Supporting Information

Palladium(II)-Catalyzed Intermolecular C-H Silylation Initiated by Aminopalladation

Xiaoming Ji, Feng Wei, Bin Wan, Cang Cheng, Yanghui Zhang*

School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
E-mail: zhangyanghui@tongji.edu.cn.

Table of Contents

1. General Information S2
2. General Procedures for the Synthesis of Acrylamide Substrates S2
3. General Procedures for the Disilylation of 2-Phenylacrylamide Derivatives S4
4. Mechanistic Study on Aminopalladation Step S4
5. Characterization of the Substrates S6
6. Characterization of the Products S13
7. References S22
8. NMR Spectra S23
9. The X-ray Single-Crystal Diffraction Analysis of 3h S74

1. General Information

$\mathrm{Pd}(\mathrm{OAc})_{2}$ was purchased from Strem Chemicals. Solvents were purchased from Adamas Reagent and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker ARX400 instrument (400 MHz) or Bruker DRX-600 instrument (600 MHz). High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. NMR spectra were recorded in CDCl_{3}. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to residual CHCl_{3} at 7.26 ppm, and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the central peak of CDCl_{3} at 77.0 ppm . Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet.

2. General Procedures for the Synthesis of Acrylamide Substrates

Method A

General Procedures 1 (GP1) ${ }^{[1]}$:

Step 1: A 50 mL round bottom flask equipped with a stir bar was charged with 2-phenylacetic acid derivatives ($20 \mathrm{mmol}, 1.0$ equiv), concentrated sulfuric acid (3 drops), and methanol (20 mL). The mixture was heated to reflux for 6 hours. After that, the reaction mixture was allowed to cool down to room temperature. After the methanol was removed by rotary evaporation, the residue was diluted with EtOAc and treated with saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the corresponding methyl 2-phenylacetate derivatives.

Step 2: To a solution of prepared methyl 2-phenylacetate derivatives in anhydrous toluene (20 mL), potassium carbonate ($5.53 \mathrm{~g}, 40 \mathrm{mmol}, 2.0$ equiv), tetrabutylammonium iodide ($2.95 \mathrm{~g}, 8$ mmol, 0.4 equiv), and polyformaldehyde ($1.21 \mathrm{~g}, 40 \mathrm{mmol}, 2.0$ equiv) were added. The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 12 h , quenched with water, and extracted with EtOAc. The combined organic layers were dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified on silica gel column chromatography by using PE/EA as the eluent to afford methyl 2-phenylacrylate derivatives.

Step 3: To a solution of prepared methyl 2-phenylacrylate derivatives in THF (10 mL), a solution of potassium hydrate ($4.49 \mathrm{~g}, 80 \mathrm{mmol}, 4.0$ equiv) in water $(10 \mathrm{~mL})$ was added. The reaction
mixture was heated at reflux for 2 hours and then cooled to $0^{\circ} \mathrm{C}$. Addition of concentrated hydrochloric acid resulted in precipitation of a white solid, which was extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to afford 2-phenylacrylic acid derivatives, which was used directly in the next step.

General Procedures 2 (GP2):

Step 1: A solution of 2-phenylacrylic acid derivatives ($10 \mathrm{mmol}, 1.0$ equiv) and DMF (2 drops) in dichloromethane $(10 \mathrm{~mL})$ was prepared and cooled to $0^{\circ} \mathrm{C}$. A solution of oxalyl chloride $(1.14 \mathrm{~mL}$, $12 \mathrm{mmol}, 1.2$ equiv) in dichloromethane (5 mL) was added dropwise. The reaction was allowed to warm to room temperature and stirred for 2 hours. The acyl chloride was concentrated in vacuo and redissolved in dichloromethane (5 mL).

Step 2: A solution of the 2-allylaniline derivatives ${ }^{[2]}(10 \mathrm{mmol}, 1.0$ equiv) and pyridine $(0.8 \mathrm{~mL}$, $10 \mathrm{mmol}, 1.0$ equiv) was prepared in dichloromethane $(10 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. The acyl chloride solution was added dropwise into the vessel containing the 2-allylaniline derivatives. The reaction was allowed to warm to room temperature and stirred for 12 hours. The reaction was quenched with a saturated NaHCO_{3} solution and extracted with EtOAc. The combined organic layer was treated with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford unsubstituted acrylamide products. The residue was purified on silica gel column chromatography by using petroleum ether/acetone as the eluent to afford acrylamide derivatives.

Method B

Step 1: A solution of pyridine $(1.93 \mathrm{~mL}, 24 \mathrm{mmol})$ in dry dichloromethane $(30 \mathrm{~mL})$ was added dropwise to a stirred solution of ethyl chlorooxoacetate ($3.0 \mathrm{~g}, 22 \mathrm{mmol}$) in dry dichloromethane $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen. A solution of N-methyl pyrrole ($1.62 \mathrm{~g}, 20 \mathrm{mmol}$) in dry dichloromethane (5 mL) was added dropwise to the reaction mixture and the solution was allowed to warm up slowly to room temperature. After being stirred for 48 h , the reaction mixture was washed with dilute hydrochloric acid, water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, PE/EA $5: 1)$ to give product $1 \mathbf{1 a a}-3(2.36 \mathrm{~g}, 65 \%)$.

Step 2: To a suspension of triphenylmethylphosphonium bromide (11 mmol) in dry THF (30 mL) at $0^{\circ} \mathrm{C}$ was added dropwise n-butyllithium (11 mmol) under nitrogen. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , product 1aa-3 (10 mmol) in 5 mL of THF was added to the stirred reaction mixture. The reaction was then allowed to warm up to room temperature and stirred for another 30 min and then quenched with water. The organic layer was extracted with ethyl acetate and then combined and concentrated in vacuo. The residue was purified by column chromatography (silica gel,

PE/EA 10:1) to give product $\mathbf{1 a a - 2}$ as an oil ($0.36 \mathrm{~g}, 20 \%$).

