An ethylene cross-bridged pentaazamacrocycle and its Cu²⁺ complex: constrained ligand topology and excellent kinetic stability

Anthony D. Shircliff,^a Benjamin P. Burke,^b Dustin J. Davilla,^a Gwendolyn E. Burgess,^a Faith A. Okorocha,^a Alina Shrestha,^a Elisabeth M. A. Allbritton,^a Phillip T. Nguyen,^a Rachael L. Lamar,^a Donald G. Jones,^a Michael-Joseph Gorbet,^a Michael B. Allen,^a John I. Eze,^a Andrea T. Fernandez,^a Daniel Ramirez,^a Stephen J. Archibald,^b Timothy J. Prior,^c Jeanette A. Krause,^d Allen G. Oliver,^e and Timothy J. Hubin^a*

a. Department of Chemistry and Physics, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK, 73096, United States.

b. Positron Emission Tomography Research Centre Department of Biomedical Sciences University of Hull Cottingham Road Hull, HU6 7RX, United Kingdom.

c. Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom.

d. Department of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221-0172, United States.

e. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.

*corresponding author: <u>tim.hubin@swosu.edu</u>

Supplementary Information

Table of Contents1. Experimental SectionS22. Mass Spectra and ¹H and ¹³C NMR Spectra of **5**, **3**, and Cu(3)²⁺S33. UV-Vis spectrum of Cu(3)²⁺S84. Initial UV-Vis changes at 50 °C in 5 M HCl and 5 M HClO₄S94. Kinetics of dissociation plot at 50 °C in 5 M HClS105. X-Ray CrystallographyS116. ReferencesS34

1. Experimental Section

1.1. General.

15aneN5 was synthesized according to a modified literature procedure.¹ Glyoxal (40% wt in water), methyl iodide (99%), sodium borohydride (98%), NH₄PF₆, and CuCl₂ . 2H₂O were purchased from Aldrich Chemical Co. All solvents were of reagent grade and were dried, when necessary, by accepted procedures. Elemental analyses were performed by on a Perkin-Elmer EA2400 elemental analyzer. Electrospray mass spectra were collected on a Shimadzu LCMS 2020 Electrospray Mass Spectrometer. NMR spectra were obtained on a Varian Bruker AVANCE II 300 MHz NMR Spectrometer instrument. UV-Visible spectra were obtained on a Beckman Coulter DU800 UV-Vis Spectrometer.

1.2 Syntheses.

Synthesis of (5) 1,4,7,10,13-pentaazatetracyclo[8.5.2.0^{4,17}.0^{13,16}]heptadecane:

To a 100 ml round bottom flask was added 2.00 g (9.29 mmol) of 15aneN5, 50 mL of dry MeOH, and a stir bar. The 15aneN5 dissolved with stirring and was then cooled to an ice-water bath temperature (~5

°C). 1 eq of glyoxal from a 40% by mass in water glyoxal solution (9.29 mmol, 1.348 g of solution) was dissolved in 10 mL of dry MeOH and added to an addition funnel. The glyoxal solution was added to the stirring, cooled 15aneN5 dropwise over ~30 minutes and open to the air. Upon complete addition, a stopper was placed in the round bottom flask and the reaction was allowed to warm to room temperature and stirred overnight. Next, the solvent was removed under vacuum to yield a yellow oil, which was dried under a high vacuum for 30 minutes to remove remaining solvents. The residue was dissolved in stirred 80 mL diethyl ether for 60 minutes, and then filtered through packed Celite to remove any insoluble polymers. The solvent was removed by evaporation and the pale yellow oil product dried overnight. Yield: 1.87 g (85%). ESI-MS⁺: m/z = 238 (LH⁺). Elemental Analysis: Calc. (Found) for C₁₂H₂₃N₅ · H₂O · 0.2C₄H₁₀O: C 56.90 (57.17), H 10.07 (10.05), N 25.92 (26.05). ¹H NMR (300 MHz, CDCl₃, 298 K) See manuscript for discussion of likelihood of more than one isomers being present. Integration was normalized to 23H for ¹H spectrum as all likely isomers would have that in common. Integration is given as an indication of the isomeric mixture, although no quantification of isomer *number or ratio has been attempted.* δ [ppm] = 3.69 (d, 0.308H), 3.60-3.45 (m, 1.189H), 3.34 (m, 0.811H), 3.22 (m, 1.014H), 3.16-2.83 (m, 10.136H), 2.83-2.58 (m, 5.368H), 2.58-2.36 (m, 2.560H), 2.35 (d, 0.412H), 2.31 (m, 0.843H), 2.01 (d, 0.341H). ¹³C NMR (75.47, MHz, CDCl₃, 298 K) δ [ppm] = 85.183, 80.897, 79.310, 78.341, 59.616, 54.492, 54.242, 51.000, 50.886, 50.535, 49.849, 49.214, 48.748, 48.600, 47.673, 47.390.

