Electronic Supplementary Information

Synthesis of Diaryl Ether-components of Ellagitannins Using the Ortho-quinone with Consonant Mesomeric Effects

Hayato Konishi, Tsukasa Hirokane,[‡] Hajime Hashimoto, Kazutada Ikeuchi,[§] Shintaro Matsumoto, Shinnosuke Wakamori,* Hidetoshi Yamada*^{,†}

School of Science and Technology, Kwansei Gakuin University, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan. E-mail: shinnosuke1010@kwansei.ac.jp

[†]Deceased on November 23, 2019. This paper is dedicated to the memory of Prof. Dr. Hidetoshi Yamada. [‡]Present address: Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamaboji, Yamashiro-cho, Tokushima 770-1337, Japan.

[§]Present address:Department of Chemistry, Faculty of Science, Hokkaido University, West 8, North 10, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.

Table of Contents

ESI-1. Abbreviations used in the main text and the Supporting Information	S3
ESI-2. General experimental methods	S4
Experiments for the reactions displayed in Scheme 2	
ESI-3. Bromination of 10 to a mixture of 11 and 12	S5
ESI-4. Synthesis of 13 and 14	S 6
ESI-5. Synthesis of 9	S10
ESI-6. Synthesis of 8 and 15	S12
Experiments for the reactions displayed in Scheme 3	
ESI-7. Synthesis of 17 (The use of 1.0 equiv of 8)	S16
ESI-8. Synthesis of 17 (The use of 1.3 equiv of 8)	S18
ESI-9. Synthesis of 19 (The use of 1.0 equiv of 8)	S19
ESI-10. Synthesis of 19 (The use of 1.3 equiv of 8)	S21
ESI-11. Overview of synthesis of 21	S22
ESI-12. Synthesis of 38	S23
ESI-13. Synthesis of 39	S25
ESI-14. Synthesis of 40	S27
ESI-15. Synthesis of 21	S29
ESI-16. An attempt of <i>oxa</i> -addition to 21	S31

Experiments for Table 1

ESI-17. Synthesis of 22 and 23 (Table 1, Entry 1)	S32
ESI-18. Synthesis of 22 (Table 1, Entry 2)	S36
ESI-19. Synthesis of 22 (Table 1, Entry 3)	S37
ESI-20. Synthesis of 24 (Table 1, Entry 4)	S38

Experiments for the reactions displayed in Scheme 4

ESI-21. One-pot synthesis of 25	S40
ESI-22. Synthesis of 27	S42
ESI-23. Synthesis of 29	S44
ESI-24. Synthesis of 32	S47
ESI-25. Synthesis of 33	S51
ESI-26. Synthesis of 35	S54
ESI-27. Synthesis of 36	S58
ESI-28. Additional Reference	S61

Ac	acetyl	LRMS	low resolution mass spectra
ATR	attenuated total reflectance	m	multiplet
Bn	benzyl	Μ	molar (mol/L)
br	broad	Me	methyl
[Br]	bromination	min	minute(s)
calcd	calculated	MOM	methoxymethyl
d	doublet	mp	melting point
DBDMH	1,3-dibromo-5,5-dimethylhydantoin	NAP	2-naphthylmethyl
DDQ	2,3-dichloro-5,6-dicyano-p-	NMR	nuclear magnetic resonance
	benzoquinone	0-	ortho-
DEPT	distortionless enhancement by	Obs	observed data
	polarization transfer	[Ox]	oxidation
DHDG	dehydrodigalloyl	Ph	phenyl
DMF	N,N-dimethylformamide	PIFA	phenyliodine bis(trifluoroacetate)
DMSO	dimethyl sulfoxide	q	quartet
ESI	electrospray ionization	[Rd]	reduction
	electronic supplementary material	rt	room temperature
Et	ethyl	S	singlet
h	hour(s)	TBAF	tetrabutylammonium fluoride
HHDP	hexahydroxydiphenoyl	t	triplet
HMQC	heteronuclear multiple quantum	TES	triethylsilyl
	correlation	THF	tetrahydrofuran
HMBC	heteronuclear multiple bond coherence	TLC	thin layer chromatography
HRMS	high resolution mass spectra	TMS	tetramethylsilane, trimethylsilyl
IPA	iso-propyl alcohol	UV	ultraviolet
IR	infrared spectroscopy	wt	weight
Lit	literature data		

ESI-1. Abbreviations used in the main text and the Supporting Information

ESI-2. General experimental methods

All commercially available reagents were used as received. All moisture and air sensitive reactions were carried out in glassware equipped with rubber septa (or a septum) under the positive pressure of nitrogen. When necessary, the glassware was dried under reduced pressure by heating with a heat-gun and solvents were distilled prior to use. The reactants were azeotropically dried if needed by evaporation of their acetonitrile or toluene solution several times to remove trace water that may be contained in the substrates. The reaction mixture was magnetically stirred. Concentration was carried out under reduced pressure.

The reactions were monitored by TLC and mass spectra. Anhydrous magnesium sulphate was used to dry organic layers after extraction, and it was removed by filtration through a cotton pad. The filtrate was concentrated and subjected to further purification protocols if necessary. This sequence was represented as "the general drying procedure" in the following experimental methods.

TLC was performed on Merck precoated silica gel 60 F-254 plates or Merck RP-19 F-254 plates. Spots were visualized by exposure to UV light or by immersion into a solution of 10% phosphomolybdic acid in ethanol followed by heating at ca. 200 °C.

Column chromatography was performed on Merck silica gel 60 (63–200 or 40–63 μ m) and Kanto Chemical silica gel 60 N (Spherical, neutral, 40–50 or 63–210 μ m).

The melting points were determined using a Yanagimoto micro-melting point apparatus and uncorrected. IR spectra were recorded on Jasco FT/IR-4200 or Shimazu IRAffinity-1S with an ATR sampling unit, and the major absorbance bands are all reported in wavenumbers (cm⁻¹). HRMS were obtained on a JEOL JMS-T100LC spectrometer for ESI method. The data are reported in units of mass to charge.

NMR spectra were recorded on JEOL JNM-ECX-400 (400 MHz for ¹H and 101 MHz for ¹³C) or JNM-ECX-500 (500 MHz for ¹H and 126 MHz for ¹³C) with either tetramethylsilane or residual proton of deuterated solvent as internal reference in the indicated solvent in each parenthesis. The ¹H NMR spectroscopic data are indicated by a chemical shift (δ), with the multiplicity, the coupling constants, the integration and the assignments in parentheses in this order. The multiplicities are abbreviated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. The ¹³C NMR spectroscopic data are reported as the chemical shift (δ), with the hydrogen multiplicity obtained from the DEPT spectra and the assignments in parentheses. The multiplicities are abbreviated as s, C; d, CH; t, CH₂; and q, CH₃. When the number of the carbon was more than one, the number was added in the parentheses. In the case that there were very close but individual signals without overlap and when rounding chemical shifts of the signals at the second decimal place provides same values, their chemical shifts were written up to two decimal places.

Experiments displayed in Scheme 2 ESI-3. Bromination of 10 to a mixture of 11 and 12

To a solution of **10** (1.50 g, 6.69 mmol) in chloroform (134 mL) was added 1,3-dibromo-5,5dimethylhydantoin (1.34 g, 4.68 mmol) at 23 °C. The mixture was stirred for 20 min at 25 °C. Addition of 10% aqueous sodium thiosulfate (50 mL) quenched the reaction. The reaction mixture was extracted with chloroform. After the general drying procedure, the obtained crude product was a mixture of **10**, **11** and **12**. The ratio of **10**, **11** and **12** was 7:49:44 that was determined by integration values on a ¹H NMR spectrum of the mixture. The mixture was purified by column chromatography (silica gel 50 g, hexane/ethyl acetate 6/1 to 4/1) to remove **10** (60.0 mg, 267 mmol, 4% yield) as a colourless solid and to obtain the mixture of **11** and **12** as a yellow oil.

¹H NMR spectrum of the crude product (mixture of 10, 11 and 12), 400 MHz in acetone- d_6

3.99 3.98 3.97 3.96 3.95 3.94 3.93 3.92 3.91 3.9 3.89 3.88 3.87 3.86 3.85 3.84 3.83 3.82 3.81 3.8 3.79 3.78 3.77 3.76 3.75 3.74 3.73 3.72 3.71 ppm

ESI-4. Synthesis of 13 and 14

To a mixture of **11** and **12** in DMF (34 mL) were added potassium carbonate (2.78 g, 20.1 mmol) and benzyl bromide (3.43 g, 20.1 mmol) at 25 °C. The mixture was stirred for 3 h at 25 °C. To the reaction mixture were added diethyl ether (20 mL) and 1 M hydrochloric acid (20 mL). The reaction mixture was extracted with diethyl ether. The combined organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 20 g, hexane/toluene 2/1 to 1/2) to afford **13** (1.55 g, 3.21 mmol, 48% yield) as a colourless powder and **14** (1.54 g, 2.74 mmol, 41% yield) as a colourless oil.

Data for 13

mp 64.8-66.3 °C.