Step 3: A 50 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with product 1aa-2 (6 mmol), LiOH (5 equiv), and THF/ $\mathrm{H}_{2} \mathrm{O}$ ($1: 1$, $0.25 \mathrm{M})$ sequentially. The reaction flask was subjected to a $80^{\circ} \mathrm{C}$ preheated oil bath and stirred overnight, after which the resulting mixture was cooled down to room temperature and extracted with DCM. The aqueous phase was acidified with 2 N HCl and extracted with DCM. The combined organic layers were dried over MgSO_{4}. The volatile compounds were removed in vacuo to afford product $\mathbf{1 a a - 1}$ as a yellow solid ($0.91 \mathrm{~g}, 100 \%$).

Step 4: To a stirred mixture of DCC ($6.6 \mathrm{mmol}, 1.1$ equiv) and DMAP (0.1 equiv) in DCM (10 mL), product 1aa-1 ($6.0 \mathrm{mmol}, 1.0$ equiv) in 2 mL DCM was added at $0^{\circ} \mathrm{C}$. Then 2 -allylaniline derivative ($6.0 \mathrm{mmol}, 1.0$ equiv) in 2 mL DCM was added. The reaction was then allowed to warm up to room temperature and stirred overnight. The precipitated product was filtered off and the solution was then concentrated in vacuo. The crude product was purified by column chromatography (silica gel, $\mathrm{PE} /$ Acetone $10: 1$) to give product 1aa as an oil ($0.68 \mathrm{~g}, 40 \%$).

3. General Procedures for the Disilylation of 2-Phenylacrylamide Derivatives

A 25 mL Schlenk-type tube (with a Teflon screw cap and a side arm) equipped with a magnetic stir bar was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.01 \mathrm{mmol})$, pyridine ($3.2 \square \mu \mathrm{~L}, 0.04 \mathrm{mmol}$), AgTFA ($0.0441 \mathrm{~g}, 2$ equiv), $\mathrm{KHCO}_{3}\left(0.04 \mathrm{~g}, 4\right.$ equiv), $2,5-\mathrm{DMBQ}(0.0027 \mathrm{~g}, 0.02 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}$ $(14.4 \mu \mathrm{~L}, 0.8 \mathrm{mmol})$, TMS-TMS $2(143.5 \mu \mathrm{~L}, 0.7 \mathrm{mmol})$, the corresponding 2-phenylacrylamide derivatives $1(0.1 \mathrm{mmol})$ and DMSO $(2 \mathrm{~mL})$. The mixture was stirred at $90^{\circ} \mathrm{C}$ (preheated oil bath) for 24 hours. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), washed with brine (3 times), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by preparative thin layer chromatography (PTLC) with petroleum ether/ethyl acetate to give the corresponding products.

4. Mechanistic Study on Aminopalladation Step

Preparation of Substrate 1ab-D

Step 1: A $250-\mathrm{mL}$ round-bottom flask was charged with $\mathbf{1 a b - D}-5(4.22 \mathrm{~g}, 20 \mathrm{mmol})$ and purged with nitrogen. To the flask was added dry tetrahydrofuran $(15 \mathrm{~mL})$, and the flask was cooled to $0{ }^{\circ} \mathrm{C}$ bath. Ethynyl magnesium bromide (30 mmol) was then added dropwise over 5 min . The mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with methanol $(10 \mathrm{~mL})$ and the solvent removed in vacuo before adding aq $\mathrm{HCl}(100 \mathrm{~mL}, 1 \mathrm{M})$ and ethyl acetate (200 mL). The aqueous layer was extracted three times with ethyl acetate. Organic layers were collected, washed with brine, and dried over sodium sulfate. The solution was then concentrated under reduced pressure, and the resulting crude material was purified using flash chromatography to afford a yellow solid 1ab-D-4 (4.6g, 97\%).

Step 2: A $250-\mathrm{mL}$ round-bottom flask was charged with $\mathbf{1 a b - D}-4(4.74 \mathrm{~g}, 20 \mathrm{mmol})$ and purged with nitrogen. To the flask was added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the flask was placed in an ice bath. After 5 min on ice, triethylsilane ($60 \mathrm{mmol}, 3$ equiv) was added dropwise over 2 min . Trifluoroacetic acid ($270 \mathrm{mmol}, 9$ equiv) was added, and the reaction was stirred on ice for 15 min and was then allowed to warm up to room temperature. The reaction was stirred for 20 h . Solvents were removed in vacuo and the resulting residue was purified using flash chromatography to afford a yellow solid 1ab-D-3 ($2.43 \mathrm{~g}, 55 \%$).

Step 3: ${ }^{[3]}$ In a dried Schlenck flask equipped with a stirring bar were introduced under nitrogen $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ (Schwartz reagent) ($7.5 \mathrm{mmol}, 1.25$ equiv) and tetrahydrofuran (25 mL). The propargylic derivative 1ab-D-3 (1.0 equiv) in tetrahydrofuran (5 mL) was then added, and the mixture was stirred at room temperature for 2 h . Pure $\mathrm{D}_{2} \mathrm{O}(3.18 \mathrm{~mL})$ was quickly added, and the mixture was stirred for 2 h . Diethyl ether was added, and the mixture was dried on MgSO_{4}. The product was purified using flash chromatography to afford a yellow oil $\mathbf{1 a b - D}-\mathbf{2}(1.21 \mathrm{~g}, 90 \%)$.

Step 4: A $100-\mathrm{mL}$ round-bottom flask was charged with 1ab-D-2 ($10 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Zn}(9.9 \mathrm{~g}$, $151 \mathrm{mmol})$, EtOH $(60 \mathrm{~mL})$ and purged with nitrogen. $\mathrm{HOAc}(8.6 \mathrm{~mL}, 151 \mathrm{mmol})$ was added. the mixture was stirred at room temperature for 1 h . The solid was filtered off and the solution was then concentrated in vacuo. The crude product was purified by column chromatography using flash chromatography to afford a yellow oil 1ab-D-1 ($0.582 \mathrm{~g}, 30 \%$).