Synthesis of (3) 4,7,13-trimethyl-1,4,7,10,13-pentaazabicyclo[8.5.2]heptadecane:

To a 100 ml round bottom flask was added 0.729 g (3.07 mmol) of 5, 25 mL of dry MeCN, and a stir bar. Separately, 10 eq (30.70 mmol, 4.358 g) iodomethane was dissolved in 20 mL dry MeCN. The iodomethane solution was added to the stirring solution of 5 and the solution stirred at room temperature for 5 days. Air was bubbled through the solution in a chemical fume hood to evaporate the excess iodomethane with the outlet air bubbled through a water/Et₃N solution to trap out the iodomethane. The solution was then evaporated to dryness. The white solid residue was broken up and stirred with 25 ml DCM (to remove any mono- or di-methylated compound) for 30 minutes and the remaining white solid filtered off. This solid was then used without purification (and is believed to contain multiple constitutional and methylation isomers) in the following synthetic step. The solid was suspended in 120 mL of 95% EtOH in a 500 ml round bottom flask. 20 eq (61.40 mmol, 2.323 g) of sodium borohydride was added in portions over 5 minutes and then the reaction stirred under nitrogen for 5 days at room temperature. Excess sodium borohydride was decomposed with 6 M HCl to a pH = 2. The solution was then evaporated to dryness. The residue was dissolved in 100 mL 30% aqueous KOH and extracted with chloroform. The chloroform layers were collected, dried over sodium sulfate, and evaporated to the brown oil product **3**. Yield: 0.230 g (32%). ESI-MS⁺: m/z = 284 (LH⁺). Elemental Analysis: Calc. (Found) for C₁₅H₃₃N₅ · CHCl₃: C 47.70 (47.62), H 8.51 (8.89), N 17.39 (17.50). ¹H NMR (300 MHz, CDCl₃, 298 K) See manuscript for discussion of likelihood of more than one isomers being present. Integration was normalized to 33H for ¹H spectrum as all likely isomers would have that in common. Integration is given as an indication of the isomeric mixture, although no quantification of isomer *number or ratio has been attempted.* δ [ppm] = 3.72-3.29 (m, 3.00H), 3.29-3.13 (m, 1.72H), 3.11-2.70 (m, 10.41H), 2.67 (s, 1.87 H), 2.64-2.24 (m, 11.32H), 2.22 (s, 3.50H), 2.18-2.04 (m, 1.18H). ¹³C NMR (75.47, MHz, CDCl₃, 298 K) δ [ppm] = 53.566, 53.430, 49.082, 47.184, 43.164, 42.619.

Synthesis of [Cu(3)](PF₆)₂:

In a 4 dram vial and open to the air, 0.525 g (1.50 mmol) of **3** was dissolved in 5 mL dry MeOH. Separately, 0.256 g (1.50 mmol) of $CuCl_2 \cdot 2H_2O$ was dissolved in 5 mL dry MeOH. The $CuCl_2$ solution was then added dropwise by pipet to the stirring ligand solution. A dark green solution with some brown precipitate formed. The reaction was left to stir overnight at room temperature. Any undissolved solids were removed by filtration and the stirred dark green filtrate* was treated with dropwise addition of NH_4PF_6 (0.900 g, 5.52 mmol) which had been dissolved in 5 mL dry MeOH. A dark blue precipitate formed immediately. The suspension was stored overnight at -10 °C to complete the precipitation. The dark blue product was filtered on a glass frit, washed with MeOH and diethyl ether, and dried under vacuum. Yield: 0.374 g (39%). ESI-MS⁺: m/z = 178 [CuL²⁺] and m/z = 381 [CuL(MeOH)⁺. λ_{max} (H₂O) = 575nm (ϵ = 285 M⁻¹ cm⁻¹). Elemental Analysis: Calc. (Found) for [Cu(C₁₅H₃₃N₅)](PF₆)₂ · 0.3NH₄PF₆: C 26.27 (26.40), H 5.03 (4.86), N 10.82 (10.65).

