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1. Material and Synthesis
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Scheme S1. Synthetic routes of Ql-based FREAs (QIP-4F and QIP-4Cl).

Synthesis of QIP-4F and QIP-4Cl. All the chemical reagents were purchased from
Chem Greatwall, Derthon, and Alfa Aesar, and used as received directly. 2-(5,6-
difluoro-3-oxo0-2,3-dihydro-1H-inden-1-ylidene)malononitrile and 2-(5,6-dichloro-3-
ox0-2,3-dihydro-1H-inden-1-ylidene)malononitrile was purchased from Derthon OPV
Co Ltd; 12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-
e]thieno[2

",3":4' 5'1thieno[2',3":4,5]pyrrolo[3,2-g]thieno[2',3":4,5]thieno[3,2-b]indole (1) and
diisopropyl 2,3-dioxosuccinate were synthesized according to the reported

literatures.1-2
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Synthesis of compound 3.
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Under nitrogen, compound 1 (2.0 g, 2.06 mmol), LiAlH, (1.56 g, 41.17 mmol), and
30 mL of THF were added into a 100 mL flask. The mixed solution was stirred at 75 °C
for 12 h. After cooling to room temperature, the mixture was extracted with
dichloromethane, dried with anhydrous Na,SO,, filtered and concentrated under
reduced pressure. A orange diamine 2 was obtained in high yields and used directly to
synthesize the compound 3. Subsequently, a condensation coupling reaction between
diamine 2 and diisopropyl 2,3-dioxosuccinate (1.46 g, 6.36 mmol) was performed at
80 °C in alcohol (30 mL). After 12 h, the organic phase was separated by extraction
with dichlormethane and then dried over Na,SO,. Finally, dichlormethane was
removed under reduced pressure to yield a red solid 3, which was further purified by
column chromatography (petroleum ether/dichloromethane, v/v = 2:1) (1.62 g, 70 %
for two steps). 'H NMR (400 MHz, CDCl;), & (ppm): 7.03 (s, 2H), 5.50-5.44 (m, 2H),
4.70-4.61(m, 4H), 2.87-2.83 (t, 4H), 2.09-2.06 (t, 2H), 1.89-1.85 (t, 4H), 1.55-1.54 (d,
6H), 1.38-1.11(m, 36H), 1.10-0.86 (m, 24H), 0.64—0.60 (m, 12H); 13C NMR (100 MHz,
CDCl3), 6 (ppm): 165.32, 143.79, 140.86, 137.88, 136.97, 134.77, 131.73, 123.26,
122.44,119.44, 117.37, 69.93, 55.00, 39.91, 31.92, 29.70, 29.67, 29.64, 29.63, 29.51,

29.50, 29.37, 28.84, 27.73, 27.70, 23.05, 22.99, 22.75, 22.70, 21.86, 14.12, 13.76,
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10.05, 10.00. MALDI-TOF-MS: m/z = 1136.730 (M*).

Synthesis of compound 4.
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To a 200 mL three-neck round-bottomed flask, a mixture solution of compound 3
(1g,0.88 mmol), NaOH aq (3 M, 50 mL) and THF (50 mL) were added. Then the mixture
was stirred at 60 °C for 12 hours. After the reaction, the reaction mixture was acidized
with HCl aqg to pH 1. Water was added, and the mixture was extracted with
dichloromethane. The combined organic layer was dried over Na,SO, and the solvent
was removed under reduced pressure. The crude product was not purified and used

directly for the next step. MALDI-TOF-MS: m/z = 1052.690 (M*).

Synthesis of compound 5.
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Under a N, atmosphere, a mixture of 4 (1 g, 0.95 mmol) and acetyl chloride (20 mL)
were added to a 100 mL dried three-neck round-bottom flask. Then the mixture was
stirred at 60 °C for 12 h. After the reaction, the solvent was removed at 60 °C under

reduced pressure. The residue was washed with hexane and filtered to produce a
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black-green solid. The crude product was not purified and used directly for the next

step. MALDI-TOF-MS: m/z = 1035.000 (M*).

