR spectra of (S)-9	14				
Fig. S10	CD spectra of (R)-7 and (S)-7 in the presence of metal triflates	15				
Fig. S11	CD spectra of (R)-8 and (S)-8 in the presence of metal triflates	15				
Fig. 512	CD spectra of (R)-9 and (S)-9 in the presence of metal triflates	16				
Fig. S13	CD spectral changes of (R)-7 and (S)-7 upon addition of silver(I)	16				
Fig. 514	CD spectral changes of (R)-8 and (S)-8 upon addition of silver(I)	.17				
Fig. 515	CD spectral changes of (R)-9 and (S)-9 upon addition of silver(I)	1/				
Fig. 510	UV-Vis spectral changes of (R) a upon addition of silver(I) triflate	10 1				
Fig. 517	UV-Vis spectral changes of (R) 9 upon addition of silver(I) triflate	10 10				
Fig. 510	UV-Vis spectral changes of (R) • upon addition of silver(I) triflate	10				
Fig. 519	WNPC and HMOC spectra of (P) 6 with silver(I) triflate	.19 00				
Fig. 320	HMBC and HMOC spectra of (R)-7 with silver(I) triflate	20 20				
Fig. 521	HMBC and HMOC spectra of (R) - 8 with silver(1) triflate	20				
Fig. 522	HMBC and HMOC spectra of (R)-9 with silver(I) triflate	20				
Fig. 523	Silver(I)-induced ¹ H NMR spectral changes of (<i>R</i>)-7	21				
Fig. S25	Silver(I)-induced ¹ H NMR spectral changes of (R)-8	22				
Fig. S26	Silver(I)-induced ¹ H NMR spectral changes of (R)-9	22				
Fig. S27	Four isomers of Ag ⁺ complexes with a chiral tetra-armed cyclen	23				
Fig. S28	Molecular modeling calculation of Ag ⁺ complex of (R)-7	23				
Table S1	Molecular modeling calculation of (R) - 7 -Ag ⁺ complex	23				
Table S2	Molar ellipticity and ε of the Ag ⁺ complexes with chiral cyclens and minimum of potential energy, and dipole moments.	24				
Fig. S29	Electrostatic potential maps of substituted benzenes and Comparison of the CD spectra of each ligand with silver(I)	24				
Fig. S30	Ag ⁺ -induced change in optical rotation titration of each ligand with Ag ⁺	25				
Fig. S31	Crystal structures of (R)-6 and (S)-6 with AgPF ₆ .	25				
Fig. S32	Crystal structure of (S)-7 with AgBF ₄	25				
Fig. S33	Crystal structure of (R)-8 with AgPF ₆	26				
Fig. S34	Crystal structure of (R)-6 with Zn(NO ₃) ₂	26				
Fig. S35	Methyl proton signals in the Ag ⁺ /(R)-8 system	27				
X-ray crysta	llographic analysis	28				
Table S3	Crystal and experimental data	28				
Table S4	Selected bond lengths (Å) and bond angles (°) for (R)-6-AgPF ₆	29				
Table S5	Selected bond lengths (Å) and bond angles (°) for (S)-6-AgPF ₆	29				
Table S6	Selected bond lengths (Å) and bond angles (°) for (S)-7-AgBF ₄	29				
Table S7	Selected bond lengths (Å) and bond angles (°) for (R)-8-AgPF ₆	29				
Table S8	Selected bond lengths (Å) and bond angles (°) for (R)-6-Zn(NO ₃) ₂	29				
References.		30				

Experimental Procedures

General.

All chemicals and solvents used in the syntheses were of reagent grade and were used without further purification. NMR spectra were recorded on a JEOL ECP400 spectrometer (400 MHz). The FAB mass spectrum was obtained on a JEOL 600H mass spectrometer. The CD spectra were measured on a JASCO J-820 CD spectrophotometer. CD spectra were determined over the range of 240-350 nm using a quartz cell with 1.0 mm path length. Scans were taken at a rate of 50 nm/min with a sampling interval of 0.1 nm and the response time of 2 s. The absorption spectra were recorded on a JASCO V-550 UV-visible spectrophotometer. UV–vis titration experiments. The path length of the cuvette was 1 cm. Stability constants were calculated using HyperSpecTM ver. 1.1.33.¹ Optical rotations were measured on a digital polarimeter JASCO DIP-360. A sodium lamp (λ = 589 nm) was used as a light source. The elemental analysis was carried out on a Yanako MT-6 CHN Micro Corder.