Step 5: A solution of 2-allylaniline derivative 1ab-D-1 ($3 \mathrm{mmol}, 1.0$ equiv) and pyridine (3 mmol , 1.0 equiv) was prepared in dichloromethane (15 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. The acyl chloride solution was added dropwise into the vessel containing the 2 -allylaniline derivative. The reaction was allowed to warm up to room temperature and stirred for 12 h . The reaction was quenched with a saturated NaCl solution and extracted with EtOAc. The combined organic layer was treated with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford unsubstituted acrylamide
products. The residue was purified on silica gel column chromatography by using petroleum ether/acetone as the eluent to afford acrylamide derivative 1ab-D ($0.729 \mathrm{~g}, 75 \%$).

1ab-D: White solid. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.35$ (brs, $1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=17.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.74 (dd, $J=10.1,1.4 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.46$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (s, 3H), 3.83 (s, 3H), 3.08 (dd, J $=5.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,147.5,146.0,145.0,136.9,135.2,129.0$, 128.8, 128.7, 128.6, 123.8, 121.5, 115.7 (t, $J=24.2 \mathrm{~Hz}$), 112.9, 107.0, 56.0, 55.9, 36.0. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{DNNaO}_{3}{ }^{+}: 347.1476(\mathrm{M}+\mathrm{Na})^{+}$, found: 347.1440.

Procedure for Determination of Stereochemistry in the Aminopalladation Step with 1ab-D

3ab-D: White solid ($17.9 \mathrm{mg}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}$, $1 \mathrm{H}), 4.71(\mathrm{dd}, J=18.3,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=15.1,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{dd}, J=15.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.58(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.38(\mathrm{~s}, 9 \mathrm{H}),-0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9$, $148.7,148.6,145.9,139.7,137.1,133.7,128.0,127.0,125.5,124.8,108.9,100.0,59.3,57.3,56.4$, 56.3, $44.61(\mathrm{~d}, J=25.0 \mathrm{~Hz})$, 35.8, 26.7, 4.0, 0. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{DNNaO}_{3} \mathrm{Si}_{2}{ }^{+}: 491.2267(\mathrm{M}+\mathrm{Na})^{+}$, found: 491.2261 .

5. Characterization of the Substrates

\boldsymbol{N}-(2-(2-methylallyl)phenyl)-2-phenylacrylamide (1a). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{brs}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.1,145.2,143.0,137.0,136.3,130.8,129.0,128.8,128.7,128.5$, $127.5,124.8,123.7,122.5,111.9,40.9,22.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}^{+}$: $300.1359(\mathrm{M}+\mathrm{Na})^{+}$, found: 300.1366 .

N-(4-methyl-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1b). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{brs}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0$ Hz, 1H), $6.91(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}$, $2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,145.3,143.1,137.0,134.5$, 133.7, 131.4, 129.1, 128.8, 128.6, 128.5, 128.0, 123.5, 122.6, 111.7, 40.9, 22.2, 20.8. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}^{+}: 314.1515(\mathrm{M}+\mathrm{Na})^{+}$, found: 314.1522 .

N-(4-methoxy-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1c). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{brs}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=$ 8.9, 2.8 Hz, 1H), $6.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,156.7,145.2,143.0$, $137.0,131.5,129.3,128.8,128.7,128.5,124.5,123.5,116.4,112.0,111.9,55.4,41.1,22.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}: 308.1645(\mathrm{M}+\mathrm{H})^{+}$, found: 308.1643.

N-(4-chloro-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1d). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{brs}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H})$, $1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,145.0,142.2,136.7,135.0,130.7,130.5,129.7$, 128.9, 128.8, 128.5, 127.4, 124.3, 123.7, 112.4, 40.7, 22.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNNaO}^{+}: 334.0969(\mathrm{M}+\mathrm{Na})^{+}$, found: 334.0961.

N-(4-fluoro-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1e). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{td}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H})$, $1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.1,159.6(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 145.0,142.3,136.8$, $132.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 129.3,128.9,128.8,128.5,128.2,124.6(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 124.0,117.2(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 112.3,40.8,22.1$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNNaO}^{+}: 318.1265(\mathrm{M}+\mathrm{Na})^{+}$, found: 318.1259.

N-(5-methyl-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1f). White solid. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{brs}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,145.3,143.2,137.2,136.9,136.0,130.6,128.8$, 128.7, 128.5, 125.9, 125.6, 123.6, 123.0, 111.6, 40.5, 22.1, 21.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}^{+}: 314.1515(\mathrm{M}+\mathrm{Na})^{+}$, found: 314.1517.

N-(5-fluoro-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1g). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J=11.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (brs, 1 H), $7.43-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.05-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{td}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H})$, $3.05(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,161.8(\mathrm{~d}, J=244.4 \mathrm{~Hz}), 145.0$, $142.6,137.51(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 136.6,131.54(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 128.9,128.8,128.5,124.3,123.75(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 112.0,111.1(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 109.2(\mathrm{~d}, J=27.3 \mathrm{~Hz}), 40.2,22.0$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNNaO}^{+}: 318.1265(\mathrm{M}+\mathrm{Na})^{+}$, found: 318.1272.

N-(5-chloro-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1h). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{brs}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}$,
$1 \mathrm{H}), 5.68(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,144.9,142.3,137.3,136.6,133.0,131.6,128.9,128.8,128.5,126.9,124.6$, 124.4, 122.1, 112.2, 40.4, 22.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNNaO}^{+}: 334.0969(\mathrm{M}+$ $\mathrm{Na})^{+}$, found: 334.0963.

N-(2-(2-methylallyl)phenyl)-2-(p-tolyl)acrylamide (1i). Light yellow solid. ${ }^{1}$ H NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{brs}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,145.2,142.9,138.7,136.4,134.0$, 130.8, 129.5, 128.9, 128.4, 127.5, 124.7, 123.1, 122.4, 111.9, 40.9, 22.1, 21.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}^{+}: 314.1515(\mathrm{M}+\mathrm{Na})^{+}$, found: 314.1526.