Synthesis of compound QIP.
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To a 100 mL three-neck round-bottomed flask, a mixture solution of 5 (1 g, 0.97
mmol), 2-ethylhexan-1-amine (0.62 g, 4.83 mmol) and DMF (20 mL) were added under
a N, atmosphere. Then the mixture was stirred at 100 °C for 12 hours. After cooling to
room temperature, the mixture was extracted with dichloromethane, dried with
anhydrous Na,SO,, filtered and concentrated under reduced pressure. The crude
product was further purified by silica gel column chromatography (eluent: petroleum
ether/dichloromethane, v/v = 4:1) to yield a yellow solid (0.90 g, 81 %). 'H NMR (400
MHz, CDCls), 6 (ppm): 7.03 (s, 2H), 4.73-4.69 (m, 4H), 3.84-3.82 (d, 2H), 2.76-2.73 (t,
4H), 2.21-2.20 (d, 2H), 2.00-1.98 (t, 1H), 1.83-1.80 (t, 4H), 1.62 (m, 2H), 1.44-1.29 (m,
36H), 1.16—0.87 (m, 30H), 0.69-0.65 (m, 12H); 3C NMR (100 MHz, CDCls), § (ppm):
164.75, 143.09, 140.17, 137.09, 136.45, 136.03, 130.80, 124.49, 121.88, 121.37,
118.65, 117.40, 54.20, 41.07, 38.86, 37.64, 30.91, 29.71, 29.29, 28.66, 28.65, 28.57,
28.55, 28.46, 28.35, 27.83, 27.67, 26.67, 22.95, 22.13, 22.08, 22.01, 21.80, 21.68,

13.11, 12.73,9.45, 9.17. MALDI-TOF-MS: m/z = 1145.887 (M*).
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Synthesis of compound QIP-CHO.
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To a solution of compound QIP (0.8 g, 0.70 mmol) in dry 20 mL 1,2-dichloroethane
and 5 mL DMF was dropped 0.8 mL of phosphorus oxychloride at 0 °C under the
protection of nitrogen. The mixture was stirred at 0 °C for 1 h. After refluxing at 85 °C
overnight, the mixture was poured into ice water (100 mL), neutralized with Na,CO3
(aq), and then extracted with dichloromethane. The combined organic layer was
washed with water and brine, dried over anhydrous Na,SO,. After removal of solvent,
the crude product was purified by silica gel using petroleum ether/dichloromethane
(2:1, v/v) as eluent, yielding an orange solid (0.70 g, 83 %). *H NMR (400 MHz, CDCl3),
& (ppm): 10.15 (s, 2H), 4.77-4.71 (m, 4H), 3.84-3.83 (d, 2H), 3.15-3.13 (t, 4H), 2.16
(m, 2H), 1.98-1.96 (t, 1H), 1.87-1.84 (t, 4H), 1.63 (m, 4H), 1.43-1.25 (m, 28H), 1.15-
0.85 (m, 36H), 0.73-0.65 (m, 12H); 13C NMR (100 MHz, CDCl3), & (ppm): 181.91,
165.24, 146.90, 144.87, 142.07, 138.06, 137.76, 137.44, 132.85, 132.81, 128.86,
127.03, 118.78, 55.48, 42.33, 40.12, 38.69, 31.90, 30.73, 30.58, 29.73, 29.67, 29.62,
29.57, 29.40, 29.33, 28.67, 28.23, 27.62, 27.57, 24.00, 23.19, 23.02, 22.79, 22.69,