IR (ATR) 3090, 3032, 2951, 2876, 1734, 1560, 1476, 1433, 1406, 1364, 1337, 1204, 1099, 1024, 982, 739, 698 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 21 °C) δ 7.58–7.55 (m, 2H, Bn), 7.46–7.32 (m, 8H, Bn), 7.28 (s, 1H, galloyl), 6.04 (ddt, *J* = 16.3, 10.3, 6.0 Hz, 1H, allyl), 5.31 (ddt, *J* = 16.3, 1.6, 1.4 Hz, 1H, allyl), 5.21 (br ddt, *J* = 10.3, 1.6, 1.1 Hz, 1H, allyl), 5.13 (s, 2H, Bn), 5.05 (s, 2H, Bn), 4.62 (ddd, *J* = 6.0, 1.4, 1.1 Hz, 2H, allyl), 3.92 (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-*d*, 21 °C) δ 166.6 (s, ester), 151.9 (s, galloyl), 151.1 (s, galloyl), 145.6 (s, galloyl), 136.8 (s, Bn), 136.2 (s, Bn), 133.6 (d, allyl), 128.82 (d, 2C, Bn), 128.78 (d, 2C, Bn), 128.6 (d, 2C, Bn), 128.44 (d, Bn), 128.38 (d, Bn), 127.7 (s, galloyl), 127.6 (d, 2C, Bn), 118.7 (t, allyl), 112.3 (d, galloyl), 110.5 (s, galloyl), 75.5 (t, allyl or Bn), 74.7 (t, allyl or Bn), 71.3 (t, Bn), 52.7 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₅H₂₃O₅BrNa 505.0627, found 505.0632.

¹H NMR spectrum of **13**, 400 MHz in chloroform-*d*

 13 C NMR spectrum of **13**, 101 MHz in chloroform-*d*

Data for 14

mp 47.9-49.3 °C.

IR (ATR) 3032, 2949, 2876, 1740, 1429, 1404, 1356, 1333, 1221, 1086, 984, 733, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.52 (br d, *J* = 6.9 Hz, 4H, Bn), 7.42–7.35 (m, 6H, Bn), 6.02 (ddt, *J* = 17.2, 10.9, 5.7 Hz, 1H, allyl), 5.35 (br ddt, *J* = 17.2, 1.7, 1.7 Hz, 1H, allyl), 5.25 (br ddt, *J* = 10.9, 1.7, 1.2 Hz, 1H, allyl), 5.07 (s, 4H, Bn), 4.60 (ddd, *J* = 5.7, 1.7, 1.2 Hz, 2H, allyl), 3.98 (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-*d*, 23 °C) δ 166.5 (s, ester), 150.4 (s, 2C, galloyl), 147.9 (s, galloyl), 136.4 (s, 2C, Bn), 134.0 (s, galloyl), 133.2 (d, allyl), 128.8 (d, 4C, Bn), 128.7 (d, 6C, Bn), 119.1 (t, allyl), 110.6 (s, 2C, galloyl), 75.8 (t, 2C, Bn), 75.1 (t, allyl), 53.3 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₅H₂₂O₅BrNa 582.9732, found 582.9724.

¹H NMR spectrum of **14**, 500 MHz in chloroform-*d*

¹³C NMR spectrum of **14**, 101 MHz in chloroform-*d*

ESI-5. Synthesis of 9

To a solution of **13** (80.0 mg, 166 μ mol) in dichloromethane (2.0 mL) were added morpholine (20.0 mg, 232 μ mol) and tetrakis(triphenylphosphine)palladium(0) (4.0 mg, 20.0 μ mol) at 25 °C. The mixture was stirred for 0.5 h at 25 °C. To the reaction mixture were added dichloromethane (5 mL) and 1 M hydrochloric acid (5 mL). The reaction mixture was extracted with dichloromethane. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 8/1) to afford **9** (71.4 mg, 161 μ mol, 97% yield) as a colourless solid.

Data for 9

mp 118.0-119.4 °C.

IR (ATR) 3447, 3063, 3032, 2949, 2880, 1719, 1593, 1497, 1435, 1354, 1307, 1211, 1026, 741, 698 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 24 °C) δ 7.56–7.53 (m, 2H), 7.41–7.35 (m, 8H, Bn), 7.34 (s, 1H, galloyl), 5.99 (br s, 1H, OH), 5.12 (s, 2H, Bn), 5.08 (s, 2H, Bn), 3.90 (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-*d*, 24 °C) δ 166.3 (s, ester), 145.5 (s, galloyl), 144.2 (s, galloyl), 143.6 (s, galloyl), 136.7 (s, Bn), 135.7 (s, Bn), 128.9 (d, 2C, Bn), 128.8 (d, Bn), 128.7 (d, 4C, Bn), 128.6 (d, Bn), 128.1 (d, 2C, Bn), 122.9 (s, galloyl), 111.7 (d, galloyl), 111.3 (s, galloyl), 75.2 (t, Bn), 71.8 (t, Bn), 52.5 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₂H₁₉O₅BrNa 465.0314, found 465.0304.

 13 C NMR spectrum of **9**, 101 MHz in chloroform-*d*

ESI-6. Synthesis of 8 and 15

To a solution of **9** (100 mg, 226 μ mol) in dichloromethane (4.5 mL) were added benzyl alcohol (733 mg, 6.78 mmol) and phenyliodine bis(trifluoroacetate) (145 mg, 338 μ mol) at 25 °C. The mixture was stirred for 25 min at 25 °C. Addition 10% aqueous sodium thiosulfate (5 mL) quenched the reaction. The reaction mixture was extracted with dichloromethane. After the general drying procedure, the crude product was purified by column chromatography (silica gel 5 g, hexane/toluene 1/1 to 1/3) to afford **8** (67.0 mg, 122 μ mol, 54% yield) as a yellow oil and its regioisomer **15** (49.7 mg, 90.4 μ mol, 40% yield) as a yellow oil. The by-product **15** decomposed at room temperature.

Data for 8

mp 115.2-117.0 °C.

IR (ATR) 3065, 3032, 2951, 1738, 1694, 1632, 1454, 1314, 1196, 1065, 1028, 737, 696 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 24 °C) δ 7.39–7.25 (m, 15H, Bn), 6.34 (s, 1H, H-6), 4.94 (s, 2H, Bn), 4.68 (d, *J* = 11.0 Hz, 2H, Bn), 4.54 (d, *J* = 11.0 Hz, 2H, Bn), 3.89 (s, 3H, H-8).

¹³C NMR (126 MHz, chloroform-*d*, 25 °C, HMQC and HMBC spectra were used for the assignments) δ 189.5 (s, C-4), 165.5 (s, C-7), 149.5 (s, C-5), 136.9 (s, 2C, C-10), 134.9 (s, C-15), 130.8 (s, C-1), 128.9 (d, 2C, Bn), 128.7 (d, Bn), 128.6 (s, C-2), 128.4 (d, 4C, Bn), 128.1 (d, 4C, Bn), 128.0 (d, 2C, Bn), 127.8 (d, 2C, Bn), 111.6 (d, C-6), 95.1 (s, C-3), 71.1 (t, C-14), 65.8 (t, 2C, C-9), 52.9 (q, C-8).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₉H₂₅O₆BrNa 571.0732, found 571.0729.

 13 C NMR spectrum of **8**, 126 MHz in chloroform-*d*

Data for 15

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.44–7.41 (m, 2H, Bn), 7.35–7.25 (m, 13H, Bn), 6.62 (s, 1H, quinone), 5.09 (s, 2H, Bn), 4.77 (d, *J* = 12.0 Hz, 2H, Bn), 4.74 (d, *J* = 12.0 Hz, 2H, Bn), 3.81 (s, 3H, OMe).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C) δ 188.1 (s, ketone), 164.8 (s, ester), 149.4 (s, quinone), 137.3 (s, 2C, Bn), 136.2 (s, Bn), 133.5 (d, quinone), 132.0 (s, quinone), 128.6–128.5 (d, overlapped 12 doublets: three peaks were observed, Bn), 128.0 (d, Bn), 127.8 (d, 2C, Bn), 120.5 (s, quinone), 93.9 (s, quinone), 74.1 (t, Bn), 65.9 (t, 2C, Bn), 52.8 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₉H₂₅O₆BrNa 571.0732, found 571.0724.

¹H NMR spectrum of **15**, 500 MHz in chloroform-*d*

13 C NMR spectrum of **15**, 126 MHz in chloroform-*d*

Experiments for the reactions displayed in Scheme 3

ESI-7. Synthesis of 17 (The use of 1.0 equiv of 8)

To a solution of **8** (66.0 mg, 120 μ mol) in acetonitrile (1.2 mL) were added **16** (33.0 mg, 120 μ mol) and potassium carbonate (33.0 mg, 239 μ mol) at room temperature. The mixture was stirred for 1 h at 60 °C. After the mixture was cooled to 0 °C, ethyl acetate (3 mL) and 1 M hydrochloric acid (3 mL) were added to the mixture. The aqueous mixture was extracted with ethyl acetate. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 2 g, hexane/ethyl acetate 20/3 to 2/1) to afford **17** (74.0 mg, 99.6 μ mol, 83% yield) as a yellow amorphous solid.