2-([1,1'-Biphenyl]-4-yl)-N-(2-(2-methylallyl)phenyl)acrylamide (1j). White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H})$, $4.13(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,145.0,143.0,141.7$, $140.3,136.4,135.7,130.8,128.9,128.9,127.7,127.5,127.0,124.8,123.5,122.5,111.9,41.0$, 22.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NNaO}^{+}: 376.1672(\mathrm{M}+\mathrm{Na})^{+}$, found: 376.1673.

\boldsymbol{N}-(4-methoxy-2-(2-methylallyl)phenyl)-2-phenylacrylamide (1k). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{brs}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ $(\mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.5$, $160.0,144.9,143.0,136.4,130.8,129.8,129.2,128.9,127.5,124.8,122.4,122.3,114.2,111.9$, 55.4, 41.0, 22.2. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}: 308.1645(\mathrm{M}+\mathrm{H})^{+}$, found: 308.1648

2-(4-Isopropoxyphenyl)- N -(2-(2-methylallyl)phenyl)acrylamide (11). White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{brs}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.05(\mathrm{~m}$, 2H), $6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}$, $1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,158.4,144.9,143.0,136.4,130.8,129.8,128.9,128.8,127.5$, 124.7, 122.4, 122.2, 115.9, 112.0, 69.9, 41.0, 22.1, 22.0. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NNaO}_{2}{ }^{+}: 358.1778(\mathrm{M}+\mathrm{Na})^{+}$, found: 358.1765 .

2-(4-(Benzyloxy)phenyl)-N-(2-(2-methylallyl)phenyl)acrylamide (1m). White solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{brs}, 1 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.12-7.07(\mathrm{~m}$, 2H), $7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H})$, $4.13(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,159.2,144.8,143.0$, 136.6, 136.4, 130.8, 129.8, 129.4, 128.9, 128.6, 128.1, 127.5, 127.4, 124.7, 122.4, 122.3, 115.1, 112.0, 70.1, 41.0, 22.1. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NNaO}_{2}{ }^{+}: 406.1778(\mathrm{M}+\mathrm{Na})^{+}$, found: 406.1783.

\boldsymbol{N}-(2-(2-methylallyl)phenyl)-2-(4-phenoxyphenyl)acrylamide (1n). White solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{brs}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 1.54$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.3,158.1,156.4,144.7,143.2,136.3,131.4,130.8$, 129.9, 129.9, 129.0, 127.5, 124.9, 123.9, 122.7, 122.6, 119.4, 118.5, 112.0, 41.1, 22.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NNaO}_{2}{ }^{+}: 392.1621(\mathrm{M}+\mathrm{Na})^{+}$, found: 392.1622.

2-(4-Fuorophenyl)-N-(2-(2-methylallyl)phenyl)acrylamide (1p). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{brs}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}$,
$1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.51$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,163.2(\mathrm{~d}, J=249.7 \mathrm{~Hz}), 144.7,143.4,136.5,133.1$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}), 131.1,130.5(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.2,127.8,125.2,123.5,122.8,116.0(\mathrm{~d}, J=21.7$ Hz), 112.2, 41.4, 22.4. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{FNNaO}^{+}: 318.1265(\mathrm{M}+\mathrm{Na})^{+}$, found: 318.1274 .

2-(4-Chlorophenyl)- N -(2-(2-methylallyl)phenyl)acrylamide (1q). Light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{brs}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 1.52$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,144.4,143.2,136.2,135.2,134.9,130.9,129.8$, 129.0, 128.9, 127.6, 125.0, 123.5, 122.5, 111.9, 41.1, 22.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNNaO}^{+}: 334.0969(\mathrm{M}+\mathrm{Na})^{+}$, found: 334.0974.

2-(3-Chlorophenyl)- N -(2-(2-methylallyl)phenyl)acrylamide (1r). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{brs}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, $4.56(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,144.2$, $143.2,138.6,136.2,134.8,130.9,130.1,128.9,128.8,128.6,127.6,126.6,125.0,124.2,122.5$, 111.9, 41.1, 22.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNNaO}^{+}: 334.0969(\mathrm{M}+\mathrm{Na})^{+}$, found: 334.0961.

2-(4-Methoxyphenyl)- N-(4-methyl-2-(2-methylallyl)phenyl)acrylamide (1s). White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{brs}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,156.7,145.2,143.0$, $137.0,131.5,129.3,128.8,128.7,128.5,124.5,123.5,116.5,112.0,111.9,55.4,41.1,22.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}: 322.1802(\mathrm{M}+\mathrm{H})^{+}$, found: 322.1817.

2-([1,1'-Biphenyl]-4-yl)-N-(5-fluoro-2-(2-methylallyl)phenyl)acrylamide (1t). White solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J=11.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, 4H), $7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}$, $1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.1,161.8(\mathrm{~d}, J=244.7 \mathrm{~Hz}), 144.7,142.7,141.8,140.2,137.6(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 135.5$, $131.61(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 129.0,128.9,127.8,127.6,127.0,124.1,123.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 112.1$, $111.2(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 109.3(\mathrm{~d}, J=27.3 \mathrm{~Hz}), 40.4$, 22.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FNNaO}^{+}$: $394.1578(\mathrm{M}+\mathrm{Na})^{+}$, found: 394.1571.

N-(2-allylphenyl)-2-phenylacrylamide (1w). White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.66-5.56$ $(\mathrm{m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.0,145.2,136.9,136.0,135.1,130.2,129.4,128.8,128.8,128.6,127.5$, 125.1, 123.8, 122.7, 116.3, 36.6. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NNaO}^{+}: 286.1202(\mathrm{M}+$ $\mathrm{Na})^{+}$, found: 286.1219.