14.12, 13.72, 10.48, 10.29, 10.25. MALDI-TOF-MS: m/z = 1202.745 (M*).
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Synthesis of compound QIP-4F.
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Compound QIP-CHO (0.15 g, 0.12 mmol) and 2-(5,6- difluoro-3-oxo-2,3-dihydro-1H-
inden-1-ylidene)malononitrile (0.17 g, 0.72 mmol) were dissolved in chloroform (60
mL). Pyridine (1 mL) was added under argon. After stirring at 65 °C overnight, the
mixture was cooled to room temperature, and the solution was concentrated under
reduced pressure, and poured into methanol and filtered. The crude product was
purified by silica gel using petroleum ether/dichloromethane (2:1, v/v) as eluent,
yielding a reddish-dark blue solid (0.16 g, 81 %). *H NMR (400 MHz, CDCls), 6 (ppm):
9.14 (s, 2H), 8.56-8.52 (m, 2H), 7.76-7.73 (t, 2H), 4.92-4.87 (t, 4H), 3.83-3.81 (d, 2H),
3.16 (t, 4H), 2.30 (m, 2H), 1.94 (m, 1H), 1.92-1.77 (t, 4H), 1.42-1.23 (m, 56H), 0.96—
0.82 (m, 20H), 0.76—0.72 (m, 6H); 13C NMR (100 MHz, CDCl5), & (ppm): 186.23, 164.78,
158.50, 155.52, 155.41, 153.92, 153.46, 153.41, 153.35, 153.30, 146.34, 142.32,
138.50, 138.37, 138.36, 136.74, 136.71, 136.67, 135.19, 134.86, 134.57, 134.52,
133.51, 133.22, 130.00, 120.47, 119.58, 115.07, 114.90, 114.77, 114.39, 112.56,
112.42, 69.17, 56.06, 42.33, 40.38, 38.61, 31.95, 31.46, 30.75, 29.97, 29.87, 29.71,
29.66, 29.63, 29.60, 29.52, 29.36, 28.60, 27.79, 24.01, 23.41, 23.34, 23.08, 22.98,

22.69,14.11, 14.07, 13.89, 13.83, 10.48, 10.42, 10.41. MALDI-TOF-MS: m/z = 1627.014
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(M*).
Synthesis of compound QIP-4Cl.
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Compound QIP-CHO (0.15 g, 0.12 mmol) and 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-
inden-1-ylidene)malononitrile (0.19 g, 0.72 mmol) were dissolved in chloroform (60
mL). Pyridine (1 mL) was added under argon. After stirring at 65 °C overnight, the
mixture was cooled to room temperature, and the solution was concentrated under
reduced pressure, and poured into methanol and filtered. The crude product was
purified by silica gel using petroleum ether/dichloromethane (2:1, v/v) as eluent,
yielding a reddish-dark blue solid (0.17 g, 83 %). *H NMR (400 MHz, CDCls), 6 (ppm):
9.14 (s, 2H), 8.74 (s, 2H), 8.01 (d, 2H), 4.93-4.89 (t, 4H), 3.83-3.81 (d, 2H), 3.16 (t, 4H),
2.31 (m, 2H), 1.92 (m, 1H), 1.81-1.77 (t, 4H), 1.44-1.23 (m, 56H), 0.89—0.82 (m, 20H),
0.75-0.72 (m, 6H); 3C NMR (100 MHz, CDCl5), & (ppm): 186.31, 164.82, 158.46,
154.18, 146.60, 142.53, 139.64, 139.29, 138.77, 138.53, 138.44, 136.08, 135.81,
135.29,133.62,133.59, 130.46, 126.95, 125.06, 120.43,119.60, 114.88, 114.41, 69.26,
56.01, 42.39, 40.40, 38.62, 31.94, 31.48, 30.74, 29.97, 29.82, 29.72, 29.68, 29.66,
29.64, 29.60, 29.53, 29.36, 28.60, 27.77, 24.01, 23.40, 23.36, 22.98, 22.70, 14.12,

14.09, 13.84, 10.44, 10.43, 10.41. MALDI-TOF-MS: m/z = 1692.763 (M*).
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2. Instruments and measurements