Data for 17

IR (ATR) 3067, 3032, 2951, 1715, 1626, 1497, 1437, 1364, 1331, 1302, 1215, 1180, 1061, 1016, 750, 696 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 21 °C) δ 7.46–7.31 (m, 11H, aryl and H-2 or H-6 of G), 7.23–7.13 (m, 11H, aryl and H-2 or H-6 of G), 6.79 (s, 1H, H-9 of G), 6.53 (s, 1H, H-6 of Q), 4.98 (s, 2H, Bn), 4.68 (s, 2H, Bn), 4.67 (s, 2H, Bn), 3.79 (s, 3H, H-8 of G), 3.65 (s, 3H, H-8 of Q).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C, HMQC and HMBC spectra were used for the assignments) δ 188.5 (s, Q4), 166.0 (s, G7), 164.5 (s, Q7), 153.4 (s, Q2), 149.4 (s, G5), 148.0 (s, Q5), 140.6 (s, G4), 139.8 (s, G3), 137.1 (s, Q10 or Q15), 136.9 (s, Q10 or Q15), 135.4 (s, Q20), 135.3 (s, G10), 130.6 (d, G13), 128.82 (d,

2C, Bn), 128.77 (d, 2C, Bn), 128.5 (d, Q23), 128.28 (d, 2C, Bn), 128.26 (d, 2C, Bn), 128.0 (d, 2C, Bn), 127.88 (d, 2C, Q21), 127.86 (d, 2C, Bn), 127.7 (d, 2C, Bn), 126.5 (d, 2C, G11), 124.0 (s, G1), 116.5 (s, Q1), 115.7 (d, G6), 112.1 (d, G9), 111.3 (d, Q6), 105.1 (d, G2), 95.8 (s, Q3), 70.9 (t, Q19), 66.2 (t, Q9 or Q14), 66.0 (t, Q9 or Q14), 52.7 (q, Q8), 52.2 (q, G8).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₄₄H₃₆O₁₁Na 763.2155, found 763.2135.

 13 C NMR spectrum of **17**, 126 MHz in chloroform-*d*

ESI-8. Synthesis of 17 (The use of 1.3 equiv of 8)

To a solution of **8** (240 mg, 436 μ mol) in acetonitrile (5.0 mL) were added **16** (92.0 mg, 338 μ mol) and potassium carbonate (122 mg, 883 μ mol) at room temperature. The mixture was stirred for 1 h at 70 °C. After the mixture was cooled to 0 °C, diethyl ether (10 mL) and 1 M hydrochloric acid (20 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (Silica gel 20 g, hexane/ethyl acetate 20/3 to 4/1) to afford **17** (240 mg, 325 μ mol, 95% yield) as a yellow amorphous solid.

To a solution of **8** (37.4 mg, 68.1 μ mol) in acetonitrile (1.0 mL) were added phenol **18** (24.8 mg, 68.1 μ mol) and potassium carbonate (18.8 mg, 136 μ mol) at room temperature. The mixture was stirred for 5 h at 70 °C. After the mixture was cooled to room temperature, diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 10 g, hexane/ethyl acetate 8/1 to 3/1) to afford **19** (41.3 mg, 49.6 μ mol, 73% yield) as a yellow syrup.

Data for 19

IR (ATR) 3065, 3032, 2949, 2880, 1717, 1643, 1595, 1499, 1454, 1423, 1331, 1213, 1065, 1003, 735, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.44–7.33 (m, 12H, Bn, H-2 of G, H-6 of G), 7.28 (dd, *J* = 7.3, 1.7 Hz, 2H, Bn), 7.21– 7.13 (m, 13H, Bn), 6.53 (s, 1H, H-6 of Q), 5.10 (s, 2H, Bn), 5.04 (s, 2H, Bn), 4.98 (s, 2H, Bn), 4.73 (d, *J* = 11.5 Hz, 2H, Bn), 4.69 (d, *J* = 11.5 Hz, 2H, Bn), 3.79 (s, 3H, H-8 of G), 3.57 (s, 3H, H-8 of Q).

¹³C NMR (126 MHz, chloroform-*d*, 24 °C, HMQC and HMBC spectra were used for the assignments) δ 188.8 (s, Q4), 166.3 (s, G7), 164.4 (s, Q7), 154.0 (s, Q2), 152.6 (s, G5), 151.1 (s, G3), 147.9 (s, Q5), 142.3 (s, G4), 137.5 (s, G15), 137.1 (s, 2C, Q10), 136.5 (s, G10), 135.4 (s, Q20), 128.8–127.6 (d, overlapped 25 doublets: nine peaks

were observed, 25C, Bn), 124.9 (s, G1), 116.1 (s, Q1), 111.7 (d, G2), 111.6 (d, Q6), 109.9 (d, G6), 95.6 (s, Q3), 75.0 (t, G14), 71.3 (t, G9), 70.9 (t, Q19), 66.1 (t, 2C, Q9), 52.6 (q, G8), 52.3 (q, Q8).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₅₁H₄₄O₁₁Na 855.2781, found 855.2763.

¹H NMR spectrum of **19**, 500 MHz in chloroform-d

 13 C NMR spectrum of **19**, 126 MHz in chloroform-*d*

To a solution of **8** (97.0 mg, 177 μ mol) in acetonitrile (1.0 mL) were added **18** (49.5 mg, 136 μ mol) and potassium carbonate (37.6 mg, 272 μ mol) at room temperature. The mixture was stirred for 2.5 h at 70 °C. After the mixture was cooled to room temperature, diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 15 g, hexane/ethyl acetate 8/1 to 4/1) to afford **19** (96.3 mg, 115 μ mol, 85% yield) as a yellow syrup.

ESI-11. Overview of synthesis of 21

The "keto-ether" 21 was synthesized from 37^{21} in five steps. Reduction of 37 and subsequent bromination by DBDMH provided 38, which was methylated using sodium hydride and methyl iodide to give 39 in 87% yield from 37. Tetrakis(triphenylphosphine)palladium(0) catalyzed deallylation of 39 gave phenol 40, oxidation of which using PIFA in the presence of BnOH produced desired 21.

ESI-12. Synthesis of 38

To a solution of **37** (1.00 g, 2.47 mmol) in diethyl ether (25 mL) and dichloromethane (5 mL) was added of lithium aluminum hydride (47.0 mg, 1.24 mmol) at 0 °C. The mixture was stirred for 0.5 h at 0 °C. To the mixture was added further lithium aluminum hydride (47.0 mg, 1.24 mmol) at 0 °C. The mixture was stirred for additional 0.5 h at 24 °C. To the mixture was added sodium sulphate decahydrate (3.0 g). The mixture was stirred for additional 30 min at 24 °C. The mixture was filtered through a cotton-Celite pad to remove aluminum salts and wet sodium sulphate. The filtrate was concentrated to give the corresponding primary alcohol, which was used without further purification.

To a solution of crude product of the above reaction in chloroform (50 mL) was added 1,3-dibromo-5,5dimethylhydantoin (355 mg, 1.24 mmol) at 23 °C. The mixture was stirred for 1 h at 23 °C. Addition of 10% aqueous sodium thiosulfate (20 mL) quenched the reaction. The reaction mixture was extracted with chloroform. After the general drying procedure, the obtained crude product, the main content of which was **38**, was used without further purification.

Data for 38

IR (ATR) 3600–3120, 3063, 3032, 2870, 1570, 1497, 1476, 1455, 1418, 1385, 1327, 1173, 1098, 984, 931, 841, 748, 698 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 21 °C) δ 7.58–7.54 (m, 2H, Bn), 7.47– 7.44 (m, 2H, Bn), 7.42–7.31 (m, 6H, Bn), 6.98 (s, 1H, H-6), 6.06 (ddt, *J* = 17.2, 10.3, 6.0 Hz, 1H, H-14), 5.31 (ddt, *J* = 17.2, 1.5, 1.0 Hz, 1H, H-15), 5.20 (ddt, *J* = 10.3, 1.5, 1.1 Hz, 1H, H-15), 5.14 (s, 2H, H-8 or H-16), 5.07 (s, 2H, H-8 or H-16), 4.69 (d, *J* = 6.0 Hz, 2H, H-7), 4.58 (ddd, *J* = 6.0, 1.1, 1.0 Hz, 2H, H-13), 2.00 (t, *J* = 6.0 Hz, 1H, OH).

¹³C NMR (126 MHz, chloroform-*d*, 24 °C) δ 152.5 (s, C-3 or C-5), 150.3 (s, C-3 or C-5), 142.0 (s, C-4), 137.1 (s, Bn), 136.8 (s, Bn), 135.7 (s, C-1), 134.1 (d, C-14), 128.8 (d, 2C, Bn), 128.7 (d, 2C, Bn), 128.6 (d, 2C, Bn), 128.4 (d, Bn), 128.2 (d, Bn), 127.5 (d, 2C, Bn), 118.3 (t, C-15), 109.9 (d, C-6), 109.4 (s, C-2), 75.5 (t, C-8 or C-16), 74.7 (t, C-13), 71.3 (t, C-8 or C-16), 65.3 (t, C-7).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₄H₂₃O₄BrNa 477.06774, found 477.0672.