*Crystals suitable for X-ray diffraction were obtained from evaporating a portion of the dark green filtrate to dryness, without adding any NH₄PF₆. The resulting blue-violet solid was dissolved in MeNO₂ open to the air, and diethyl ether diffusion into this solution caused the formation of violet crystals.

1.3. Acid Decomplexation Studies.

 $[Cu(3)](PF_6)_2$ was used at 1 mM. The complex's lone d-d absorption was recorded on a Beckman Coulter DU800 UV-Vis Spectrometer in 5 M HCl at and 50 °C over time. A relatively fast (~16 h) process occurs, resulting in a shift from $\lambda_{max} = 571$ nm ($\epsilon = 397$ M⁻¹ cm⁻¹) to $\lambda_{max} = 701$ nm ($\epsilon = 162$ M⁻¹ cm⁻¹). No further shift of λ_{max} occurs after this time, only a decrease in absorption as the complex slowly decomposes over the multiple days of the experiment. Pseudo-first-order conditions applied to the slow process after the solution reaches its final $\lambda_{max} = 701$ nm allowed the calculation of the half-life from the slope of the linear ln(absorbance) versus time plot. The pseudo first order rate constant k = 0.00547 h⁻¹ was calculated, giving a half-life (0.693/k) of t_{1/2} = 126 h = 5.3 d.

The nature of the fast initial process resulting in the shift of λ_{max} is not completely understood. Simple binding of Cl⁻ by the complex as a cause was ruled out by a parallel experiment in 2.5 M NaCl (~ saturated in our hands) instead of 5 M HCl, where $\lambda_{max} = 575$ nm ($\epsilon = 285$ M⁻¹ cm⁻¹) and does not shift or decrease in intensity. It is possible that a protonation occurs in the fast step prior to decomposition and that this protonation, followed by interaction of the protonated complex with chloride that causes the wavelength shift. An additional experiment in 5 M HClO₄ was carried out to test this hypothesis. Similar to the 5 M HCl experiment, a relatively fast process occurs over the first ~23 hours of the experiment, followed by slow decomposition of the complex. In HClO₄, however, there is no shift of λ_{max} , which is at 564 nm. The fast process includes a reduction of $\epsilon = 268$ M⁻¹ cm⁻¹ to $\epsilon = 195$ M⁻¹ cm⁻¹ within the first ~23 hours. After this time, the change in the spectrum is minimal with the ϵ being reduced only to ($\epsilon = 185$ M⁻¹ cm⁻¹) over the next ~5 days. It appears a "fast" protonation process occurs in both acids, but that Cl⁻ assists the decomposition whereas ClO₄⁻ does not. The t_{1/2} of the "slow" decomposition step calculated in 5 M HClO₄, 47.6 d, is much longer than in 5 M HCl, an observation also true for the cross-bridged tetraazamacrocycle Cu²⁺ complexes.²

2. Mass Spectra and ¹H and ¹³C NMR Spectra of 5, 3, and Cu(3)²⁺

¹H NMR spectrum of **3** (300 MHz, CDCl₃, 298 K).

 ^{13}C NMR spectrum of $\boldsymbol{3}$ (75 MHz, CDCl₃, 298 K).

ESI-MS⁺ mass spectrum of Cu(**3)**²⁺.

3. UV-Vis spectrum of $Cu(3)^{2+}$ in H₂O

4. UV-Visible changes during first 15 Hours in (a) 5M HCl and (b) 5M HClO₄ (a)

(b)

4. Kinetics of dissociation plot

5. X-Ray Crystallography

5.1 X-Ray Crystallography of 6' (CCDC 1981500)

Chemist Code or Formula: AS02B ALS Code SWOSU233 Crystal Size: 0.100 x 0.0558 x 0.036 Crystal Color & Habit: colorless plates

Intensity data were collected at 150K on a D8 goniostat equipped with a Bruker PHOTON-II detector at Beamline 12.2.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to λ =0.7288Å. For data collection 1-s frames were measured in shutterless mode. The data frames were collected using the program APEX3 and processed using the program SAINT routine within APEX3. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS.

