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Experimental Section

Synthesis of sodium polyacrylate hydrogel electrolyte. 

A beaker of concentrated sodium hydroxide solution (27 mL, 25 M, Alfa) was prepared using de-ionized water and 

consequently dropped into an aqueous solution of purified acrylic acid monomer (54 mL, 47 wt%, Macklin) with a slow 

speed within 12 h. Additionally, the ammonium persulfate (0.78 g, ThermoFisher) was added into the neutralized 

solution and stirred for 0.5 h. A degas procedure was performed to remove the dissolved air in the solution. Further 

treatment in an oven at 40℃ for 30 h allows free radical polymerization. Finally, the as-polymerized hydrogel was dried 

in an 80 ℃ oven and then soaked in a mixed solution (500 mL) of zinc acetate (0.2 M, Macklin) and potassium hydroxide 

(6 M, Alfa) for up to 2 days.

Fabrication of the Au foil

The Au foil was fabricated by the following procedures. Firstly, a gold alloy is gradually thinned by running it through 

rollers, until 0.05 mm thickness is achieved. Then, the stretched gold is cut into square pieces of about 6 cm2, placed 

between sheets of washi paper (extremely fine paper soaked in alkali) and pounded for 4-5 stages till it is thinned to 

120 nm.

Fabrication and electrochemical characterization of the rechargeable ZAB

The Zn anode was electrodeposited on a CNT paper (width: 1 cm; length: 5 cm) at -0.8 V vs. Zn foil for 20 min in zinc 

sulfate (1 M). The Au foil (120 nm) was attached onto a CNT paper (25 um) as cathode, and then pricked by tiny nails 

with the diameter of 200 um, and the hole density is one per 0.25 mm2. The surface of the CNT paper is highly 

waterproof, thus possess a highly hydrophobic surface with well-retained ORR activity. The anode and cathode were 

paved on the PANa film electrolyte (thickness: 2.7 mm), which also served as a separator. LSV and discharge of the 

as-assembled ZAB were tested by a CHI760E potentiostat, where the charge & discharge cycle tests were performed 

by LAND-CT2001A.

Experimental details of stretching and compressing electrochemical tests

Stretching: The newly assembled batteries (width: 1 cm; length: 5 cm) were packaged first, fixed tight on the self-

made stretching tester designed with a linear motor, connected to a CHI760E potentiostat, and then slowly, uniformly 

stretched to 100%, 200%, 300%, respectively, controlled by a single chip microcomputer. The relative electrochemical 

measurements were conducted after.

Compressing: The as-assembled batteries were put on a uniform platform and connected to a CHI760E potentiostat 

first. Then, before stabilization for a while, a set of weight blocks were placed onto the ZABs, respectively. The average 

thicknesses of the compressed cells were measured after to calculate the strain of the ZABs before electrochemical 

measurements.
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Figure S1. Cross profile of the thin Au foil. Scale bar: 150 nm.

According to the scale bar of the SEM image, the thickness of Au foil is about 120 nm.
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Table S1. Cost comparison of noble-metal-based oxygen catalysts.

Catalyst
Catalyst cost 

($ / cm2)

Charge Potential

(V)

Discharge 

Potential

(V)

Current Density

(mA / cm2)

aRuO2 + Pt/C 

(20%)1
1.78 2.25 1.00 5.0

bIrO2 + Pt/C 

(20%)2, 3
0.16 1.50 1.35 1.0

cCommercial 

RuO2
0.52 / / /

thin Au macro 

foil
0.013 2.05 1.20 2.0

a) aCost was calculated by a catalyst loading of 10 mg/cm2.

b) bCost was calculated by a catalyst loading of 0.2 mg/cm2 of Pt/C (20%) and 0.27 mg/cm2 of IrO2.

c)  cCost was calculated by a catalyst loading of 2 mg/cm2. 

d) All costs referred to Sigma Aldrich at www.sigmaaldrich.com  on 13rd March, 2020.

http://www.sigmaaldrich.com/
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Table S2. Comparison of electrochemical performance of our ZAB (Zn-air Battery) with 

previously reported ZABs in terms of current density, time per cycle, cycle time, 

stretchability and compressibility.

Ref. Electrolyte Current 
density
mA cm-2

Time 
per 

cycle
min

Cycle 
time

h

Stretch-
ability

Compress
ibility

This 
work    PANa 1 22 10 Intrinsic 

300%
Intrinsic

85%

14 PVA 2 10 6 × ×
25 PVA 0.5 20 12 × ×

36 PVA-PEO 2 60 10 Extrinsic 
300% ×

47 Cellulose 1 20 10 × ×

58 PVV/PVA 
GPE 0.5 10 24 × ×

69 PVA 2 20 24 × ×

  710

A hydrogel 
polymer 

(unspecified)
1 10 8.3 × ×

As can be seen from Table S2, a majority of the reported flexible ZABs did not 

provide electrochemical data under strain. We developed the first intrinsically 

stretchable and compressible ZAB which has never been reported in all published 

articles. Without electrochemical tests under compressive strain, the resistance of 

flexible ZAB cannot be reflected. In this article, the electrochemical performance is 

even slightly enhanced under the compressive strain of up to 85%, compared with the 

empty load specimen, which proves adequate novelty of this work.
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