¹H NMR spectrum of **38**, 400 MHz in chloroform-*d*

 13 C NMR spectrum of **38**, 126 MHz in chloroform-*d*

ESI-13. Synthesis of 39

To a solution of crude **38** in DMF (25 mL) were added methyl iodide (526 mg, 3.71 mmol) and sodium hydride (60% in mineral oil, 150 mg, 89.0 mg as NaH, 3.71 mmol) at 0 °C. The mixture was stirred for 1 h at 0 °C. To the reaction mixture were added diethyl ether (30 mL) and 1 M hydrochloric acid (40 mL). The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 20 g, hexane/ethyl acetate 9/1) to afford **39** (1.00 g, 2.13 mmol, 87% yield in 3 steps) as a colourless syrup.

Data for 39

IR (ATR) 3065, 3032, 2984, 2928, 2868, 2822, 1570, 1454, 1418, 1369, 1327, 1177, 1098, 984, 737, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.56 (br d, *J* = 6.9 Hz, 2H, Bn), 7.46 (br d, *J* = 7.5 Hz, 2H, Bn), 7.40–7.37 (m, 4H, Bn), 7.35–7.31 (m, 2H, Bn), 6.96 (s, 1H, aryl), 6.07 (ddt, *J* = 17.2, 10.3, 5.7 Hz, 1H, allyl), 5.31 (ddt, *J* = 17.2, 1.7, 1.7 Hz, 1H, allyl), 5.19 (ddt, *J* = 10.3, 1.7, 1.2 Hz, 1H, allyl), 5.13 (s, 2H, Bn), 5.07 (s, 2H, Bn), 4.57 (ddd, *J* = 5.7, 1.7, 1.2 Hz, 2H, allyl), 4.47 (s, 2H, -CH₂O-), 3.43 (s, 3H, OMe).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C) δ 152.4 (s, aryl), 150.2 (s, aryl), 141.9 (s, aryl), 137.2 (s, Bn), 136.8 (s, Bn), 134.2 (d, allyl), 133.5 (s, aryl), 128.8 (d, 2C, Bn), 128.7 (d, 2C, Bn), 128.5 (d, 2C, Bn), 128.3 (d, Bn), 128.1 (d, Bn), 127.5 (d, 2C, Bn), 118.2 (t, allyl), 109.7 (d, aryl), 109.5 (s, aryl), 75.5 (t, Bn), 74.7 (t, allyl), 74.0 (t, -CH₂O-), 71.2 (t, Bn), 58.8 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₅H₂₅O₄BrNa 491.0834, found 491.0822.

¹H NMR spectrum of **39**, 500 MHz in chloroform-*d*

137.194 136.832 134.152 133.541 128.696 128.696 128.533 128.305 128.305 128.305 128.305 128.305 128.305

152.360 -150.204 - 109.695

118.232 -

77.418 77.160 76.902 75.491 74.718 74.003 71.199

58.770 -

S26

ESI-14. Synthesis of 40

To a solution of **39** (821 mg, 1.75 mmol) in dichloromethane (15 mL) were added morpholine (305 mg, 3.50 mmol) and tetrakis(triphenylphosphine)palladium (40.0 mg, 34.6 μ mol) at 22 °C. The mixture was stirred for 0.5 h at 22 °C. To the reaction mixture were added dichloromethane (10 mL) and 1 M hydrochloric acid (20 mL). The reaction mixture was extracted with CHCl₃. After the general drying procedure, the mixture was purified by column chromatography (silica gel 20 g, hexane/ethyl acetate 10/1 to 8/1) to afford **40** (669 mg, 1.56 mmol, 89% yield) as a colourless solid.

Data for 40

mp 73.3-74.0 °C.

IR (ATR) 3550–3130, 3032, 2930, 2876, 2822, 1595, 1493, 1454, 1423, 1373, 1306, 1173, 1086, 1074, 1028, 907, 841, 735, 696 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 21 °C) δ 7.56 (d, *J* = 7.1 Hz, 2H, Bn), 7.41–7.34 (m, 8H, Bn), 6.92 (s, 1H, aryl), 5.61 (s, 1H, OH), 5.12 (s, 2H, Bn), 5.09 (s, 2H, Bn), 4.47 (s, 2H, -CH₂O-), 3.42 (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-*d*, 22 °C) δ 146.1 (s, aryl), 143.4 (s, aryl), 139.5 (s, aryl), 137.1 (s, Bn), 136.2 (s, Bn), 128.9 (d, 2C, Bn), 128.8 (s, aryl), 128.6 (d, 2C, Bn), 128.6 (d, 2C, Bn), 128.6 (d, Bn), 128.4 (d, Bn), 128.0 (d, 2C, Bn), 110.0 (s, aryl), 108.9 (d, aryl), 75.1 (t, Bn), 74.0 (t, -CH₂O-), 71.7 (t, Bn), 58.6 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₂H₂₁O₄BrNa 451.0521, found 451.0515.

¹H NMR spectrum of **40**, 400 MHz in chloroform-*d*

110.016

58.587 -

ESI-15. Synthesis of 21

To a solution of **40** (90.0 mg, 210 μ mol) in dichloromethane (2.0 mL) were added benzyl alcohol (250 μ L) and phenyliodine bis(trifluoroacetate) (108 mg, 251 μ mol) at 22 °C. The mixture was stirred for 15 min at 22 °C. Addition of dichloromethane (5 mL) and 10% aqueous sodium thiosulfate (5 mL) quenched the reaction. The reaction mixture was extracted with dichloromethane. After the general drying procedure, the crude product was purified by successive column chromatography (silica gel 10 g, toluene; followed by silica gel 10 g, hexane/toluene 8/1 to 4/1; and finally silica gel 10 g, toluene) to afford **21** (40.9 mg, 76.4 μ mol, 39% yield) as a yellow syrup.

Data for 21

IR (ATR) 3062, 3032, 2930, 2874, 1694, 1643, 1580, 1497, 1454, 1364, 1296, 1184, 1130, 1067, 1028, 910, 854, 737, 698 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 24 °C) δ 7.42–7.35 (m, 6H, Bn), 7.33–7.25 (m, 9H, Bn), 6.32 (s, 1H, H-6), 4.96 (s, 2H, Bn), 4.67 (d, *J* = 11.2 Hz, 2H, Bn), 4.53 (d, *J* = 11.2 Hz, 2H, Bn), 4.26 (s, 2H, H-7), 3.34 (s, 3H, H-8).

¹³C NMR (126 MHz, chloroform-*d*, 24 °C, HMQC and HMBC spectra were used for the assignments) δ 190.7 (s, C-2), 149.6 (s, C-5), 137.3 (s, 2C, C-10), 135.3 (s, C-20), 135.0 (s, C-1), 128.8 (d, 2C, Bn), 128.6 (d, Bn), 128.4 (d, 4C, Bn), 128.1 (d, 4C, Bn), 127.8 (d, 2C, Bn), 127.8 (d, 2C, Bn), 121.7 (s, C-4), 112.4 (d, C-6), 94.8 (s, C-3), 73.1 (t, C-7), 70.8 (t, C-19), 65.6 (t, 2C, C-9), 58.5 (q, C-8).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₉H₂₇BrO₅Na 557.09340, found 557.0924.

¹H NMR spectrum of **21**, 400 MHz in chloroform-*d*

ESI-16. An attempt of oxa-addition to 21

To a solution of **21** (40.0 mg, 74.7 μ mol) in MeCN (1.0 mL) were added phenol **16** (16.0 mg, 58.8 μ mol) and potassium carbonate (12.0 mg, 86.8 μ mol) at room temperature. The mixture was stirred for 2.5 h at 70 °C. The reaction was monitored by TLC (hexane/EtOAc = 3/1) and LRMS-ESI, but the desired coupled compound was not obtained.

Experiments for Table 1

ESI-17. Synthesis of 22 and 23 (Table 1, Entry 1)

A trial that marked the best yield of 22 when Pd(PPh₃)₄ and Et₃SiH were used.

То solution of 17 (53.3 mg, 72.0 µmol) in DMF (1.0 mL) were added а tetrakis(triphenylphosphine)palladium (10.2 mg, 8.83 µmol) and triethylsilane (21.8 mg, 181 µmol) at room temperature. The mixture was stirred for 15 min at 80 °C. After the mixture was cooled to 0 °C, addition of diethyl ether (10 mL) and 1 M hydrochloric acid (10 mL) quenched the reaction. The aqueous mixture was extracted with diethyl ether. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 7/1 to 3/1) to afford 22 (rf 0.35 with hexane/ethyl acetate 2/1, 37.9 mg, 56.7 µmol, 83% yield) as a colourless amorphous solid and almost pure 23. The almost pure 23 was further purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 7/1) to afford 23 (rf 0.59 with hexane/ethyl acetate 2/1, 9.20 mg, 12.3 µmol, 17% yield) as a colourless syrup.

A trial that marked the worst yield of 22 when Pd(PPh₃)₄ and Et₃SiH were used.

(52.0)solution of 17 mg, 70.2 µmol) in DMF (1.0)То а mL) were added tetrakis(triphenylphosphine)palladium (2.00 mg, 1.73 µmol) and triethylsilane (16.0 mg, 138 µmol) at room temperature. The mixture was stirred for 10 min at 80 °C. After the mixture was cooled to room temperature, addition of diethyl ether (5 mL) and 1 M hydrochloric acid (3 mL) guenched the reaction. The aqueous mixture was extracted with diethyl ether. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 10 g, hexane/ethyl acetate 7/1 to 4/1) to afford 23 (rf 0.61 hexane/ethyl acetate 2/1, 31.4 mg, 41.9 μmol, 60% yield) as a colourless syrup and 22 (rf 0.29 hexane/ethyl acetate 2/1, 16.4 mg, 25.9 μmol, 37% yield) as a colourless amorphous solid.