Nuclear magnetic resonance spectra were collected on a Bruker AVANCE 500
spectrometer using tetramethylsilane (TMS) as the internal standard. MALDI-TOF-MS
spectra was measured on a BrukerBIFLEXIII mass spectrometer. UV—vis absorption
spectra of the NFAs samples in diluted chloroform solutions (1 x 10 M) and in thin
films cast onto quartz glass were performed by using a HP 8453 spectrophotometer.
Cyclic voltammetry (CV) experiments of NFAs thin films were carried out on an
electrochemistry workstation (CHI660e, Chenhua Shanghai) using a conventional
three-electrode configuration, including a Pt working electrode, a Pt wire counter
electrode, a Hg/Hg,Cl, reference electrode. An anhydrous and N, saturated
acetonitrile solution containing 0.1 M tetrabutylammonium hexylfluorophosphate (n-
BusNPFg) was employed as the electrolyte. The Platinum stick electrode drop-coated
with a thin layer of NFAs film was used as the working electrode. The HOMO and
LUMO levels were calculated according to the formula Eyomo = —€[Eox + 4.80 — E(rc/rc’)]
eV and Ejymo = —€[Ereq + 4.80 — E(r/ect)] €V, where Eoy and Eq were determined from
the onset oxidation and reduction potentials, respectively, by using
ferrocene/ferrocenium (Fc/Fc*) as the internal standard (0.39 V vs. Hg/Hg,Cl,).
Differential scanning calorimetry (DSC) were recorded on a DSC214 at a heating rate
of 10 °C min~! under a nitrogen flow rate of 20 mL min™.

The current density-voltage (J-V) characteristics were measured using a computer-

controlled Keithley 2400 SourceMeter under 1 sun irradiation from an AM 1.5 G solar
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simulator (Taiwan, Enlitech, SS-F5). Tapping-mode AFM images were obtained by
using a Bruker multimode microscope. TEM images were measured using a JEM-
2100F. GIWAXS measurements were performed at beamline 7.3.3 of Advanced Light
Source, Lawrence Berkeley National Laboratory. The x-ray beam energy was 10 keV.
The sample to detector distance was ~276 mm calibrated with Silver Behenate and
the incidence angle was 0.16° normalized by a photodiode. The scattering signals were
imaged in Helium atmosphere using a 2D charge-coupled device (CCD) detector
(Pilatus 2M) with a pixel size of 0.172 mm x 0.172 mm. The film samples were
spincoated on PEDOT:PSS/silicon wafer substrates, and further treatments were

consistent with device fabrications.
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3. Fabrication of PSCs

All of the solar cell devices with a conventional configuration of
ITO/PEDOT:PSS/active layer/PFN-Br/Ag were fabricated. Firstly, the ITO glass
substrates were pre-cleaned sequentially by using detergent, ethanol, acetone, and
isopropyl alcohol under sonication, and dried in oven at 75 °C for 6 h before to use.
Followed by treating with oxygen plasma for 1 min, the PEDOT:PSS was spin-coated
onto the ITO glass at 3000 rpm for 30 s and then annealed at 150 °C for 20 min in air.
Subsequently, the substrates were transferred into a N,-protected glove box for spin-
coating the active layer. The donor polymer P2F-EHp and the small molecule
acceptors, QIP-4F or QIP-4Cl, were dissolved in CF solution (with variant blend ratios,
the total concentration of the donor polymer and the acceptor is 5.5 mg mL?). The
mixed solution was spin-coated atop the PEDOT:PSS layer at 1000 rpm for 20 s in CF
containing 0.5 vol% DBE to form the active layer with a film thicknesses approximately
100 nm. Then, the active layers were treated with thermal annealing at 110 °C for 10
min. Finally, the interface layer (5 nm) of PFN-Br in methanol (0.5 mg mL?) was spin-
coated on the blended films, and then the top electrode silver (100 nm) was deposited
onto the interlayer PFN-Br by thermal evaporation though a shadow mask in a vacuum
chamber with a base pressure of 1x10® mbar. The active layer area of the device was

0.04 cm?.