N -(2-allyl-4-methoxyphenyl)-2-phenylacrylamide (1x). White solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.30($ brs, 1 H$), 6.81(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.61(\mathrm{~m}$, $1 \mathrm{H}), 4.78(\mathrm{dd}, J=10.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,157.0,145.1137 .0,135.1,132.1,128.9,128.8$, 128.7, 128.5, 124.8, 123.5, 116.3, 115.8, 112.0, 55.4, 36.7. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}: 316.1308(\mathrm{M}+\mathrm{Na})^{+}$, found: 316.1311.

N -(2-allylphenyl)-2-(4-methoxyphenyl)acrylamide (1y). White solid. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{brs}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.70-$
$5.66(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.18$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,160.0,144.7,136.0,135.2,130.2,129.8$, 129.3, 129.1, 127.4, 125.0, 122.7, 122.3, 116.3, 114.2, 55.4, 36.6. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{2}{ }^{+}: 316.1308(\mathrm{M}+\mathrm{Na})^{+}$, found: 316.1319.

2-(1-Methyl-1H-pyrrol-2-yl)-N-(2-(2-methylallyl)phenyl)acrylamide (1aa). Light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{brs}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, $3 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,142.8,136.2,136.0,130.8$, $128.7,128.3,127.5,127.2,124.7,124.3,121.9,111.6,111.0,108.2,40.6,34.3,22.5$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}^{+}: 303.1468(\mathrm{M}+\mathrm{Na})^{+}$, found: 303.1481.

6. Characterization of the Products

9a-Methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrrolo[1, 2-a]indol-3(2H)-one (3a). Light yellow oil ($33.5 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (dd, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.08$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ $(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $177.5,152.1,140.3,137.7,137.5,134.2,128.2,127.6,126.1,125.3,125.2,124.7,117.1,66.1$, 57.4, 49.1, 44.4, 30.8, 28.5, 3.9, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NaNOSi}_{2}{ }^{+}: 444.2149$ $(\mathrm{M}+\mathrm{Na})^{+}$, found: 444.2161.

7,9a-Dimethyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrro $\mathbf{l o}[1,2-\boldsymbol{a}]$ indol-3(2H)-one (3b). Light yellow oil ($34.1 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.70-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 9 \mathrm{H})$, $-0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,152.4,138.0,137.7,137.5,134.3,134.3$, $128.2,128.0,126.2,126.0,125.2,116.8,66.3,57.4,49.1,44.4,30.9,28.5,21.2,3.9,0.1$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaOSi}_{2}{ }^{+}: 458.2306(\mathrm{M}+\mathrm{Na})^{+}$, found: 458.2301.

7-Methoxy-9a-methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1 \boldsymbol{H}-pyrrolo[1,2-a]indol-3(2H)-one (3c). Light yellow solid (36.0 mg, 80\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.71$ $(\mathrm{d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6,157.2,152.4,137.7,137.5,135.9,134.0,128.2,126.2$, $125.2,117.6,112.0,111.7,66.5,57.3,55.6,48.9,44.5,30.8,28.5,3.9,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}$: $474.2255(\mathrm{M}+\mathrm{Na})^{+}$, found: 474.2254 .

7-Fluoro-9a-methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1 \boldsymbol{H} -pyrrolo[1,2-a]indol-3(2H)-one (3d). Light yellow oil ($28.6 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-$ $2.62(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.05$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,160.2(\mathrm{~d}, J=242.5 \mathrm{~Hz}), 152.0,137.8,137.6,136.5$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 128.2,126.0,125.4,117.9(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=23.4$ $\mathrm{Hz}), 112.8(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 66.7,57.3,48.7,44.4,30.8,28.4,3.9,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{FNNaOSi}_{2}{ }^{+}: 462.2055(\mathrm{M}+\mathrm{Na})^{+}$, found: 462.2062.

7-Chloro-9a-methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrrolo[1,2-a]indol-3(2H)-one (3e). Light yellow oil ($25.5 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8$, $151.9,139.1,137.8,137.7,136.2,129.8,128.3,127.6,125.9,125.6,125.4,118.0,66.4,57.4,48.8$, 44.2, 30.7, 28.5, 3.9, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{CINNaOSi}_{2}{ }^{+}: 478.1760(\mathrm{M}+$ $\mathrm{Na})^{+}$, found: 478.1755 .

6,9a-Dimethyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrro $\mathbf{l o}[1,2-a]$ indol-3(2H)-one (3f). Light yellow solid ($31.5 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.70(\mathrm{dd}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}$, $J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 4 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,152.4,140.4,137.6,137.5,137.5,131.2,128.2,126.2$, 125.3, 125.2, 124.9, 117.8, 66.4, 57.6, 49.3, 44.1, 30.9, 28.5, 21.5, 3.9, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaOSi}_{2}{ }^{+}: 458.2306(\mathrm{M}+\mathrm{Na})^{+}$, found: 458.2319.

6-Fluoro-9a-methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1Hpyrrolo $\left[1,2-a\right.$]indol-3(2H)-one (3g). Light yellow solid ($26.5 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, J=9.1$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})$, $0.44(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,162.5(\mathrm{~d}, J=244.0 \mathrm{~Hz}, 1 \mathrm{H})$, $151.7,141.5(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 137.9,137.6,129.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.2,126.0,125.70(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 125.4,111.1(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 105.4(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 66.9,57.4,49.1,43.9,30.7,28.5,3.9$, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{FNNaOSi}_{2}{ }^{+}: 462.2055(\mathrm{M}+\mathrm{Na})^{+}$, found: 462.2065 .

6-Chloro-9a-methyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-
pyrrolo[1,2-a]indol-3(2H)-one (3h). Light yellow solid (20.5 mg, 45\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.44(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6$, $151.8,141.4,137.8,137.6,133.1,132.7,128.3,126.0,126.0,125.4,124.7,117.6,66.6,57.4,49.0$, 44.0, 30.8, 28.5, 3.9, 0.1. HRMS (ESI-TOF) m/z: calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClNNaOSi}_{2}{ }^{+}: 478.1760(\mathrm{M}+$ $\mathrm{Na})^{+}$, found: 478.1775 .