Data for 22

mp 177.1-179.5 °C.

IR (ATR) 3550–3150, 3067, 3032, 2951, 1717, 1634, 1501, 1437, 1362, 1308, 1217, 1080, 758, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.55–7.52 (m, 2H, aryl), 7.47–7.35 (m, 9H, aryl and DHDG), 7.26–7.20 (m, 6H, aryl and DHDG), 7.00 (d, *J* = 1.2 Hz, 1H, DHDG), 6.99 (s, 1H, benzylidene), 6.02 (s, 1H, OH), 5.15 (s, 2H, Bn), 5.03 (s, 2H, Bn), 3.79 (s, 3H, OMe), 3.71 (s, 3H, OMe).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C) δ 166.3 (s, ester), 165.3 (s, ester), 149.3 (s, DHDG), 144.6 (s, DHDG), 143.9 (s, DHDG), 143.1 (s, DHDG), 142.0 (s, DHDG), 139.73 (s, DHDG), 139.68 (s, DHDG), 136.9 (s, aryl), 135.9 (s, aryl), 135.6 (s, aryl), 130.5 (d, aryl), 128.9 (d, 2C, aryl), 128.8 (d, 2C, aryl), 128.7 (d, aryl), 128.5 (d, 2C, aryl), 128.3 (d, aryl), 128.2 (d, 4C, aryl), 126.5 (d, 2C, aryl), 124.3 (s, DHDG), 115.5 (s, DHDG), 112.3 (d, DHDG), 112.0 (d, DHDG), 110.3 (d, benzylidene), 104.4 (d, DHDG), 75.5 (t, Bn), 71.9 (t, Bn), 52.3 (q, OMe), 52.2 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₇H₃₀O₁₀Na 657.1737, found 657.1725.

¹H NMR spectrum of **22**, 500 MHz in chloroform-*d*

¹³C NMR spectrum of **22**, 126 MHz in chloroform-*d*

Data for 23

IR (ATR) 2953, 2876, 1719, 1634, 1499, 1435, 1356, 1308, 1219, 1086, 1016, 746, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C, HMQC and HMBC spectra were used for the assignments) δ 7.52–7.49 (m, 2H, aryl), 7.47–7.37 (m, 9H, aryl and H-6 of G2), 7.23 (d, *J* = 1.2 Hz, 1H, H-6 of G1), 7.22–7.15 (m, 5H, aryl), 6.94 (d, *J* = 1.2 Hz, 1H, H-2 of G1), 6.90 (s, 1H, H-9 of G1), 5.10 (s, 2H, H-16 of G2), 4.96 (s, 2H, H-9 of G2), 3.78 (s, 3H, H-8 of G2), 3.71 (s, 3H, H-8 of G1), 0.82 (t, *J* = 8.0 Hz, 9H, H-15 of G2), 0.61 (q, *J* = 8.0 Hz, 6H, H-14 of G2).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C, HMQC and HMBC spectra were used for the assignments) δ 166.3 (s, G1-7), 165.4 (s, G2-7), 149.2 (s, G2-3), 148.8 (s, G2-5), 144.9 (s, 2C, G2-2 and G1-5), 142.9 (s, G2-4), 142.2 (s, G1-3), 139.6 (s, G1-4), 137.3 (s, G2-10), 136.1(s, G2-17), 135.6 (s, G1-10), 130.5 (d, G1-13), 128.8 (d, 2C, aryl), 128.7 (d, 2C, G2-18), 128.6 (d, 2C, aryl), 128.5 (d, aryl), 128.2 (d, 2C, aryl), 127.8 (d, aryl), 127.7 (d, 2C, G2-11), 126.6 (d, 2C, G1-11), 124.2 (s, G1-1), 116.9 (s, G2-1), 112.0 (d, G1-2), 111.9 (d, G1-9), 110.1 (d, G2-6), 104.2 (d, G1-6), 74.9 (t, G2-9), 71.4 (t, G2-16), 52.3 (q, G1-8), 52.1 (q, G2-8), 6.7 (q, 3C, G2-15), 5.3 (t, 3C, G2-14).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₄₃H₄₄O₁₀SiNa 771.2601, found 771.2589.

¹H NMR spectrum of **23**, 500 MHz in chloroform-*d*

 13 C NMR spectrum of **23**, 126 MHz in chloroform-*d*

ESI-18. Synthesis of 22 (Table 1, Entry 2)

То а solution of 17 (29.0)mg, 39.1 µmol) in DMF (0.5)mL) were added tetrakis(triphenylphosphine)palladium (1.00 mg, 865 nmol) and triethylsilane (9.10 mg, 78.3 µmol) at room temperature. The mixture was stirred for 10 min at 80 °C. The production of 22 and silvlated 23 was observed by monitoring TLC (hexane/ethyl acetate 2/1). After the mixture was cooled to 20 °C, the reaction mixture was added TBAF (1.0 mol/L in THF, 39.0 µL, 39.0 µmol) and stirred for 5 min at 20 °C. Addition of diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) quenched the reaction. The aqueous mixture was extracted with diethyl ether. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 4/1) to afford 22 (19.7 mg, 31.1 µmol, 80% yield) as a colourless solid.

ESI-19. Synthesis of 22 (Table 1, Entry 3)

To a solution of **17** (36.5 mg, 49.3 μ mol) in diethyl ether (0.3 mL) and methanol (0.3 mL) was added sodium borohydride (9.0 mg, 24 μ mol) at 0 °C. The mixture was stirred for 1 min at 0 °C. The reaction mixture was added IPA/conc. hydrochloric acid (v/v 50/1, 2 mL) and stirred for 54 min at 23 °C. After addition of diethyl ether (10 mL) and 1 M hydrochloric acid (10 mL), the mixture was extracted with diethyl ether. The organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 3/1) to afford **22** (29.1 mg, 45.9 μ mol, 93% yield) as a colourless solid.

ESI-20. Synthesis of 24 (Table 1, Entry 4)

A mixture of **17** (42.1 mg, 56.8 μ mol) and palladium hydroxide on carbon (20 wt %, 40.0 mg, 56.8 μ mol) in acetone (1.0 mL) was stirred for 0.5 h at 23 °C under a hydrogen atmosphere. The mixture was filtered through a cotton–Celite pad to remove the catalyst and carbon. The filtrate was concentrated to afford a crude product, the main content of which was **24** (20.5 mg, 66.0 μ mol, 99% yield) as a pale purple syrup.

Data for ${\bf 24}$

IR (ATR) 3700–2850, 2955, 1697, 1607, 1518, 1435, 1356, 1310, 1221, 1182, 1038, 1001, 959, 770 cm⁻¹.

¹H NMR (500 MHz, acetone- d_6 , 23 °C) δ 8.33 (br s Hz, 4H, OH), 7.21 (d, J = 1.7 Hz, 1H, DHDG), 7.09 (s, 1H, DHDG), 6.73 (d, J = 1.7 Hz, 1H, DHDG), 3.71 (s, 3H, OMe), 3.60 (s, 3H, OMe).

¹³C NMR (126 MHz, acetone-*d*₆, 23 °C) δ 166.9 (s, DHDG), 165.7 (s, DHDG), 148.1 (s, DHDG), 146.4 (s, DHDG), 143.4 (s, DHDG), 140.5 (s, DHDG), 139.9 (s, DHDG), 139.7 (s, DHDG), 137.0 (s, DHDG), 121.4 (s, DHDG), 115.2 (s, DHDG), 111.9 (d, DHDG), 109.8 (d, DHDG), 107.5 (d, DHDG), 51.9 (q, OMe), 51.8 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₆H₁₄O₁₀Na 365.0509, found 365.0502.

¹H NMR spectrum of **24**, 500 MHz in acetone- d_6

 13 C NMR spectrum of **24**, 126 MHz in acetone- d_6

Experiments for the reactions displayed in Scheme 4 ESI-21. One-pot synthesis of 25

To a solution of **8** (32.3 mg, 58.7 μ mol) in acetonitrile (0.7 mL) were added **18** (21.4 mg, 58.7 μ mol) and potassium carbonate (16.3 mg, 118 μ mol) at room temperature. The mixture was stirred for 10 h at 70 °C. After the mixture was cooled to room temperature, to the mixture were added water (0.3 mL), sodium borohydride (9.0 mg, 238 μ mol) and methanol (1.0 mL) at 25 °C. The mixture was stirred for 3 h at 25 °C. Addition of diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) quenched the reaction. The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 7/1 to 4/1) to afford **25** (27.9 mg, 38.3 μ mol, 65% yield) as a colourless amorphous solid.

Data for 25

mp 146.5-149.2 °C.

IR (ATR) 3550–3130, 3065, 3032, 2949, 1715, 1589, 1501, 1449, 1425, 1335, 1308, 1213, 1086, 1074, 1009, 750, 696, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.47–7.34 (m, 14H, aryl), 7.28–7.25 (m, 3H, Bn), 7.22–7.19 (m, 5H, Bn), 6.87 (d, *J* = 1.7 Hz, 1H, DHDG), 6.00 (s, 1H, OH), 5.18 (s, 2H, Bn), 5.17 (s, 2H, Bn), 5.13 (s, 2H, Bn), 5.02 (s, 2H, Bn), 3.79 (s, 3H, OMe), 3.70 (s, 3H, OMe).