Acknowledgements, References and Notes:

(1) Crystallographic data were collected through the SCrALS (Service Crystallography at the Advanced Light Source) program at Beamline 12.2.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The Advanced Light Source, is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231.

(2) APEX3 v2016.9.0 and SAINT v8.38A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2016.2 semi-empirical absorption and beam correction program. G.M. Sheldrick, University of Göttingen, Germany. Table S1. Crystal data and structure refinement for **6'**.

Identification code	6' (AS02B)	
Empirical formula	C15.62 H35.50 I2 N5 O	1.62
Chemical formula	C ₁₅ H ₃₁ N ₅ , 2I, H ₂ O, 0.623	5(CH ₃ OH)
Formula weight	573.29	
Temperature	150(2) K	
Wavelength	0.7288 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 16.5537(9) Å	$\alpha = 90^{\circ}$
	b = 18.0400(9) Å	$\beta = 97.514(2)^{\circ}$
	c = 15.0137(7) Å	$\gamma = 90^\circ$
Volume	4445.0(4) Å ³	
Z	8	
Density (calculated)	1.713 Mg/m ³	
Absorption coefficient	3.006 mm ⁻¹	
F(000)	2266	
Crystal size	$0.100 \times 0.056 \times 0.036$ m	1m ³
Theta range for data collection	2.112 to 29.100°	
Index ranges	$-22 \le h \le 22, -24 \le k \le 24, -19 \le l \le 20$	
Reflections collected	50133	
Independent reflections	5526 [R(int) = 0.0532]	
Completeness to theta = 25.930°	99.9 %	
Absorption correction	Semi-empirical from equ	uivalents
Max. and min. transmission	0.7458 and 0.6624	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	5526 / 6 / 242	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I)]	R1 = 0.0258, wR2 = 0.0.0258	532
R indices (all data)	R1 = 0.0307, wR2 = 0.0	560
Largest diff. peak and hole	est diff. peak and hole 0.615 and -0.869 e.Å ⁻³	

	Х	У	Z	U(eq)
I(2)	5000	5665(1)	2500	25(1)
I(3)	0	3000(1)	7500	28(1)
I(1)	1883(1)	3690(1)	3259(1)	32(1)
N(5)	3695(1)	7065(1)	4590(1)	20(1)
N(3)	4283(1)	5962(1)	5383(1)	20(1)
N(4)	5909(1)	7039(1)	5015(1)	24(1)
N(1)	2366(1)	6127(1)	3765(1)	24(1)
N(2)	2597(1)	5969(1)	5289(1)	23(1)
C(12)	3827(1)	6259(1)	4586(2)	19(1)
C(11)	3006(1)	5863(1)	4511(2)	20(1)
C(8)	4435(2)	7506(1)	4816(2)	22(1)
C(5)	5163(1)	5860(1)	5434(2)	24(1)
C(9)	3196(2)	7290(1)	3760(2)	25(1)
C(7)	5176(2)	7276(1)	4358(2)	24(1)
C(6)	5712(2)	6511(1)	5749(2)	25(1)
C(3)	3089(2)	5704(1)	6106(2)	26(1)
C(2)	1812(2)	5600(2)	5044(2)	31(1)
C(14)	6509(2)	6688(2)	4476(2)	31(1)
O(1W)	702(2)	4446(2)	6173(2)	79(1)
C(15)	6301(2)	7710(2)	5483(2)	31(1)
C(10)	2349(2)	6968(1)	3745(2)	27(1)
C(4)	3919(2)	6079(1)	6205(2)	25(1)
C(13)	2502(2)	5820(2)	2872(2)	33(1)
C(1)	1577(2)	5824(2)	4064(2)	33(1)
C(17)	-234(4)	4091(3)	3452(4)	60(2)
O(16)	143(2)	4258(2)	4315(3)	52(1)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **6'**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(5)-C(9)	1.460(3)	N(5)-C(8)	1.464(3)
N(5)-C(12)	1.470(3)	N(3)-C(12)	1.432(3)
N(3)-C(4)	1.457(3)	N(3)-C(5)	1.461(3)
N(4)-C(14)	1.501(3)	N(4)-C(15)	1.503(3)
N(4)-C(7)	1.522(3)	N(4)-C(6)	1.524(3)
N(1)-C(13)	1.495(3)	N(1)-C(11)	1.515(3)
N(1)-C(10)	1.518(3)	N(1)-C(1)	1.537(3)
N(2)-C(11)	1.438(3)	N(2)-C(3)	1.462(3)
N(2)-C(2)	1.463(3)	C(12)-C(11)	1.526(3)
C(12)-H(12)	1.0000	C(11)-H(11)	1.0000
C(8)-C(7)	1.539(3)	C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900	C(5)-C(6)	1.521(3)
C(5)-H(5A)	0.9900	C(5)-H(5B)	0.9900
C(9)-C(10)	1.515(4)	C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900	C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900	C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900	C(3)-C(4)	1.522(4)
C(3)-H(3A)	0.9900	C(3)-H(3B)	0.9900
C(2)-C(1)	1.526(4)	C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900	C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800	C(14)-H(14C)	0.9800
O(1W)-H(1D)	0.944	O(1W)-H(1C)	0.9362
C(15)-H(15A)	0.9800	C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800	C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900	C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900	C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800	C(13)-H(13C)	0.9800
C(1)-H(1A)	0.9900	C(1)-H(1B)	0.9900
C(17)-O(16)	1.396(7)	C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800	C(17)-H(17C)	0.9800
O(16)-H(16)	0.881(19)		
C(9)-N(5)-C(8)	114.20(18)	C(9)-N(5)-C(12)	109.86(18)
C(8)-N(5)-C(12)	114.70(18)	C(12)-N(3)-C(4)	115.02(19)
C(12)-N(3)-C(5)	120.22(19)	C(4)-N(3)-C(5)	119.57(19)
C(14)-N(4)-C(15)	108.42(19)	C(14)-N(4)-C(7)	107.22(19)
C(15)-N(4)-C(7)	109.66(19)	C(14)-N(4)-C(6)	110.21(19)
C(15)-N(4)-C(6)	106.61(19)	C(7)-N(4)-C(6)	114.59(19)
C(13)-N(1)-C(11)	111.96(19)	C(13)-N(1)-C(10)	111.0(2)
C(11)-N(1)-C(10)	109.82(18)	C(13)-N(1)-C(1)	111.3(2)
C(11)-N(1)-C(1)	102.18(18)	C(10)-N(1)-C(1)	110.3(2)