Scheme S1 Syntheses of chiral tetra-armed cyclens.

Synthesis of (R)-6.

30 mL of a diisobutylaluminum hydride solution in THF (1 M) was slowly added to a 3-methyl-(3*R*)-1,4,7,10-tetraazacyclododecane-2,6-dione ((*R*)-**4**)^{2,3} (0.645 g, 3.01 mmol) at 0 °C and then stirred for 1 day at room temperature under argon atmosphere. The reaction mixture was cooled to 0 °C, and then benzene (90 mL) was added, and then sodium fluoride (5.04 g, 120 mmol) and 1.5 mL of water (83.3 mmol) were added to the reaction mixture. The reaction mixture was stirred for 4 h at room temperature, and then evaporated to obtain (*R*)-**5** in the crude state. FAB-MS (*m/z*) (matrix: DTT:TG = 1:1): 187 ([M+1]⁺, 100%). The crude (*R*)-**5**, *p*-tolualdehyde (2.17 g, 18.1 mmol), sodium triacetoxyborohydride (5.09 g, 24.0 mmol) were added to 1,2-dichloroethane (30 mL) and stirred for 5 days at room temperature under argon atmosphere. The saturated sodium hydrogen carbonate solution was added until pH 11 and extracted with chloroform. The organic layer was separated and dried over anhydrous sodium sulfate, filtered, and then evaporated. After silica gel column chromatography (chloroform:methanol:aqueous ammonia = 5:1:0.06) was performed to give the (*R*)-**6**. Yield: 27%. Mp: 86.0-88.0 °C. [α]²⁰_D= +32.6 (*c* = 0.301, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.00 (m, 16H), 3.60-3.16 (m, 9H), 2.96-2.20 (m, 25H), 2.04 (dd, *J*₁ = 13.0 Hz, *J*₂ = 4.0 Hz, 1H), 0.88 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 136.9, 135.9, 129.0, 128.9, 128.7, 128.6, 60.1, 59.7, 59.6, 59.0, 54.2, 53.8, 52.4, 52.3, 47.3, 21.1, 11.6. FAB-MS (*m*/*z*) (matrix: DTT:TG = 1:2): 603 ([M+1]⁺, 100%). Anal. Calcd. For [C₄₁H₅₄N₄]: C, 81.68; H, 9.03; N, 9.26. Found: C, 81.38; H, 9.06; N, 9.24%.

Synthesis of (S)-6.

30 mL of a diisobutylaluminum hydride solution in THF (1 M) was slowly added to a 3-methyl-(3S)-1,4,7,10-tetraazacyclododecane-2,6-dione ((S)-4)^[2,3] (0.642 g, 3.00 mmol) at 0 °C and then stirred for 1 day at room temperature under argon atmosphere. The reaction mixture was cooled to 0 °C, and then benzene (90 mL) was added, and then sodium fluoride (5.04 g, 120 mmol) and 1.5 mL of water (83.3 mmol) were added to the reaction mixture. The reaction mixture was stirred for 4 h at room temperature, and then evaporated to obtain (S)-5 in the crude state. FAB-MS (m/z) (matrix: DTT:TG = 1:1): 187 ([M+1]⁺, 100%). The crude (S)-5, p-tolualdehyde (2.17 g, 18.1 mmol), sodium triacetoxyborohydride (5.09 g, 24.0 mmol) were added to 1,2-dichloroethane (30 mL) and stirred for 5 days at room temperature under argon atmosphere. The saturated sodium hydrogen carbonate solution was added until pH 11 and extracted with chloroform. The organic layer was separated and dried over anhydrous sodium sulfate, filtered, and then evaporated. After silica gel column chromatography (chloroform:methanol:aqueous ammonia = 5:1:0.06) was performed to give the (R)-6. Yield: 28%. Mp: 84.5-86.5 °C. $[\alpha]^{20}_{D}$ = -32.3 (c = 0.301, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.00 (m, 16H), 3.60-3.16 (m, 9H), 2.96-2.20 (m, 25H), 2.04 (dd, J_1 = 13.0 Hz, J_2 = 4.0 Hz, 1H), 0.88 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 136.9, 135.9, 129.0, 128.9, 128.7, 128.6, 60.1, 59.7, 59.6, 59.0, 54.2, 53.8, 52.5, 52.3, 47.3, 21.1, 11.6. FAB-MS (m/z) (matrix: DTT:TG = 1:2): 603 ([M+1]⁺, 100%). Anal. Calcd. For [C₄₁H₅₄N₄]: C, 81.68; H, 9.03; N, 9.26. Found: C, 81.28; H, 9.07; N, 9.28%.