¹³C NMR (126 MHz, chloroform-*d*, 23°C, HMQC and HMBC spectra were used for the assignments) δ 166.6 (s, G1-7), 165.3 (s, G2-7), 152.8 (s, G1-3), 152.6 (s, G1-5), 144.7 (s, G2-2), 143.7 (s, G2-3),

142.9 (s, G2-4), 141.8 (s, G1-4), 139.5 (s, G2-5), 137.9 (s, G2-10), 136.8 (s, G1-10), 136.7 (s, G2-20), 136.0 (s, G1-15), 128.9 (d, 2C, Bn), 128.70 (d, Bn), 128.66 (d, 2C, Bn), 128.6 (d, 2C, Bn), 128.5 (d, 2C, Bn), 128.42 (d, 2C, Bn), 128.35 (d, Bn), 128.3 (d, 2C, Bn), 128.2 (d, 2C, Bn), 128.1 (d, Bn), 127.9 (d, Bn), 127.7 (d, 2C, Bn), 125.2 (s, G1-1), 115.6 (s, G2-1), 110.5 (d, G2-6), 109.2 (d, G1-6), 109.1 (d, G1-2), 75.5 (t, G2-19), 75.3 (t, G2-9), 71.9 (t, G1-14), 71.4 (t, G1-9), 52.3 (q, G2-8), 52.2 (q, G1-8).

HRMS (ESI) *m/z* [M + Na]⁺ calcd for C₄₄H₃₈O₁₀Na 749.2363, found 749.2341.

¹H NMR spectrum, 500 MHz in chloroform-*d* of **25**

 13 C NMR spectrum of **25**, 126 MHz in chloroform-*d*

ESI-22. Synthesis of 27

To a solution of **26** (63.0 mg, 77.1 μ mol) in acetonitrile (1.0 mL) were added **8** (127 mg, 231 μ mol) and potassium carbonate (21.0 mg, 154 μ mol) at room temperature. The mixture was stirred for 5 h at 70 °C. After the mixture was cooled to 0 °C, diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 10 g, hexane/ethyl acetate 7/1 to 2/1) to afford **27** (93.0 mg, 72.4 μ mol, 94% yield) as a yellow syrup. Although the isolated **27** was not perfectly pure, which included very small amount of unknown by-product, the product was used as the starting material for the next step.

Data for 27

IR (ATR) 3065, 3032, 2949, 2876, 1726, 1593, 1433, 1366, 1323, 1180, 1065, 1028, 910, 735, 696 cm⁻¹.
¹H NMR (500 MHz, chloroform-*d*, 24 °C) δ 7.58 (s, 1H, HHDP), 7.52 (s, 1H, HHDP), 7.49 (dd, *J* = 7.7, 1.7 Hz, 2H, Bn), 7.44–7.33 (m, 8H, Bn), 7.31–7.27 (m, 6H, Bn), 7.26–7.06 (m, 17H, Bn), 6.92 (dd, *J* = 7.7, 1.7 Hz, 2H, Bn), 6.82 (dd, *J* = 7.7, 1.7 Hz, 2H, Bn), 6.57 (s, 1H, quinone), 5.21 (d, *J* = 11.5 Hz, 1H, Bn), 5.17 (d, *J* = 11.5 Hz, 1H, Bn), 5.05 (d, *J* = 10.9 Hz, 1H, Bn), 5.01 (d, *J* = 10.9 Hz, 1H, Bn), 5.00 (s, 2H, Bn), 4.99 (d, *J* = 10.9 Hz, 1H, Bn), 4.96 (d, *J* = 10.9 Hz, 1H, Bn), 4.87 (d, *J* = 11.5 Hz, 1H, Bn), 4.86 (d, *J* = 10.9 Hz, 1H, Bn), 4.76 (d, *J* = 11.5 Hz, 1H, Bn), 4.74 (d, *J* = 11.5 Hz, 1H, Bn), 4.68 (d, *J* = 10.9 Hz, 1H, Bn), 3.52 (s, 3H, OMe), 3.48 (s, 6H, OMe), 3.46 (s, 3H, OMe).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C) δ 188.7 (s, ketone), 166.8 (s, ester), 166.3 (s, ester), 164.3 (s, ester), 154.4 (s, HHDP or quinone), 151.9 (s, HHDP or quinone), 151.2 (s, HHDP or quinone), 151.0 (s, HHDP or quinone), 150.7 (s, HHDP or quinone), 147.8 (s, HHDP or quinone), 145.5 (s, HHDP or quinone), 145.3 (s, HHDP or quinone), 137.8 (s, Bn), 137.7 (s, Bn), 137.5 (s, Bn), 137.4 (s, Bn), 137.3 (s, Bn), 137.2 (s, Bn), 136.8 (s, Bn), 135.5 (s, Bn), 129.4 (s, HHDP), 128.8–127.5 (d, overlapped 32 doublets: 16 peaks were observed, 40C, Bn), 127.1 (s, HHDP), 125.8 (s, HHDP), 125.5 (s, HHDP), 115.4 (s, quinone), 113.6 (d, HHDP or quinone), 111.7 (d, HHDP or quinone), 111.1 (d, HHDP or quinone), 95.9 (s, quinone), 75.5 (t, Bn), 75.2 (t, Bn), 74.7 (t, Bn), 74.6 (t, Bn), 71.2 (t, Bn), 70.9 (t, Bn), 66.2 (t, Bn), 66.0 (t, Bn), 52.6 (q, OMe), 52.0 (q, OMe), 51.8 (q, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₈₀H₆₈O₁₆Na 1307.4405, found 1307.4383.

¹H NMR spectrum, 500 MHz in chloroform-*d* of **27**

									at di di di di ta si sa ka Mangarangan di sa karangan Mangarangan di sa karangan di sa karangan di sa karangan di sa karangan di sa karanga	han Mirekey der	al Ha Han ka dia Ana bahas pada ngana ka na pangana pangana				Marina
180.0	170.0 160.	0 150.0	140.0	130.0	120.0 110.0	100.0 9	0.0 80.0	70.0	60.0	50.0 40	.0 30.0	20.0	10.0	0	ppm
	71	<u>- /////</u> //	\//\ /!	\mathbb{N}	. ///		\mathcal{A}	///	/	Κ					
88.663	66.801 66.315 64.350	51.931 51.206 51.034 50.681 47.801	45.531 45.254 37.814 37.385 37.194	35.496 28.724 28.381 28.381 28.362 27.856	27.618 15.371 13.615 11.736 11.107	95.912	77.408 77.160 76.902 75.510	74.632 71.208 70.893 66.153 66.153	52.570	51.998 51.826					

S43

ESI-23. Synthesis of 29

A mixture of **27** (almost pure, 80.0 mg, 62.2 μ mol) and palladium hydroxide on carbon (20 wt %, 87.0 mg, 124 μ mol) in ethyl acetate (1.0 mL) was stirred for 2 h at 25 °C under a hydrogen atmosphere. The mixture was filtered through a cotton–Celite pad to remove the catalyst and carbon. The filtrate was concentrated to afford a crude product, the main content of which was **28**, which was used in the next reaction without further purification.

¹H NMR spectrum of the crude **28**, 400 MHz in acetone- d_6

To a solution of crude **28** in DMF (1.0 mL) were added methyl iodide (176 mg, 1.24 mmol) and potassium carbonate (170 mg, 1.24 mmol) at 25 °C. The mixture was stirred for 13 h at 25 °C. To the mixture was added further methyl iodide (684 mg, 4.82 mmol). The mixture was stirred for additional 48 h. Diethyl ether (5 mL) and 1 M hydrochloric acid (5 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The combined organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 5 g,

hexane/ethyl acetate 4/1 to 3/2) to afford **29** (13.8 mg, 20.9 μ mol, 34% yield) as a colourless syrup. ¹H NMR data for **29** were identical to the literature data.¹⁹

Data for 29

IR (ATR) 2994, 2945, 2843, 1728, 1595, 1429, 1327, 1215, 1086, 1036, 1002, 760 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 24 °C) δ 7.35 (s, 1H, valoneoyl), 7.30 (s, 1H, valoneoyl), 6.93 (s, 1H, valoneoyl), 4.08 (s, 3H, OMe), 3.98 (s, 3H, OMe), 3.943 (s, 6H, OMe), 3.935 (s, 3H, OMe), 3.78 (s, 6H, OMe), 3.68 (s, 3H, OMe), 3.60 (s, 3H, OMe), 3.57 (s, 3H, OMe), 3.48 (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-*d*, 24 °C) δ 167.2 (s, ester), 166.8 (s, ester), 165.6 (s, ester), 152.2 (s, valoneoyl), 151.7 (s, valoneoyl), 151.6 (s, valoneoyl), 151.3 (s, valoneoyl), 150.3 (s, valoneoyl), 147.3 (s, valoneoyl), 147.2 (s, valoneoyl), 145.51 (s, valoneoyl), 145.49 (s, valoneoyl), 142.7 (s, valoneoyl), 127.5 (s, valoneoyl), 126.5 (s, valoneoyl), 125.3 (s, valoneoyl), 125.0 (s, valoneoyl), 119.4 (s, valoneoyl), 111.8 (d, valoneoyl), 109.0 (d, valoneoyl), 108.9 (d, valoneoyl), 61.4 (q, OMe), 61.3 (q, O-Me), 61.1 (q, O-Me), 61.0 (q, O-Me), 60.8 (q, O-Me), 60.6 (q, O-Me), 56.4 (q, O-Me), 56.1 (q, O-Me), 52.4 (q, O-Me), 51.9 (q, O-Me), 51.8 (q, O-Me).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₂H₃₆O₁₅Na 683.1952, found 683.1946.