Table S3. Bond lengths [Å] and angles [°] for ${\bf 6'}.$

C(11)-N(2)-C(3)	111.62(19)	C(11)-N(2)-C(2)	103.46(19)
C(3)-N(2)-C(2)	116.1(2)	N(3)-C(12)-N(5)	115.37(19)
N(3)-C(12)-C(11)	104.68(18)	N(5)-C(12)-C(11)	109.36(18)
N(3)-C(12)-H(12)	109.1	N(5)-C(12)-H(12)	109.1
C(11)-C(12)-H(12)	109.1	N(2)-C(11)-N(1)	101.54(18)
N(2)-C(11)-C(12)	112.75(19)	N(1)-C(11)-C(12)	115.96(18)
N(2)-C(11)-H(11)	108.7	N(1)-C(11)-H(11)	108.7
C(12)-C(11)-H(11)	108.7	N(5)-C(8)-C(7)	116.24(19)
N(5)-C(8)-H(8A)	108.2	C(7)-C(8)-H(8A)	108.2
N(5)-C(8)-H(8B)	108.2	C(7)-C(8)-H(8B)	108.2
H(8A)-C(8)-H(8B)	107.4	N(3)-C(5)-C(6)	118.1(2)
N(3)-C(5)-H(5A)	107.8	C(6)-C(5)-H(5A)	107.8
N(3)-C(5)-H(5B)	107.8	C(6)-C(5)-H(5B)	107.8
H(5A)-C(5)-H(5B)	107.1	N(5)-C(9)-C(10)	109.02(19)
N(5)-C(9)-H(9A)	109.9	C(10)-C(9)-H(9A)	109.9
N(5)-C(9)-H(9B)	109.9	C(10)-C(9)-H(9B)	109.9
H(9A)-C(9)-H(9B)	108.3	N(4)-C(7)-C(8)	113.61(19)
N(4)-C(7)-H(7A)	108.8	C(8)-C(7)-H(7A)	108.8
N(4)-C(7)-H(7B)	108.8	C(8)-C(7)-H(7B)	108.8
H(7A)-C(7)-H(7B)	107.7	C(5)-C(6)-N(4)	115.7(2)
C(5)-C(6)-H(6A)	108.4	N(4)-C(6)-H(6A)	108.4
C(5)-C(6)-H(6B)	108.4	N(4)-C(6)-H(6B)	108.4
H(6A)-C(6)-H(6B)	107.4	N(2)-C(3)-C(4)	109.43(19)
N(2)-C(3)-H(3A)	109.8	C(4)-C(3)-H(3A)	109.8
N(2)-C(3)-H(3B)	109.8	C(4)-C(3)-H(3B)	109.8
H(3A)-C(3)-H(3B)	108.2	N(2)-C(2)-C(1)	103.2(2)
N(2)-C(2)-H(2A)	111.1	C(1)-C(2)-H(2A)	111.1
N(2)-C(2)-H(2B)	111.1	C(1)-C(2)-H(2B)	111.1
H(2A)-C(2)-H(2B)	109.1	N(4)-C(14)-H(14A)	109.5
N(4)-C(14)-H(14B)	109.5	H(14A)-C(14)-H(14B)	109.5
N(4)-C(14)-H(14C)	109.5	H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5	H(1D)-O(1W)-H(1C)	101.9
N(4)-C(15)-H(15A)	109.5	N(4)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5	N(4)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5	H(15B)-C(15)-H(15C)	109.5
C(9)-C(10)-N(1)	111.5(2)	C(9)-C(10)-H(10A)	109.3
N(1)-C(10)-H(10A)	109.3	C(9)-C(10)-H(10B)	109.3
N(1)-C(10)-H(10B)	109.3	H(10A)-C(10)-H(10B)	108.0
N(3)-C(4)-C(3)	108.7(2)	N(3)-C(4)-H(4A)	109.9
C(3)-C(4)-H(4A)	109.9	N(3)-C(4)-H(4B)	109.9
C(3)-C(4)-H(4B)	109.9	H(4A)-C(4)-H(4B)	108.3
N(1)-C(13)-H(13A)	109.5	N(1)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5	N(1)-C(13)-H(13C)	109.5