Synthesis of (R)-7.

The procedure was the same as for (*R*)-6, but with the use of benzaldehyde instead of *p*-tolualdehyde. Yield: 25%. Mp: 98.0-99.2 °C. $[\alpha]^{20}_{D}$ = +23.2 (*c* = 0.301, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.10 (m, 20H), 3.65-3.20 (m, 9H), 3.00-2.30 (m, 13H), 2.06 (dd, *J*₁ = 13.1 Hz, *J*₂ = 4.1 Hz, 1H), 0.90 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 140.0, 129.0, 128.9, 128.0, 127.9, 126.5, 126.4, 60.4, 60.0, 59.2, 54.5, 54.0, 52.8, 52.5, 47.4, 11.4. FAB-MS (*m*/*z*) (matrix: DTT:TG = 1:2): 547 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₄₆N₄]: C, 81.27; H, 8.48; N, 10.25. Found: C, 81.37; H, 8.54; N, 10.26%.

Synthesis of (S)-7.

The procedure was the same as for **(S)-6**, but with the use of benzaldehyde instead of *p*-tolualdehyde. Yield: 20%. Mp: 91.7-92.5 °C. $[\alpha]^{20}_{D}$ = -26.8 (*c* = 0.547, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.10 (m, 20H), 3.65-3.20 (m, 9H), 3.00-2.30 (m, 13H), 2.06 (dd, J_1 = 13.1 Hz, J_2 = 4.1 Hz, 1H), 0.90 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 140.0, 129.0, 128.9, 128.0, 127.9, 126.5, 126.4, 60.5, 60.0, 59.2, 54.5, 54.0, 52.8, 52.5, 47.4, 11.5. FAB-MS (m/z) (matrix: DTT:TG = 1:2): 547 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₄₆N₄+0.1H₂O]: C, 81.01; H, 8.49; N, 10.21. Found: C, 80.77; H, 8.39; N, 10.19%.

Synthesis of (R)-8.

The procedure was the same as for (*R*)-6, but with the use of 4-fluorobenzaldehyde instead of *p*-tolualdehyde. The purification of the product was performed by silica gel column chromatography (chloroform:methanol = 10:1). Yield: 22%. Mp: 115.0-117.0 °C. $[\alpha]^{20}_{D}$ = +19.7 (*c* = 0.309, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.16 (m, 8H), 7.03-6.82 (m, 8H), 3.60-3.10 (m, 9H), 2.92-2.30 (m, 13H), 2.03 (dd, *J*₁ = 13.1 Hz, *J*₂ = 4.0 Hz, 1H), 0.89 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 160.5, 136.4, 135.5, 135.4, 130.3, 130.2, 114.8, 114.6, 59.7, 59.2, 53.7, 52.9, 52.7, 52.5, 52.4, 47.3, 11.4. FAB-MS (*m*/*z*) (matrix: DTT:TG = 1:2): 619 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₄₂N₄F₄]: C, 71.82; H, 6.84; N, 9.05. Found: C, 71.82; H, 6.98; N, 8.90%.

Synthesis of (S)-8.

The procedure was the same as for **(S)-6**, but with the use of 4-fluorobenzaldehyde instead of *p*-tolualdehyde. The purification of the product was performed by silica gel column chromatography (chloroform:methanol = 10:1). Yield: 21%. Mp: 116.0-117.5 °C. $[\alpha]^{20}_{D}$ = -18.4 (*c* = 0.309, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.16 (m, 8H), 7.03-6.82 (m, 8H), 3.60-3.10 (m, 9H), 2.92-2.30 (m, 13H), 2.03 (dd, *J*₁ = 13.1 Hz, *J*₂ = 4.0 Hz, 1H), 0.89 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 160.5, 136.4, 135.5, 135.4, 130.3, 130.2, 114.8, 114.6, 59.7, 59.2, 53.7, 52.9, 52.7, 52.5, 52.4, 47.3, 11.4. FAB-MS (*m*/*z*) (matrix: DTT:TG = 1:2): 619 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₄₂N₄F₄]: C, 71.82; H, 6.84; N, 9.05. Found: C, 71.99; H, 6.96; N, 8.96%.