Position	Lit. data (ppm)	Synthesized 29 (ppm)	$\Delta(\text{Lit} - \text{Obs})$ (ppm)
Aryl	7.35	7.35	0.00
	7.30	7.30	0.00
	6.93	6.93	0.00
OMe	4.08	4.08	0.00
	3.98	3.98	0.00
	2.04	3.943	-0.003
	3.94	3.935	0.005
	3.78	3.78	0.00
	3.68	3.68	0.00
	3.60	3.60	0.00
	3.58	3.57	0.01
	3.49	3.48	0.01

Comparison of ¹H NMR data of **29** to the literature data.

The literature data are in reference 19.

¹H NMR spectrum of **29**, 400 MHz in chloroform-*d*

ESI-24. Synthesis of 32

Compound **32**, a phenolic nucleophile for the synthesis of the tergalloyl group (Scheme 4, d), was prepared from known 41^9 via benzylation of the phenolic hydroxy groups and removal of the 2-naphthylmethyl (NAP) group.

To a solution of **41** (50.5 mg, 83.0 μ mol) in DMF (1.0 mL) were added potassium carbonate (68.8 mg, 498 μ mol) and benzyl bromide (85.2 mg, 498 μ mol) at 26 °C. The mixture was stirred for 15 h at 23–26 °C. To the mixture were added further potassium carbonate (28.2 mg, 204 μ mol) and benzyl bromide (28.8 mg, 168 μ mol). The mixture was stirred for additional 2 h at 23 °C. To the reaction mixture were added diethyl ether (3 mL) and 1 M hydrochloric acid (5 mL). The reaction mixture was extracted with diethyl ether. The combined organic layer was successively washed with 1 M hydrochloric acid and brine. After the general drying procedure, the mixture was purified by column chromatography (silica gel 3 g, hexane/ethyl acetate 6/1 to 4/1) to afford **42** (69.2 mg, 71.4 μ mol, 86% yield) as a colourless amorphous solid.

Data for 42

IR (ATR) 3063, 3030, 2874, 1736, 1591, 1368, 1327, 1192, 1094, 908, 735, 696 cm⁻¹.

¹H NMR (500 MHz, chloroform-*d*, 23 °C) δ 7.79 (dd, *J* = 8.9, 1.7 Hz, 1H, NAP), 7.78 (br s, 1H, NAP), 7.69 (d, *J* = 8.0 Hz, 1H, NAP), 7.64 (dd, *J* = 6.9, 1.7 Hz, 1H, NAP), 7.47–7.34 (m, 15H, aryl), 7.26–7.23 (m, 3H, aryl), 7.13–7.08 (m, 6H, aryl), 7.01 (s, 1H, HHDP), 7.01 (s, 1H, HHDP), 6.99–6.98 (m, 4H, aryl), 5.20 (d, *J* = 11.5 Hz, 2H, Bn), 5.16 (d, *J* = 10.9 Hz, 1H, NAP), 5.11 (d, *J* = 11.5 Hz, 2H, Bn), 5.05–4.99 (m, 4H, Bn, NAP), 4.91 (d, *J* = 10.9 Hz, 1H, Bn), 4.82–4.77 (m, 4H, Bn and propylene), 4.07 (dt, *J* = 11.5, 5.2 Hz, 2H, propylene), 2.16 (br m, 2H, propylene).

¹³C NMR (126 MHz, chloroform-*d*, 24 °C) δ 168.31 (s, ester), 168.29 (s, ester), 152.6 (s, 2C, HHDP), 152.5 (s, 2C, HHDP), 144.6 (s, HHDP), 144.5 (s, HHDP), 138.02 (s, Bn), 138.00 (s, Bn), 137.7 (s, Bn), 136.7 (s, 2C, Bn), 135.3 (s, NAP), 133.4 (s, NAP), 133.2 (s, NAP), 129.20 (s, HHDP), 129.17 (s, HHDP), 128.7–127.4 (d, overlapped 29 doublets: ten peaks were observed, Bn and NAP), 126.6 (d, NAP), 126.0 (d, 2C, NAP), 123.8 (s, HHDP), 123.7 (s, HHDP), 108.2 (d, HHDP), 108.1 (d, HHDP), 75.8 (t, NAP), 75.6 (t, Bn), 75.12 (t, Bn), 75.09 (t, Bn), 71.2 (t, 2C, Bn), 60.5 (t, 2C, propylene), 25.7 (t, propylene).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₆₃H₅₂O₁₀Na 991.3458, found 991.3447.

To a solution of **42** (800 mg, 826 μ mol) in dichloromethane (10 mL) were added DDQ (562 mg, 2.48 mmol) and phosphate buffer (pH = 7.41, 2.0 mL) at 23 °C. The mixture was stirred for 23 h at 23 °C. Addition of 10% aqueous sodium thiosulfate (20 mL) quenched the reaction. The aqueous mixture was extracted with dichloromethane. After the general drying procedure, the mixture was purified by column chromatography (silica gel 20 g, hexane/ethyl acetate 8/1 to 3/1) to afford **32** (414 mg, 499 μ mol, 60% yield) as a colourless amorphous solid.

Data for 32

IR (ATR) 3550–3200, 3063, 3030, 2953, 2876, 1734, 1593, 1497, 1454, 1368, 1331, 1192, 1088, 1057, 746, 696 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 25 °C) δ 7.48–7.34 (m, 12H, Bn), 7.27–7.24 (m, 4H, Bn), 7.18–7.09 (m, 7H, Bn), 7.02 (s, 1H, HHDP), 6.99 (s, 1H, HHDP), 6.96 (dd, *J* = 7.3, 1.8 Hz, 2H, Bn), 5.77 (br s, 1H, OH), 5.19 (d, *J* = 11.2 Hz, 2H, Bn), 5.13 (d, *J* = 11.2 Hz, 1H, Bn), 5.09 (d, *J* = 11.2 Hz, 1H, Bn), 5.07 (d, *J* = 11.0 Hz, 1H, Bn), 4.96 (d, *J* = 11.0 Hz, 1H, Bn), 4.92 (d, *J* = 11.0 Hz, 1H, Bn), 4.84 (d, *J* = 11.2 Hz, 1H, Bn), 4.82–4.72 (m, 2H, propylene), 4.73 (d, *J* = 11.0 Hz, 1H, Bn), 4.70 (d, *J* = 11.2 Hz, 1H, Bn), 4.13–4.03 (m, 2H, propylene), 2.16 (br m, 2H, propylene).

¹³C NMR (101 MHz, chloroform-*d*, 25 °C) δ 168.5 (s, ester), 168.1 (s, ester), 152.6 (s, HHDP), 152.3 (s, HHDP), 146.3 (s, HHDP), 145.3 (s, HHDP), 144.5 (s, HHDP), 141.8 (s, HHDP), 137.7 (s, Bn), 137.6 (s, Bn), 137.5 (s, Bn), 136.6 (s, Bn), 136.3 (s, Bn), 129.3 (s, Bn), 128.9–127.6 (d, 26C, overlapped 25 doublets and 1 singlet: 13 peaks were observed, Bn and HHDP), 124.6 (s, HHDP), 123.4 (s, HHDP), 108.4 (d, HHDP), 108.1 (d, HHDP), 75.6 (t, Bn), 75.4 (t, Bn), 75.2 (t, Bn), 71.6 (t, Bn), 71.2 (t, Bn), 60.7 (t, propylene), 60.3 (t, propylene), 25.8 (t, propylene).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₅₂H₄₄O₁₀Na 851.2817, found 851.2832.

¹H NMR spectrum of **32**, 400 MHz in chloroform-*d*

13 C NMR spectrum of **32**, 101 MHz in chloroform-*d*

ESI-25. Synthesis of 33

To a solution of **32** (17.4 mg, 21.0 μ mol) in acetonitrile (0.5 mL) were added **8** (46.0 mg, 83.7 μ mol) and potassium carbonate (6.0 mg, 43 μ mol) at room temperature. The mixture was stirred for 4 h at 70 °C. To the mixture was added further potassium carbonate (6.0 mg, 43 μ mol). The mixture was stirred for additional 3.5 h at 70 °C. After the mixture was cooled to 0 °C, diethyl ether (5 mL) and 1 M hydrochloric acid (5 mL) were added to the mixture. The aqueous mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 10 g, hexane/ethyl acetate 8/1 to 3/1) to afford **33** (22.8 mg, 17.6 μ mol, 84% yield) as a yellow amorphous solid.

Data for 33

IR (ATR) 3065, 3032, 2940, 2880, 1738, 1645, 1591, 1497, 1454, 1369, 1333, 1192, 1096, 1061, 910, 735, 696 cm⁻¹.