H(13A)-C(13)-H(13C)	109.5	H(13B)-C(13)-H(13C)	109.5
C(2)-C(1)-N(1)	104.9(2)	C(2)-C(1)-H(1A)	110.8
N(1)-C(1)-H(1A)	110.8	C(2)-C(1)-H(1B)	110.8
N(1)-C(1)-H(1B)	110.8	H(1A)-C(1)-H(1B)	108.8
O(16)-C(17)-H(17A)	109.5	O(16)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5	O(16)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5	H(17B)-C(17)-H(17C)	109.5
C(17)-O(16)-H(16)	106(3)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I(2)	32(1)	25(1)	19(1)	0	7(1)	0
I(3)	32(1)	30(1)	20(1)	0	1(1)	0
I(1)	35(1)	34(1)	29(1)	1(1)	9(1)	-2(1)
N(5)	20(1)	16(1)	23(1)	3(1)	2(1)	0(1)
N(3)	17(1)	22(1)	22(1)	5(1)	4(1)	2(1)
N(4)	20(1)	25(1)	29(1)	1(1)	6(1)	-3(1)
N(1)	18(1)	26(1)	28(1)	1(1)	1(1)	0(1)
N(2)	18(1)	24(1)	28(1)	3(1)	9(1)	0(1)
C(12)	17(1)	19(1)	21(1)	1(1)	4(1)	0(1)
C(11)	19(1)	18(1)	24(1)	2(1)	5(1)	1(1)
C(8)	23(1)	20(1)	24(1)	0(1)	3(1)	-2(1)
C(5)	19(1)	22(1)	31(1)	3(1)	4(1)	2(1)
C(9)	27(1)	23(1)	26(1)	6(1)	1(1)	0(1)
C(7)	25(1)	23(1)	24(1)	2(1)	5(1)	-4(1)
C(6)	24(1)	27(1)	25(1)	2(1)	4(1)	-2(1)
C(3)	30(1)	26(1)	26(1)	5(1)	11(1)	4(1)
C(2)	20(1)	31(1)	43(2)	6(1)	11(1)	1(1)
C(14)	22(1)	35(2)	37(1)	-6(1)	10(1)	-3(1)
O(1W)	94(2)	52(2)	101(2)	15(2)	53(2)	-2(2)
C(15)	29(2)	33(2)	33(1)	-5(1)	5(1)	-9(1)
C(10)	26(1)	24(1)	30(1)	4(1)	-1(1)	6(1)
C(4)	30(1)	22(1)	22(1)	1(1)	5(1)	0(1)
C(13)	34(2)	38(2)	27(1)	-4(1)	0(1)	-3(1)
C(1)	19(1)	35(2)	44(2)	1(1)	4(1)	-4(1)
C(17)	57(4)	48(3)	75(4)	5(3)	14(3)	6(3)
O(16)	34(2)	50(2)	73(3)	5(2)	16(2)	0(2)