9a-Methyl-2-(4-methyl-2-(trimethylsilyl)phenyl)-2-((trimethylsilyl)methyl)-9,9a-dihydro-1H-pyrrolo[1,2-a]indol-3(2H)-one (3i). Light yellow oil ($26.5 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, $1.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 177.8,149.5,140.4,138.4,137.3,134.3,128.9,127.6,126.1,125.3$, $124.6,117.1,66.1,57.2,49.1,44.3,30.9,28.5,20.9,3.9,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaOSi}_{2}{ }^{+}: 458.2306(\mathrm{M}+\mathrm{Na})^{+}$, found: 458.2319 .

9a-Methyl-2-(3-(trimethylsilyl)-[1,1'-biphenyl]-4-yl)-2-((trimethylsilyl)methyl)-9,9a-dihydro$\mathbf{1 H}$-pyrrolo[1,2-a]indol-3(2H)-one (3j). Light yellow solid ($37.3 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{~s}, 9 \mathrm{H}),-001(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,151.4$, $140.9,140.3,138.3,137.6,136.4,134.2,128.7,127.6,127.1,126.9,126.8,126.6,125.3,124.7$, 117.2, 66.2, 57.2, 49.0, 44.5, 30.8, 28.5, 4.0, 0.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NNaOSi}_{2}{ }^{+}$: $520.2462(\mathrm{M}+\mathrm{Na})^{+}$, found: 520.2472 .

2-(4-Methoxy-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro-1
\boldsymbol{H}-pyrrolo[1,2-a]indol-3(2H)-one (3k). Light yellow oil (26.2 mg, 58\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=10.3,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.68$ $(\mathrm{m}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.47(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,156.4,144.4,140.4,139.5,134.3,127.6,127.3,125.3$, 124.6, 124.5, 117.1, 111.5, 66.1, 56.8, 55.0, 49.2, 44.4, 31.0, 28.4, 3.9, 0.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}$: $474.2255(\mathrm{M}+\mathrm{Na})^{+}$, found: 474.2266.

2-(4-Isopropoxy-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro-1H-pyrrolo[1,2-a]indol-3(2H)-one (3I). Light yellow oil (34.9 mg, 73\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-$ $4.42(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.04$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 178.0,154.7,144.2,140.4,139.4,134.3,127.5,127.3$, $126.2,125.3,124.6,117.1,113.9,69.6,66.1,56.8,49.2,44.4,30.9,28.4,22.0,21.9,3.9,0.2$. HRMS (ESI-TOF) m / z : calcd for HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}: 502.2568$ $(\mathrm{M}+\mathrm{Na})^{+}$, found: 502.2590.

2-(4-(Benzyloxy)-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro $\mathbf{- 1 H}$-pyrrolo[1,2-a]indol-3(2H)-one (3m). Light yellow oil ($35.2 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26$ $(\mathrm{m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H})$, $2.80(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ $(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8$, $155.7,144.6,140.4,139.6,137.0,134.2,128.5,127.9,127.5,127.3,125.3,125.2,124.6,117.1$, $112.8,69.8,66.0,56.8,49.2,44.4,30.9,28.4,3.8,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}: 550.2568(\mathrm{M}+\mathrm{Na})^{+}$, found: 550.2582.

9a-Methyl-2-(4-phenoxy-2-(trimethylsilyl)phenyl)-2-((trimethylsilyl)methyl)-9,9a-dihydro-1 \boldsymbol{H}-pyrrolo [1,2-a]indol-3(2H)-one (3n). Light yellow oil (37.3 mg, 73\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,157.3,153.9$, $146.9,140.8,140.2,134.1,129.6,128.2,127.7,127.6,125.3,124.7,122.8,118.3,118.0,117.1$, $66.0,56.8,49.2,44.8,31.0,28.3,3.8,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}$: $536.2412(\mathrm{M}+\mathrm{Na})^{+}$, found: 536.2432.

9a-Methyl-2-(4-(trifluoromethyl)-2-(trimethylsilyl)phenyl)-2-((trimethylsilyl)methyl)-9,9a-di hydro-1 H-pyrrolo[1,2-a]indol-3(2H)-one (30). Light yellow oil (14.9 mg, 30\%). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}$, $3 \mathrm{H}), 2.62(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, 0.47 (s, 9H), -0.06 (s, 9H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.6,155.8,139.9,139.8,134.0$, $133.8(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 127.7,127.4(\mathrm{q}, J=36.4 \mathrm{~Hz}), 126.5,125.4,125.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.9$, 124.3 ($q, J=272.3 \mathrm{~Hz}$), 117.1, 66.1, 57.4, 49.0, 44.8, 30.8, 28.3, 3.8, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NNaOSi}_{2}{ }^{+}: 512.2023(\mathrm{M}+\mathrm{Na})^{+}$, found: 512.2033.

2-(4-Fluoro-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro-1 \boldsymbol{H} -pyrrolo[1,2-a]indol-3(2H)-one (3p). Light yellow solid ($25.5 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=10.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}$, $9 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.2,160.3(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 147.5(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}), 141.6(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 140.0,134.1,128.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 127.6,125.3,124.8,123.8(\mathrm{~d}$,
$J=19.3 \mathrm{~Hz}), 117.1,114.32(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 66.0,56.8,49.3,44.8,31.1,28.3,3.8,0.1$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{FNNaOSi}_{2}{ }^{+}: 462.2055(\mathrm{M}+\mathrm{Na})^{+}$, found: 462.2076.

2-(4-Chloro-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro-1 \boldsymbol{H} -pyrrolo[1,2-a]indol-3(2H)-one (3q). Light yellow solid (30.0 mg, 66\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49$ $(\mathrm{s}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,150.3,141.2,140.0$, $137.0,134.1,131.6,127.9,127.9,127.7,125.4,124.8,117.1,66.0,57.0,49.2,44.7,30.9,28.3,3.8$, 0.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClNNaOSi}_{2}{ }^{+}: 478.1760(\mathrm{M}+\mathrm{Na})^{+}$, found: 478.1776 .