¹H NMR (500 MHz, CD₃CN, 75 °C) δ 7.50 (d, *J* = 7.5 Hz, 2H, Bn), 7.46–6.98 (m, 38H, Bn), 6.87 (d, *J* = 7.5 Hz, 2H, Bn), 6.41 (s, 1H, quinone), 5.21 (d, *J* = 11.5 Hz, 1H, Bn), 5.17 (d, *J* = 11.5 Hz, 1H, Bn), 5.10 (d, *J* = 11.5 Hz, 1H, Bn), 4.94 (d, *J* = 10.9 Hz, 1H, Bn), 4.90–4.82 (m, 7H, Bn), 4.78 (d, *J* = 10.9 Hz, 1H, Bn), 4.75–4.60 (m, 6H, Bn + propylene), 4.12 (dt, *J* = 11.5, 5.2 Hz, 2H, propylene), 3.55 (br s, 3H, OMe), 2.19–2.14 (m, 2H, propylene).

¹³C NMR (126 MHz, CD₃CN, 75 °C) Because of broad signals due to existence of rotational isomers even at 75 °C, specific chemical shifts could not be displayed.

HRMS (ESI) m/z [M + Na]⁺ calcd for C₈₁H₆₈O₁₆Na 1319.4405, found 1319.43818.

¹H NMR spectrum of **33**, 500 MHz in acetonitrile- d_3 at 75 °C

¹H NMR spectrum of **33**, 500 MHz in acetonitrile- d_3 at 50 °C

ESI-26. Synthesis of 35

A mixture of **33** (88.0 mg, 67.8 μ mol) and palladium on carbon (20 wt %, 72.0 mg, 136 μ mol) in acetone (1.0 mL) was stirred for 1 h at 25 °C under a hydrogen atmosphere. The mixture was filtered through a cotton–Celite pad to remove the catalyst and carbon. The filtrate was concentrated to afford a crude product, the main content of which was **34**. The crude product was used in the next reaction without further purification.

¹H NMR spectrum of the crude **34**, 400 MHz in acetone- d_6

To a solution of crude **34** in MeOH (1.0 mL) was added trimethylsilyldiazomethane (2.0 M in diethyl ether, 0.70 mL, 1.40 mmol) at 25 °C. The mixture was stirred for 0.5 h at 25 °C. Acetic acid (1 mL) was added to the mixture. After removal of solvents, the mixture was purified by column chromatography (silica gel 5 g, hexane/ethyl acetate 4/1 to 1/1) to afford **35** (26.4 mg, 39.2 µmol, 58% yield) as a yellow amorphous solid.

Data for 35

IR (ATR) 2995, 2941, 2843, 1736, 1595, 1483, 1460, 1431, 1414, 1395, 1341, 1211, 1172, 1103, 1057, 1030, 988, 916, 731, 648 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 22 °C) δ 7.19 (s, 1H, tergalloyl), 6.84 (s, 1H, tergalloyl), 6.79 (s, 1H, tergalloyl), 4.87–4.73 (m, 2H, propylene), 4.05–4.00 (m, 2H, propylene), 3.92 (s, 3H, OMe), 3.89 (s, 6H, OMe), 3.88 (s, 3H, OMe), 3.83 (s, 3H, OMe), 3.76 (s, 3H, OMe), 3.65 (s, 3H, OMe), 3.61 (s, 3H, OMe), 3.45 (s, 3H, OMe), 2.19–2.12 (m, 2H, propylene).

¹³C NMR (126 MHz, chloroform-*d*, 23 °C) δ 168.4 (s, ester), 168.3 (s, ester), 166.6 (s, ester), 153.0 (s, tergalloyl), 152.6 (s, tergalloyl), 150.9 (s, tergalloyl), 149.9 (s, tergalloyl), 148.5 (s, tergalloyl), 146.7 (s, tergalloyl), 146.4 (s, tergalloyl), 145.6 (s, tergalloyl), 144.0 (s, tergalloyl), 142.7 (s, tergalloyl), 129.0 (s, tergalloyl), 127.9 (s, tergalloyl), 123.0 (s, tergalloyl), 122.1 (s, tergalloyl), 117.1 (s, tergalloyl), 108.3 (d, tergalloyl), 106.3 (d, tergalloyl), 105.6 (d, tergalloyl), 61.1 (q, OMe), 61.1 (q, 2C, OMe), 60.8 (q, OMe), 60.8 (q, OMe), 60.3 (t, propylene), 60.0 (t, propylene), 56.4 (q, OMe), 56.3 (q, OMe), 56.1 (q, OMe), 52.3 (q, OMe), 25.6 (t, propylene).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₃H₃₆O₁₅Na 695.1952, found 695.1943.

¹H NMR spectrum of **35**, 400 MHz in chloroform-*d*

Smiles rearrangement reported by Feldman et al.

Feldman and co-workers reported Smiles rearrangement-mediated equilibration of catechol products during methylation reaction.⁷ Reduction of a $\sim 2/1$ mixture of **37a** and **37b** with sodium hydrosulfite followed by methylation of produced crude mixture of **38a** and **38b** ($\mathbf{a}/\mathbf{b} = \sim 2/1$) using methyl iodide and potassium carbonate provided only **39a** in 75% yield (2 steps). To prevent this equilibration to less hindered regioisomers, trimethylsilyldiazomethane was used for the methylation of **34**.

ESI-27. Synthesis of 36

To a solution of 35 (26.4 mg, 39.2 µmol) in methanol and THF (v/v 1/1, 1.0 mL) was added sodium methoxide (28% MeOH solution 48.0 µL, 196 µmol) at room temperature. The mixture was stirred for 2 h at 80 °C. After the mixture was cooled to 0 °C, diethyl ether (3 mL) and 1 M hydrochloric acid (3 mL) were added to the mixture. The reaction mixture was extracted with diethyl ether. The organic layer was washed with 1 M hydrochloric acid. After the general drying procedure, the mixture was purified by column chromatography (silica gel 2 g, hexane/ethyl acetate 3/1 to 2/1) to afford 36 (13.8 mg, 20.9 µmol, 54% yield) as a colourless syrup. ¹H NMR data for **36** were identical to the literature data.²⁰

Data for 36

IR (ATR) 2995, 2945, 2843, 1726, 1595, 1458, 1429, 1331, 1215, 1171, 1103, 1036, 995, 758 cm⁻¹.

¹H NMR (400 MHz, chloroform-*d*, 24 °C) δ 7.40 (s, 1H, tergalloyl), 7.34 (s, 1H, tergalloyl), 7.18 (s, 1H, tergalloyl), 3.93 (s, 3H, OMe), 3.92 (s, 3H, OMe), 3.880 (s, 3H, OMe), 3.877 (s, 3H, OMe), 3.76 (s, 3H, OMe), 3.63 (s, 3H, OMe), 3.62 (s, 6H, OMe), 3.61 (s, 3H, OMe), 3.38 (s, 3H, OMe), (s, 3H, OMe).

¹³C NMR (101 MHz, chloroform-d, 25 °C) δ 167.01 (s, Me ester), 166.98 (s, Me ester), 166.3 (s, Me ester), 152.2 (s, tergalloyl), 151.5 (s, tergalloyl), 149.9 (s, tergalloyl), 148.6 (s, 2C, tergalloyl), 146.7 (s, tergalloyl), 146.2 (s, tergalloyl), 145.7 (s, tergalloyl), 145.5 (s, tergalloyl), 144.0 (s, tergalloyl), 127.3 (s, tergalloyl), 126.5 (s, tergalloyl), 125.3 (s, tergalloyl), 124.1 (s, tergalloyl), 117.1 (s, tergalloyl), 109.7 (d, tergalloyl), 108.9 (d, tergalloyl), 108.3 (d, tergalloyl), 61.2 (q, OMe), 61.1 (q, OMe), 60.9 (q, OMe), 60.7 (q, OMe), 60.6 (q, OMe), 56.4 (q, OMe), 56.3 (q, OMe), 56.1 (q, OMe), 52.3 (q, OMe), 51.9 (q, 2C, OMe).

HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₂H₃₆O₁₅Na 683.1952, found 683.1945.

Position	Lit. data (ppm)	Synthesized 36 (ppm)	$\Delta(\text{Lit} - \text{Obs})$ (ppm)
Aryl	7.39	7.40	-0.01
	7.34	7.34	0.00
	7.18	7.18	0.00
OMe	3.93	3.93	0.00
	3.91	3.92	-0.01
	2.00	3.880	0.00
	3.88	3.877	0.003
	3.81	3.81	0.00
	3.76	3.76	0.00
	3.63	3.63	0.00
	3.62	3.62	0.00
	3.61	3.61	0.00
	3.38	3.38	0.00

Comparison of ¹H NMR data of **36** to the literature data.

The literature data are in reference 20.

¹H NMR spectrum of **36**, 400 MHz in chloroform-*d*

¹³C NMR spectrum of **36**, 101 MHz in chloroform-*d*

ESI-28. Additional Reference

(21) G. Cainelli, C. Angeloni, R. Cervellati, P. Galletti, D. Giacomini, S. Hrelia and R. Sinisi, *Chem. Biodivers.*, 2008, **5**, 811.