Synthesis of (R)-9.

The procedure was the same as for (*R*)-6, but with the use of 3,5-difluorobenzaldehyde instead of *p*-tolualdehyde. The purification of the product was performed by silica gel column chromatography (chloroform:methanol = 10:1). Yield: 12%. Mp: 87.2-90.0 °C. $[\alpha]^{20}_{D}$ = +20.6 (*c* = 0.691, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 6.95 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.88 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.86 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.86 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.82 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.71-6.60 (m, 4H) 3.60-3.20 (m, 9H), 2.91-2.37 (m, 13H), 2.10 (dd, J_1 = 13.2 Hz, J_2 = 4.1 Hz, 1H), 0.94 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 164.1, 161.8, 161.7, 161.6, 145.2, 145.1, 145.0, 144.1, 144.0, 143.9, 143.8, 111.5, 111.4, 111.3, 111.2, 111.1, 111.0, 102.5, 102.4, 102.2, 102.1, 102.0, 101.9, 60.1, 59.5, 59.4, 54.1, 53.9, 53.1, 53.0, 52.8, 47.8, 11.6. FAB-MS (*m*/*z*) (matrix: DTT:TG = 1:2): 691 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₃₈N₄F₈]: C, 64.34; H, 5.55; N, 8.11. Found: C, 64.69; H, 5.76; N, 7.77%.

Synthesis of (S)-9.

The procedure was the same as for **(S)-6**, but with the use of 3,5-difluorobenzaldehyde instead of *p*-tolualdehyde. The purification of the product was performed by silica gel column chromatography (chloroform:methanol = 10:1). Yield: 7%. Mp: 86.0-87.2 °C. $[\alpha]^{20}_{D}$ = -25.9 (*c* = 0.691, CHCl₃: MeOH = 1:19). ¹H NMR (400 MHz, CDCl₃): δ 6.95 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.88 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.86 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.82 (dd, J_1 = 8.0 Hz, J_2 = 2.0 Hz, 2H), 6.71-6.60 (m, 4H) 3.60-3.20 (m, 9H), 2.91-2.37 (m, 13H), 2.10 (dd, J_1 = 13.2 Hz, J_2 = 4.1 Hz, 1H), 0.94 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 164.2, 164.1, 161.8, 161.7,

161.6, 145.2, 145.1, 145.0, 144.0, 143.9, 143.8, 111.5, 111.4, 111.3, 111.2, 111.1, 111.0, 102.5, 102.4, 102.2, 102.1, 102.0, 101.9, 60.1, 59.5, 59.4, 54.1, 53.9, 53.1, 53.0, 52.8, 47.8, 11.6. FAB-MS (*m/z*) (matrix: DTT:TG = 1:2): 691 ([M+1]⁺, 100%). Anal. Calcd. For [C₃₇H₃₈N₄F₈+0.1H₂O]: C, 64.17; H, 5.56; N, 8.09. Found: C, 63.92; H, 5.65; N, 8.05%.

Preparation of (R)-6-AgPF₆.

AgPF₆ (6.32 mg, 0.025 mmol) in methanol (1 mL) was added to a solution of **(***R***)-6** (15.1 mg, 0.025 mmol) in chloroform (1 mL). The white precipitate obtained was dissolved in acetonitrile (2 mL). Slow evaporation of the solution afforded a colorless crystalline product suitable for X-ray analysis. Mp: 222-224 $^{\circ}$ C. Anal. calcd. for [C₄₁H₅₄AgN₄PF₆]: C, 57.55; H, 6.36; N, 6.55. Found: C, 57.73; H, 6.49; N, 6.40%.

Preparation of (S)-6-AgPF₆.

AgPF₆ (6.32 mg, 0.025 mmol) in methanol (1 mL) was added to a solution of **(***S***)-6** (15.1 mg, 0.025 mmol) in chloroform (1 mL). Slow evaporation of the solution afforded a colorless crystalline product suitable for X-ray analysis. Mp: 231-233 °C. Anal. calcd. for $[C_{41}H_{54}Ag_1N_4P_1F_6+0.3H_2O]$: C, 57.19; H, 6.39; N, 6.51. Found: C, 56.92; H, 6.27; N, 6.60%.