2-(5-Chloro-2-(trimethylsilyl)phenyl)-9a-methyl-2-((trimethylsilyl)methyl)-9,9a-dihydro-1 \mathbf{H} -pyrrolo[1,2-a]indol-3(2H)-one (3r). Light yellow oil ($28.6 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26$ (m, 1H), $7.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,153.3,139.7,138.7,136.8,134.3,134.0,127.7,126.7,125.3$, 125.3, 124.7, 117.0, 65.7, 56.9, 49.5, 45.3, 31.0, 28.1, 4.0, 0.1. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClNNaOSi}_{2}{ }^{+}$: $478.1760(\mathrm{M}+\mathrm{Na})^{+}$, found: 478.1776.

2-(4-Methoxy-2-(trimethylsilyl)phenyl)-7,9a-dimethyl-2-((trimethylsilyl)methyl)-9,9a-dihydr o-1H-pyrrolo[1,2-a]indol-3(2H)-one (3s). Light yellow solid ($32.5 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.59(\mathrm{~m}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,156.4,144.6,139.4,138.1,134.4,134.3,127.9,127.4$,
$126.0,124.5,116.8,111.5,66.2,56.8,55.0,49.3,44.3,31.0,28.4,21.2,3.8,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}$: $488.2412(\mathrm{M}+\mathrm{Na})^{+}$, found: 488.2427.

6-Fluoro-9a-methyl-2-(3-(trimethylsilyl)-[1,1'-biphenyl]-4-yl)-2-((trimethylsilyl)methyl)-9,9a-dihydro-1H-pyrrolo[1,2-a] indol-3(2H)-one (3t). Light yellow solid ($27.2 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.36$ $-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{dd}, J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~d}, J$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,162.5(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 151.0,141.5(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 140.8,138.4,137.7$, $136.4,129.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 128.7,127.1,126.9,126.8,126.5,125.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 111.1(\mathrm{~d}, J=$ $22.3 \mathrm{~Hz}), 105.4(\mathrm{~d}, J=26.4 \mathrm{~Hz}), 66.9,57.1,49.0,43.9,30.7,28.4,4.0,0.2$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{FNNaOSi}_{2}{ }^{+}$: $538.2368(\mathrm{M}+\mathrm{Na})^{+}$, found: 538.2360.

9a-Ethyl-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrrolo[1,2 -a]indol-3(2H)-one (3u). Light yellow oil ($29.6 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (dd, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.07$ - $7.02(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.45(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.2,152.6$, $141.2,137.6,137.4,134.3,128.3,127.5,126.1,125.2,125.0,124.7,117.0,69.5,57.3,46.4,40.6$, 33.2, 31.1, 8.5, 3.8, 0.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NNaOSi}_{2}{ }^{+}: 458.2306(\mathrm{M}+\mathrm{Na})^{+}$, found: 458.2318 .

2-((Trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrrolo[1,2-a]indol$\mathbf{3 (2 H})$-one (3w). Light yellow solid ($21.0 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{dd}, J=$ $7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.5$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$
$(\mathrm{d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H}),-0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,148.2$, $140.1,140.0,137.1,134.1,127.9,127.7,126.8,125.5,125.1,124.0,115.3,58.6,57.3,45.1,35.8$, 26.6, 4.1, 0. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NNaOSi}_{2}{ }^{+}: 430.1993(\mathrm{M}+\mathrm{Na})^{+}$, found: 430.2002 .

7-Methoxy-2-((trimethylsilyl)methyl)-2-(2-(trimethylsilyl)phenyl)-9,9a-dihydro-1H-pyrrolo[1 ,2-a]indol-3(2H)-one (3x). Light yellow oil ($24.0 \mathrm{mg}, 55 \%$, dr: 5:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}$, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ - $4.68(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=15.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $12.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=11.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H}),-0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,156.7,148.5,140.0,137.1$, $135.7,133.6,127.9,126.9,125.5,115.6,112.0,111.8,59.0,57.2,55.7,45.0,36.1,26.8,4.0,0.0$. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}: 460.2099(\mathrm{M}+\mathrm{Na})^{+}$, found: 460.2101 .

2-(4-Methoxy-2-(trimethylsilyl)phenyl)-2-((trimethylsilyl)methyl)-9,9a-dihydro-1H-pyrrolo[1 ,2-a]indol-3(2H)-one (3y). Light yellow oil ($21.0 \mathrm{mg}, 50 \%$, dr: $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=$ $15.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H}),-0.12(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,156.7,141.7,140.5140 .0,134.1,128.1,127.6,125.1,124.0,123.8$, 115.3, 111.8, 58.5, 56.7, 55.0, 45.4, 35.8, 26.7, 4.0, 0.0. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{Si}_{2}{ }^{+}: 460.2099(\mathrm{M}+\mathrm{Na})^{+}$, found: 460.2096.

1,1,6,6,9a'-Pentamethyl-2,3,4,5,6,7,9',9a'-octahydro- $1 H$-spiro[benzo $[b][1,6]$ disilecine-8,2'-pyr rolo[1,2-a]indol]-3'(1'H)-one (5a). Light yellow solid (22.4 mg, 50\%). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.92(\mathrm{~m}$,
$1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.55-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H})$, $0.76-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.61(\mathrm{dt}, J=15.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}),-0.09$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,154.1,141.2,138.1,136.8,134.3,128.1,127.6$, $125.6,125.3,125.2,124.9,117.5,66.5,58.6,48.6,42.5,30.6,29.2,24.7,23.5,13.9,13.4,4.0,0.6$, -1.2, -2.2. HRMS (ESI-TOF) m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NOSi}_{2}{ }^{+}: 448.2486(\mathrm{M}+\mathrm{H})^{+}$, found: 448.2491 .