Table S4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **6'**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

	Х	У	Z	U(eq)
H(12)	4106	6125	4056	23
H(11)	3097	5320	4431	24
H(8A)	4593	7483	5475	27
H(8B)	4304	8029	4659	27
H(5A)	5284	5715	4830	28
H(5B)	5318	5438	5841	28
H(9A)	3443	7108	3236	30
H(9B)	3165	7837	3727	30
H(7A)	5015	6861	3941	28
H(7B)	5336	7698	3998	28
H(6A)	6230	6313	6062	30
H(6B)	5448	6798	6193	30
H(3A)	3157	5160	6074	32
H(3B)	2810	5817	6635	32
H(2A)	1404	5777	5422	37
H(2B)	1867	5056	5106	37
H(14A)	6264	6246	4171	46
H(14B)	7000	6547	4876	46
H(14C)	6653	7042	4027	46
H(1D)	404	4891	6181	118
H(1C)	465	4153	6584	118
H(15A)	6491	8043	5039	47
H(15B)	6765	7554	5916	47
H(15C)	5903	7969	5800	47
H(10A)	2001	7136	3195	32
H(10B)	2105	7154	4270	32
H(4A)	3858	6616	6312	30
H(4B)	4275	5867	6724	30
H(13A)	3028	5993	2719	50
H(13B)	2065	5988	2412	50
H(13C)	2501	5277	2898	50
H(1A)	1148	6209	4010	39
H(1B)	1376	5391	3696	39
H(17A)	-267	4540	3082	90
H(17B)	-784	3901	3486	90
H(17C)	86	3714	3183	90
H(16)	669(12)	4190(40)	4310(30)	77

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **6'**.

5.2 X-Ray Crystallograpy of H₃3³⁺ (CCDC 1917395)

SCrALS Code SWOSU070D Chemist Code: DD08 (from MeCN-ether) Crystal Size: 0.11 x 0.05 x 0.01 Crystal Habit: colorless blade

Intensity data were collected at 150K on a D8 goniostat equipped with a Bruker PHOTON100 CMOS detector at Beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to λ =0.7749Å. For data collection frames were measured for a duration of 2-s at 0.50 intervals of ω . The data frames were collected using the program APEX3 and processed using the program SAINT routine within APEX3. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS.

Acknowledgements, References and Notes:

(1) Crystallographic data were collected through the SCrALS (Service Crystallography at Advanced Light Source) program at the Small-Crystal Crystallography Beamline 11.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The ALS is supported by the U.S. Department of Energy, Office of Energy Sciences Materials Sciences Division, under contract DE-AC02-05CH11231.

(2) APEX3 v2016.1.0 and SAINT v8.37A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2014.5 semi-empirical absorption and beam correction program. G.M. Sheldrick, University of Göttingen, Germany.

Table S6	Crystal data and structure refinement for H ₂ 3 ⁺
14010 50.	crystal data and structure refinement for 135 .

Identification code	H ₃ 3 ³⁺ (DD08)	
Empirical formula	C17 H39 Br F12 N6 P2	
Chemical formula	C ₁₅ H ₃₆ N ₅ , 2(PF ₆), CH ₃ CN,	Br
Formula weight	697.39	
Temperature	150(2) K	
Wavelength	0.7749 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 7.9823(8) Å	$\alpha = 90^{\circ}$
	b = 13.9805(14) Å	$\beta = 90^{\circ}$
	c = 24.662(3) Å	$\gamma=90^\circ$
Volume	2752.2(5) Å ³	
Z	4	
Density (calculated)	1.683 Mg/m ³	
Absorption coefficient	2.114 mm ⁻¹	
F(000)	1424	
Crystal size	0.110 x 0.050 x 0.010 mm ³	
Theta range for data collection	2.401 to 29.832°	
Index ranges	-10<=h<=10, -17<=k<=17,	-31<=l<=31
Reflections collected	48044	
Independent reflections	6085 [R(int) = 0.0635]	
Completeness to theta = 27.706°	99.9 %	
Absorption correction	Semi-empirical from equiv	alents
Max. and min. transmission	0.9281 and 0.7831	
Refinement method	Full-matrix least-squares of	n F ²
Data / restraints / parameters	6085 / 3 / 350	
Goodness-of-fit on F ²	1.069	
Final R indices [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.1072	2
R indices (all data)	R1 = 0.0486, wR2 = 0.1103	5
Absolute structure parameter	0.039(3)	
Largest diff. peak and hole	1.414 and -0.568 e.Å ⁻³	