Preparation of (S)-7-AgBF₄.

AgBF₄ (4.87 mg, 0.025 mmol) in ethanol (1 mL) was added to a solution of **(S)-7** (13.7 mg, 0.025 mmol) in 1,2-dichloroethane (1 mL). Slow evaporation of the solution afforded a colorless crystalline product suitable for X-ray analysis. Mp: 205-207 $^{\circ}$ C. Anal. calcd. for [C₃₇H₄₆Ag₁N₄B₁F₄]: C, 59.94; H, 6.25; N, 7.56. Found: C, 60.21; H, 6.18; N, 7.36%.

Preparation of (R)-8-AgPF₆.

AgPF₆ (6.35 mg, 0.025 mmol) in methanol (1 mL) was added to a solution of **(***R***)-8** (15.5 mg, 0.025 mmol) in dichloromethane (1 mL). Slow evaporation of the solution afforded a colorless crystalline product suitable for X-ray analysis. Mp: 229-231 $^{\circ}$ C. Anal. calcd. for [C₃₇H₄₂Ag₁N₄P₁F₁₀]: C, 50.99; H, 4.86; N, 6.43. Found: C, 51.27; H, 4.90; N, 6.25%.

Preparation of (R)-6-Zn $(NO_3)_2$.

 $Zn(NO_3)_2 \cdot 6H_2O$ (7.45 mg, 0.025 mmol) in methanol (1 mL) was added to a solution of **(***R***)-6** (15.1 mg, 0.025 mmol) in chloroform (1 mL). Slow evaporation of the solution afforded a colorless crystalline product suitable for X-ray analysis. Mp: 222-224 °C. Anal. calcd. for $[C_{41}H_{54}ZnN_6O_6 \cdot H_2O]$: C, 60.77; H, 6.97; N, 10.37. Found: C, 60.66; H, 6.47; N, 10.16%.

Results and Discussion

Fig. S1 Four isomers of metal complexes with a tetra-armed cyclen.

Fig. S2 (a) ¹H and (b) ¹³C NMR spectra of (R)-6 in CDCl₃.

Fig. S3 (a) ¹H and (b) ¹³C NMR spectra of (S)-6 in $CDCl_3$.

Fig. S4 (a) ¹H and (b) ¹³C NMR spectra of (R)-**7** in CDCl₃.

Fig. S5 (a) ¹H and (b) ¹³C NMR spectra of (S)-7 in CDCl₃.

Fig. S6 (a) ¹H and (b) ¹³C NMR spectra of (R)-**8** in CDCl₃.

Fig. S7 (a) ¹H and (b) ¹³C NMR spectra of (S)-8 in $CDCl_3$.

Fig. S8 (a) ¹H and (b) ¹³C NMR spectra of (R)-**9** in CDCl₃.

Fig. S9 (a) ¹H and (b) ¹³C NMR spectra of (S)-9 in $CDCI_3$.

Fig. S10 CD spectra of (*R*)-7 and (*S*)-7 (2.5 mM) in the presence of metal triflates (1.0 equivalents) in $CHCl_3:CH_3OH$ (1:19).

Fig. S11 CD spectra of (*R*)-**8** and (*S*)-**8** (2.5 mM) in the presence of metal triflates (1.0 equivalents) in $CHCl_3:CH_3OH$ (1:19).

Fig. S12 CD spectra of (*R*)-**9** and (*S*)-**9** (2.5 mM) in the presence of metal triflates (1.0 equivalents) in $CHCl_3:CH_3OH$ (1:19).

Fig. S13 CD spectral changes of (*R*)-**7** and (*S*)-**7** (2.5 mM) upon addition of silver(I) in CHCl₃:CH₃OH (1:19). (inset) titration curves at 215 nm.

Fig. S14 CD spectral changes of (*R*)-**8** and (*S*)-**8** (2.5 mM) upon addition of silver(I) in CHCl₃:CH₃OH (1:19). (inset) titration curves at 215 nm.

Fig. S15 CD spectral changes of (*R*)-**9** and (*S*)-**9** (2.5 mM) upon addition of silver(I) in CHCl₃:CH₃OH (1:19). (inset) titration curves at 216 nm.