Fabrication and Characterization of Charge-only Devices

The hole-only and electron-only mobilities of P2F-EHp: acceptors blend films and
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the acceptor neat films were determined from space-charge-limited current (SCLC)
devices. The hole mobility was measured in a hole-only device with the configuration
of ITO/PEDOT:PSS/active layer/Ag. The electron mobility was measured in an electron-
only device with the configuration of ITO/ZnO/active layer/PFNDI-Br/Ag. The ZnO sol-
gel was obtained from stirring the solution of 1.0 g Zn(CH5C0O0);,:2H,0 in 10 mL
ethylene glycol monomethyl ether and 275 uL ethylenediamine at 60 °C for 12 h. The
total concentration of P2F-EHp and the small molecule acceptors, QIP-4F or QIP-4Cl,
was fixed at 5.5 mg-mL™%, and the blend films were obtained by spin-coating the P2F-
EHp: acceptor (1:1, w/w) blend solution in CF containing 0.5 vol% DBE to obtain active
layer of with a film thicknesses approximately 100 nm. The mobilities were
determined by fitting the dark J-V current to the model of a single carrier SCLC which
were calculated on the basis of the following equation:
J=(9/8) goeuVert?/ P
where J is the current density, u is the charge (hole or electron) mobility at zero
field, &g is the permittivity of free space, €, is the relative permittivity of the material,
d is the thickness of the active layer, and V. is the effective voltage (V - V). The
charge (hole or electron) mobility was calculated from the y intercept of the J~V

curves.
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4. Supporting Figures
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Fig. S1 DSC curve of QIP-4F and QIP-4Cl measured under N, atmosphere.
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Fig. S2 Molar extinction coefficient of QIP-4F and QIP-4Cl in film state.
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Fig. S3 Normalized UV-vis absorption spectra of P2F-EHp:QIP-4F and P2F-EHp:QIP-4Cl

in blend films.
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Fig. S6 (a) Jon versus Vg characteristics, (b) Vo versus light intensity, (c) Jsc versus light

intensity (Pygn) characteristics for PSCs based on P2F-EHp:QIP-4F and P2F-EHp:QIP-

4Cl.
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Fig. S7 AFM height images (5 x 5 um) of P2F-EHp:QIP-4F (a) and P2F-EHp:QIP-4Cl (b)
blend films with 0.5% DBE additive; TEM images of P2F-EHp:QIP-4F (c) and P2F-
EHp:QIP-4Cl (d) blend films with 0.5% DBE additive.
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5. Supporting Tables
Table S1 Photophysical and electrochemical properties of QIP-4F and QIP-4Cl in

solution and in thin films.

A, max? A, max? Aonset EoPte HOMO E&Y

acceptor
[nm] [nm] [nm] [eV] [eV] [eV]
QIP-4F 700 750 806 1.54 -5.75 1.89
QIP-4Cl 718 762 839 1.48 -5.77 1.88

@ The maximum absorption in solution. » The maximum absorption in film. ¢ E, =

1240/ Aonset-

Table S2 The summaries of the photophysical properties of the quinoxalineimide (Ql),

benzo[2,1,3]thiadiazole (BTz) and benzoquinoxaline (BQ)-based fused-ring small-

molecule acceptors reported to date in the related literatures.

A, max @ EOoPth HOMO LUMO
acceptor €, max(cm) Ref.
[nm] [eV] [eV] [eV]

Y6 821 1.33 —-5.65 -4.10 1.07 x 10° 1
BTP-CI 839 N/A -5.68 -4.12 1.09 x 10° 3
AQx-1 N/A ¢ 1.35 -5.59 -3.85 N/A 4
AQx-2 830 1.35 -5.62 —-3.88 N/A 5
QlP-4F 750 1.54 -5.75 -3.86 8.8 x 10* This work
QIP-4Cl 762 1.48 -5.77 -3.89 9.4 x 10* This work

?The maximum absorption in film. ? E; = 1240/Agnser.  N/A : not available.
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Table S3. Photovoltaic properties of the PSCs based on P2F-EHp as donor and QIP-4F

or QIP-4Cl as the acceptor with different solvent additive ratios under AM 1.5 G at 100

mW cm2.
Donor:Acceptor DBE Ve Jsc FF PCE
(w/w) (%) (V) (mA cm™) (%) (%)
0 1.02 15.02 4040 6.19
0.3 0.93 18.24 71.08 12.09
P2F-EHp:QIP-4F 0.5 0.94 18.27 70.53 12.11
(1:1) 1 0.93 17.34 72.87 11.75
1.5 0.93 15.70 7419 10.83
0 1.00 14.78 4225 6.24
0.3 0.94 19.51 7135 13.09
P2F-EHp:QIP-4Cl 0.5 0.94 19.62 72.11  13.30
(1:1) 1 0.92 18.87 73.12 12.69
1.5 0.92 17.07 72.56 11.39

Table S4. Photovoltaic properties of the PSCs based on P2F-EHp as donor and QIP-4F
or QIP-4Cl as the acceptor with different thermal annealing (TA) temperatures under

AM 1.5 G at 100 mW cm™.