7. References

[1] Y. Cao, H. Zhao, D. Zhang-Negrerie, Y. Du and K. Zhao, Adv. Synth. Catal., 2016, 358, 3610.
[2] W. Du, Q. Gu, Z. Li and D. Yang, J. Am. Chem. Soc., 2015, 137, 1130.
[3] D. Orain and J.-C. Guillemin, J. Org. Chem., 1999, 64, 3563.
8. NMR Spectra
8.1 NMR Spectra of the Substrates

年
cosers)
1b
ll
ll

1b

1e

$$
\begin{aligned}
& \text { © }
\end{aligned}
$$

1e

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

1 f

1 f

ুচ্ভ

No

$\stackrel{\sim}{N}$

1 g

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

\
\

1h

1h

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

1i

$\stackrel{\otimes}{\infty}$

${ }^{1 j}$

1k

$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}} \underset{\infty}{\infty}$	M্লুল্লু	－	のオのォかべ 	$\stackrel{\text { N}}{\stackrel{\sim}{j}}$	
$)^{\infty}$		4	サウサすず，	P	

11

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{6} \\ & \stackrel{\circ}{!} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$ $\stackrel{\infty}{\infty}$ $\stackrel{\sim}{\circ}$	 		

11
$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\begin{gathered} \stackrel{-}{\omega} \\ \substack{\infty \\ \infty \\ \infty} \end{gathered}$			$\stackrel{\text { ¢ }}{\stackrel{7}{6}}$	$\stackrel{8}{\square}$	$\stackrel{\infty}{\underset{+}{\sim}}$	$\underset{\sim}{\underset{\sim}{j}}$	-

1m

$\stackrel{\mathrm{NO}}{\mathrm{O}} \mathrm{O}$
N゚゚
$\begin{array}{ll}\bar{\circ} & \stackrel{\infty}{\underset{\sim}{j}} \\ \bar{\top} & \stackrel{1}{\top}\end{array}$

1n

ln

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\stackrel{\infty}{\sim}$		$\stackrel{\downarrow}{6}$	$\stackrel{\sim}{0}$	N	N	$\stackrel{5}{5}$
\cdots		$\stackrel{\circ}{\circ}$	$\stackrel{\square}{+}$!	$\stackrel{6}{\square}$

1p

$\underbrace{4}$

1p
$\begin{array}{lllllllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$1 q$

1q

$\begin{array}{llllllllllllllllllllllllll} & 0 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

\infty~NNNNNNNNNNN
\infty~NNNNNNNNNNN

1r

1t

1t

1x

1x

[^0]

1y

1y

1aa

1aa

$\begin{array}{llllllllllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

8.2 NMR Spectra of the Products

3a

®®	$\stackrel{\sim}{\square}$	¢Nodididice
찯	\%	
		--

[^1]
3a

3b

3b

$\begin{array}{ll}\text { ल. } \\ \stackrel{y}{*} & \text { 亏. } \\ i & \text { i }\end{array}$

3d

$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ i & 0\end{array}$

3f

윽 す 	 	¢

3 g

3 g

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

3h

3i

$3 i$
$\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -2\end{array}$

3j

3j

3k

3k

$\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

$\begin{array}{ll}\text { n } \\ i & 8 \\ i & 0 \\ i\end{array}$

$3 m$

3 m

| 30 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\underset{\sim}{\sim}$

3n

$3 n$

$\begin{array}{lllllllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

Lullel

$3 p$

$\begin{array}{llllllllllllllllllllllllll}\text { J0 } & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

$3 q$

Lu

$3 q$

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -2\end{array}$

N	O
	i

®.
$\stackrel{\circ}{\circ}$
1

3s

3 s

[^2]
3 t

$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\text { O}}{-} \\ & \underset{i}{-} \end{aligned}$		$\begin{aligned} & \text { ๗్N } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{1} \end{aligned}$	すベ			$\stackrel{\infty}{\sim}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sigma} \\ & \infty \\ & \dot{\omega} \\ & \stackrel{j}{\dagger} \end{aligned}$		

$3 u$

$\begin{aligned} & \text { ä } \\ & \stackrel{\infty}{\sim} \end{aligned}$	¢			$\begin{aligned} & \stackrel{?}{\substack{0}} \\ & \stackrel{i}{0} \end{aligned}$			$\begin{aligned} & \text { sot } \\ & \text { cot } \\ & \text { Mon } \end{aligned}$	

NOESY

5:1
$3 x$

5:1
3 x

5:1
$3 y$

$5: 1$
$3 y$

$\begin{aligned} & \text { ö } \\ & \underset{\sim}{*} \\ & \hline \end{aligned}$					8ifo	¢		¢

$3 a b-D$
9. The X-ray Single-Crystal Diffraction Analysis of 3h

CCDC 2007063
Table S1 Crystal data and structure refinement for $\mathbf{3 h}$.

Identification code	3h
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{ClNOSi}_{2}$
Formula weight	456.16
Temperature/K	296(2)
Wavelength/ \AA	1.54178
Crystal system	Triclinic
Space group	P-1
a/Å	8.8523(15)
b/ \AA	9.551(2)
c / \AA	16.927(4)
$\alpha{ }^{\circ}$	81.918(4)
$\beta /{ }^{\circ}$	78.360(4)
$\gamma /{ }^{\circ}$	64.955(6)
Volume/ ${ }^{\text {a }}$ 3	1267.5(5)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.195
μ / mm^{-1}	2.355
$\mathrm{F}(000)$	488
Crystal size/ mm^{3}	$0.150 \times 0.080 \times 0.060$
2Θ range for data collection $/{ }^{\circ}$	2.121 to 68.517
Index ranges	$-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-19<=\mathrm{l}<=20$
Reflections collected	13285
Independent reflections	4607 [R (int) $=0.0299$]
Data/restraints/parameters	4607/0/278
Goodness-of-fit on F^{2}	1.024

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0377, \mathrm{wR}_{2}=0.0975$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0422, \mathrm{wR}_{2}=0.1029$
Largest diff. peak and hole $/ \mathrm{e} \AA^{-3}$	0.239 and -0.272

[^0]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -2\end{array}$

[^1]:
 oion

[^2]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -2\end{array}$