Fig. S16 UV-Vis spectral changes of (*R*)-**6** (0.1 mM) upon addition of silver(I) triflate in CH_3CN . (inset) titration curves at 255 nm.

Fig. S17 UV-Vis spectral changes of (*R*)-**7** (0.1 mM) upon addition of silver(I) triflate in CH_3CN . (inset) titration curves at 255 nm.

Fig. S18 UV-Vis spectral changes of (R)-**8** (0.1 mM) upon addition of silver(I) triflate in CH₃CN. (inset) titration curves at 245 nm.

Fig. S19 UV-Vis spectral changes of (*R*)-**9** (0.1 mM) upon addition of silver(I) triflate in CH_3CN . (inset) titration curves at 245 nm.

Fig. S20 (a) HMBC and (b) HMQC spectra of (*R*)-**6** (5 uM) with silver(I) triflate (1.0 equiv.).

Fig. S21 (a) HMBC and (b) HMQC spectra of (*R*)-**7** (5 uM) with silver(I) triflate (1.0 equiv.).

Fig. S22 (a) HMBC and (b) HMQC spectra of (*R*)-8 (5 uM) with silver(I) triflate (1.0 equiv.).

Fig. S23 (a) HMBC and (b) HMQC spectra of (*R*)-9 (5 uM) with silver(I) triflate (1.0 equiv.).

Fig. S24 Silver(I)-induced ¹H NMR spectral changes of (*R*)-**7** (5 uM) in CD_2Cl_2/CD_3OD (1:1). When Ag⁺ was added to (*R*)-**7**, the H_a protons shifted to high field *ca*. by 0.90 ppm.

Fig. S25 Silver(I)-induced ¹H NMR spectral changes of (*R*)-**8** (5 uM) in CD_2Cl_2/CD_3OD (1:1). When Ag⁺ was added to (*R*)-**8**, the H_a protons shifted to high field *ca*. by 0.91 ppm.

Fig. S26 Silver(I)-induced ¹H NMR spectral changes of (*R*)-**9** (5 uM) in CD_2Cl_2/CD_3OD (1:1). When Ag⁺ was added to (*R*)-**9**, the H_a protons shifted to high field *ca*. by 0.62 ppm.

Fig. S27 Four isomers of Ag⁺ complexes with a chiral tetra-armed cyclen (the direction of rotation of four side-arms is denoted by Λ and Δ , and the relative position of methyl group and the four aromatic rings related to the cycle of the cyclen is denoted by *cis* and *trans*).

Fig. S28 Molecular modeling calculation of Ag⁺ complex of (*R*)-7.

Table S1	Molecular modeling calculation of (<i>R</i>)- 7 -Ag ⁺ complex
----------	---

	•	., .	•	
	$\wedge(\delta)$	$\wedge(\lambda)$	$\Delta(\delta)$	$\Delta(\lambda)$
E (kJ/mol)	-4281918.808	-4281918.715	-4281909.341	-4281909.222
Relative energy (kJ/mol)*	0	+0.4	+39.6	+40.1
Ratio of formation	1	0.9	1.47×10 ⁻⁷	1.14×10 ⁻⁷

*For better comparison the energies are relative to the Λ 1 conformer of the lowest energy.

Table S2 Molar ellipticity and ε of the Ag⁺ complexes with chiral cyclens and minimum of potential energy, and dipole moments of substituted benzenes

	Molar ellipticity at 222 nm	ε at 222 nm		Minimum of potential energy (kJ/mol , B3LYP/6-31G*)	Dipole moment (D)
6	19600	27400	toluene	-94.5	0.32
7	6500	10600	benzene	-89.3	0
8	5000	11300	4-fluorobenzene	-79.0	1.36
9	9100	10100	1,3-difluorobenzene	-65.2	1.35

Fig. S29 (a) Electrostatic potential maps of toluene, benzene, 4-fluoromethylbenzene and 1,3difluoro-4-methylbenzene. (b) Comparison of the CD spectra of each ligand with 1 equiv. of silver(I) in CHCl₃:CH₃OH (1:19).