Donor:Acceptor TA Voc Jsc FF PCE
(w/w) (°C) (V) (mA cm™) (%) (%)
100 0.93 17.81 7233 12.04
P2F-EHp:QIP-4F 110 0.94 18.27 70.53 12.11
(1:1) 120 0.93 17.33 73.18 11.82
100 0.93 19.63 71.16  13.03
P2F-EHp:QIP-4Cl 110 0.94 19.62 72.11  13.30
(1:1) 120 0.93 19.58 70.42 12.86
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Table S5. Photovoltaic properties of the PSCs based on P2F-EHp as donor and QIP-4F

or QIP-4Cl as the acceptor with different active layer thickness under AM 1.5 G at 100

mW cm2.
Donor:Acceptor Thickness Ve Joc FF PCE
(w/w) (nm) (V) (mA cm) (%) (%)
95 0.95 17.46 70.04 11.62
P2F-EHp:QIP-4F 100 0.94 18.27 70.53  12.12
(1:1) 110 0.95 17.16 69.93 11.40
90 0.93 19.01 72.23 12.77
P2F-EHp:QIP-4Cl 100 0.94 19.62 7211  13.30
(1:1) 110 0.92 19.42 69.26 12.37

Table S6. Summary of quinoxalineimide-based devices for OSCs in the literature.

Entries Acceptor Donor Voc Joc FF PCE Ref.

(V) (mAcm™) (%) (%)

1 Ql-Th P3HT 0.80 0.84 39 0.33 3
2 Ql-BiTh P3HT 0.85 0.91 35 0.34 3
3 QlP-4F P2F-EHp 0.94 18.27 70.53 12.11 This work
4 QlP-4Cl P2F-EHp 0.94 19.62 72.11 13.30 This work




Table S7. The summaries of the photovoltaic properties of the quinoxalineimide (Ql),
benzo[2,1,3]thiadiazole (BTz) and benzoquinoxaline (BQ)-based fused-ring small-

molecule acceptors based binary OSCs reported to date in the related literatures.

Entries Acceptor Donor Voe Joc FF PCE Ref.
(V)  (mAcm3) (%) (%)

1 Y6 PM6 0.83 25.3 74.8 15.7 1
2 BTP-CI PBDB-TF  0.867 25.4 75.0 165 4
3 AQx-1 PBDB-TF 0.89 22.18 67.14 13.31 5
4 AQx-2 PBDB-TF 0.86 25.38 76.25 16.64 5

5 QlP-4F P2F-EHp 0.94 18.27 70.53 12.11 This work
6 QlP-4Cl P2F-EHp 0.94 19.62 72.11 13.30 This work

Table S8. SCLC electron (hole) mobility measurements for P2F-EHp:QIP-4F and P2F-

EHp:QIP-4CI films.

Active layer @ U Ue Thickness
(em2Vv-1s1) (em2Vv-1s1) (nm)
P2F-EHp:QIP-4F 0.74x10™ 4.71x10™ ~100
P2F-EHp:QIP-4Cl 1.04x107* 5.32x107* ~100

a All of the blend films were processed by CF containing 0.5 vol% DBE and treated with

110 °C for 10 min.

Table S9. Relevant parameters obtained from Jp,—V,¢ curves.

Active layer @ Jsc eqe® Jon® Joat P(E,T) L
(MAcm™3) (mAcm™) (mA cm™?) (%) (nm)
P2F-EHp:QIP-4F 18.04 18.53 18.99 97.58 ~100
P2F-EHp:QIP-4Cl 19.37 19.65 19.85 98.98 ~100

a All of the blend films were treated with 110 °C for 10 min ; ; ? Obtained from the
integration of EQE spectra. ¢ At the condition of Veg = Vo&IV,pp (Vappr = 0, under short-

circuit condition)
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