Fig. S30 Ag⁺-induced change in optical rotation titration of each ligand with Ag⁺ in CHCl₃:CH₃OH (1:19). Ag⁺-induced optical rotation ($[\alpha]_D$) changes were carried out using (*R*)- and (*S*)-form **6–9**. As the stepwise addition of Ag⁺, $[\alpha]_D$ values gradually increased between 0 and 1.0 equiv. of silver(I). An inflection points were observed at 1.0 (= [Ag⁺]/[ligand]), showing a 1:1 complexation.

Fig. S31 Crystal structures of (a) (R)-6 and (b) (S)-6 with AgPF₆.

Fig. S32 Crystal structure of (*S*)-**7** with AgBF₄: (a) top view and (b) general view.

Fig. S33 Crystal structure of (R)-**8** with AgPF₆: (a) top view and (b) general view.

Fig. S34 Crystal structure of (R)-6 with $Zn(NO_3)_2$: (a) top view and (b) side view.

Fig. S35 Methyl proton signals in the $Ag^+/(R)$ -8 system: (a) titration experiment ($[Ag^+]/[(R)$ -8] = 1.0) in CD₃OD/CD₂Cl₂, (b) single crystals dissolved in CD₃OD/CD₂Cl₂, (c) single crystals dissolved in CD₃CN, and (d) the solvent in (c) was changed to CD₃OD/CD₂Cl₂.

X-ray crystallographic analysis.

All data were collected on a Bruker SMART APEX II ULTRA diffractometer equipped with graphite monochromated Mo K_{α} radiation (λ = 0.71073 Å) generated by a rotating anode. The cell parameters for the compounds were obtained from a least-squares refinement of the spot. Data collection, data reduction, and semi-empirical absorption correction were carried out using the software package of APEX2.⁴ All of the calculations for the structure determination were carried out using the SHELXTL package.⁵ In all cases, nonhydrogen atoms were refined anisotropically and hydrogen atoms were placed in idealized positions and refined isotropically in a riding manner along with their respective parent atoms. For the refinement of disordered atoms in (*S*)-**7**-AgBF₄ complex, the commands (ISOR, SADI, SIMU, etc.) have been used. Relevant crystal data collection and refinement data for the crystal structures are summarized in Table S3. CCDC 1975401 ((*R*)-**6**-AgPF₆), 1975402 ((*S*)-**6**-AgPF₆), 1975403 ((*S*)-**7**-AgBF₄), 1975404 ((*R*)-**8**-AgPF₆) and 1975405 ((*R*)-**6**-Zn(NO₃)₂) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	(<i>R</i>)-6-AgPF ₆	(S)-6-AgPF ₆	(S)-7-AgBF ₄	(<i>R</i>)-8-AgPF ₆	(R)-6-Zn(NO ₃) ₂
Formula	$C_{41}H_{54}Ag_{1}N_{4}P_{1}F_{6}$	$C_{41}H_{54}Ag_{1}N_{4}P_{1}F_{6}$	$C_{37}H_{46}Ag_{1}N_{4}B_{1}F_{4} \\$	$C_{37}H_{42}Ag_{1}N_{4}P_{1}F_{6}$	$C_{43}H_{62}Zn_1N_6O_8$
Formula weight	855.72	855.72	741.46	871.58	856.35
Temperature	120(2)	120(2)	100(2)	90(2)	120(2)
Crystal system	Tetragonal	Tetragonal	Monoclinic	Orthorhombic	Monoclinic
Space group	14	14	C2	C222 ₁	P2 ₁
Ζ	2	2	4	8	2
<i>a</i> (Å)	9.6472(15)	9.614(4)	13.8399(17)	13.8896(12)	8.7797(7)
b (Å)	9.6472(15)	9.614(4)	13.5554(16)	14.0055(12)	19.0092(15)
<i>c</i> (Å)	21.411(3)	21.337(8)	18.233(2)	37.666(3)	12.9597(10)
α (°)	90	90	90	90	90
в (°)	90	90	100.627(2)	90	90.5449(16)
γ (°)	90	90	90	90	90
<i>V</i> (ų)	1992.7(7)	1972.2(17)	3361.9(7)	7327.3(11)	2162.8(3)
D _{calc} (g/cm ³)	1.426	1.441	1.465	1.580	1.315
2ϑ _{max} (°)	52.00	52.00	52.00	52.00	52.00
$R_1, wR_2 [l > 2\sigma(l)]$	0.0279, 0.0595	0.0440, 0.1141	0.0600, 0.1743	0.0293, 0.0812	0.0555, 0.1182
R_1 , wR_2 [all data]	0.0292, 0.0599	0.0451, 0.1151	0.0617, 0.1781	0.0296, 0.0829	0.0965, 0.1404
Goodness-of-fit on F ²	1.048	1.020	1.050	1.047	1.012
Flack parameter	-0.016(18)	-0.02(2)	0.04(4)	0.017(5)	0.08(3)
No. of reflection used	1704 [P - 0.0224]	1015 [0 - 0.0404]	F(0)[R] = 0.0F(0)[1]	7104 [D - 0.0194]	7642 [0 - 0.0552]
[>2 σ(/)]	$1/94 [K_{int} = 0.0334]$	1913 [K _{int} = 0.0404]	5009 [K _{int} = 0.0591]	$7194 [R_{int} = 0.0184]$	7045 [K _{int} = 0.0552]
Refinement	full-matrix	full-matrix	full-matrix	full-matrix	full-matrix

Table S3 Crystal and experimental data

Table S4	Selected bond le	ngths (Å) and bond an	gles (°) for (<i>R</i>)- 6 -AgPF ₆
Ag1-N1	2.467(4)		
N1-Ag1-N	I1A 76.3(1)	N1-Ag1-N1B	121.8(2)
Symmetry	operations: (A)	- <i>x</i> +2, <i>y</i> , <i>z</i> (B) – <i>x</i> +2	2, y+2, z
Table S5	Selected bond le	ngths (Å) and bond an	gles (°) for (S)- 6 -AgPF ₆
Ag1-N1	2.463(7)		
N1-Ag1-N	I1A 76.5(2)	N1-Ag1-N1B	122.2(3)
Symmetry	operations: (A)	-x+1, y-1, z (B) x-	+1, -y+1, z
Table S6	Selected bond le	ngths (Å) and bond an	gles (°) for (S)- 7 -AgBF ₄
Ag1-N1	2.468(9)	Ag1-N2	2.486(8)
Ag1-N3	2.450(9)	Ag1-N4	2.465(9)
N1-Ag1-N	12 76.7(3)	N1-Ag1-N3	123.3(3)
N1-Ag1-N	I4 77.3(3)	N2-Ag1-N3	77.2(3)
N2-Ag1-N	l4 123.3(3)	N3-Ag1-N4	76.6(3)

Table S7	Selected bond lengths (Å) and bond	l angles (°) for	(<i>R</i>)- 8 -AgPF ₆
----------	-------------------------	-------------	------------------	---

Ag1-N1	2.475(4)	Ag1-N2	2.449(4)	
Ag1-N3	2.460(4)	Ag1-N4	2.446(4)	
N1-Ag1-N2	77.1(1)	N1-Ag1-N3	123.5(1)	
N1-Ag1-N4	76.8(1)	N2-Ag1-N3	77.0(1)	
N2-Ag1-N4	123.6(1)	N3-Ag1-N4	77.5(1)	

Table S8 Selected bond lengths (Å) and bond angles (°) for (R)-**6**-Zn(NO₃)₂

	0 (, 0	() () (
Zn1-N1	2.116(8)	Zn1-N2	2.184(8)
Zn1-N3	2.152(8)	Zn1-N4	2.200(8)
Zn1-01	1.959(5)		
N1-Zn1-N2	83.6(3)	N1-Zn1-N3	139.1(3)
N1-Zn1-N4	83.9(3)	N2-Zn1-N3	82.6(3)
N2-Zn1-N4	139.8(3)	N3-Zn1-N4	82.3(3)
N1-Zn1-O1	118.4(3)	N2-Zn1-O1	96.9(3)
N3-Zn1-O1	101.4(3)	N4-Zn1-O1	122.5(3)

References

- 1. P. Gans, A. Sabatini and A. Vacca, *Talanta*, 1996, **43**, 1739–1753.
- 2. S. S. Insaf and D. T. Witiak, *Tetrahedron*, 2000, **56**, 2359–2367.
- 3. Q. Yuan, P. Xue, M. Fang, E. Fu and C. Wu, *Synthetic Commun.*, 2003, **33**,1911–1916.
- 4. *APEX2 Version 2009.1-0 Data collection and Processing Software*; Bruker AXS Inc.: Madison, Wisconsin, U.S.A., 2008.
- 5. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.