	Х	у	Z	U(eq)
Br(1)	6864(1)	3332(1)	5493(1)	31(1)
C(1)	4919(7)	3523(4)	7246(2)	32(1)
C(2)	4661(8)	2520(4)	7017(2)	35(1)
C(3)	2253(6)	2839(4)	6404(2)	26(1)
C(4)	1733(6)	3300(3)	5888(2)	24(1)
C(5)	1692(6)	4609(3)	5263(2)	20(1)
C(6)	2752(6)	4386(4)	4777(2)	23(1)
C(7)	4742(6)	5759(3)	4982(2)	22(1)
C(8)	5798(6)	5903(3)	5493(2)	24(1)
C(9)	6254(6)	5685(4)	6471(2)	26(1)
C(10)	5793(6)	5115(4)	6971(2)	25(1)
C(11)	7708(7)	3789(4)	6886(3)	32(1)
C(12)	4374(7)	1622(4)	6160(3)	38(1)
C(13)	5417(8)	4507(5)	4303(2)	37(1)
C(14)	2176(6)	4964(3)	6206(2)	22(1)
C(15)	3310(6)	5822(3)	6124(2)	21(1)
C(16)	-434(7)	7428(4)	6161(3)	34(1)
C(17)	-600(9)	8141(4)	6576(3)	48(2)
N(1)	5932(5)	4089(3)	6867(2)	23(1)
N(2)	4081(5)	2558(3)	6441(2)	25(1)
N(3)	2429(5)	4258(3)	5776(2)	18(1)
N(4)	4533(5)	4727(3)	4823(2)	22(1)
N(5)	5076(5)	5500(3)	6008(2)	18(1)
N(6)	-312(7)	6850(4)	5834(3)	48(1)
P(1)	4602(2)	8736(1)	5956(1)	32(1)
F(1)	5034(5)	7886(2)	6369(2)	45(1)
F(2)	3389(5)	8038(3)	5631(2)	64(1)
F(3)	6129(4)	8415(3)	5580(2)	46(1)
F(4)	4185(4)	9584(2)	5536(2)	45(1)
F(5)	5811(6)	9430(3)	6282(2)	57(1)
F(6)	3095(6)	9060(3)	6331(2)	75(2)
P(2)	663(2)	5958(1)	7675(1)	26(1)
F(7)	1622(6)	6114(4)	8233(2)	71(1)
F(8)	-898(4)	5544(3)	7998(1)	45(1)
F(9)	1400(6)	4925(3)	7603(2)	65(1)
F(10)	-305(5)	5851(3)	7116(1)	45(1)
F(11)	2222(4)	6397(3)	7353(1)	45(1)
F(12)	-76(6)	7025(3)	7729(2)	61(1)

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for $H_3 3^{3+}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(1)	1.467(7)	C(1)-C(2)	1.525(8)
C(1)-H(1A)	0.9900	C(1)-H(1B)	0.9900
C(2)-N(2)	1.496(7)	C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900	C(3)-C(4)	1.486(7)
C(3)-N(2)	1.514(6)	C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900	C(4)-N(3)	1.475(6)
C(4)-H(4A)	0.9900	C(4)-H(4B)	0.9900
C(5)-N(3)	1.480(6)	C(5)-C(6)	1.500(7)
C(5)-H(5A)	0.9900	C(5)-H(5B)	0.9900
C(6)-N(4)	1.504(6)	C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900	C(7)-N(4)	1.504(6)
C(7)-C(8)	1.531(7)	C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900	C(8)-N(5)	1.503(6)
C(8)-H(8A)	0.9900	C(8)-H(8B)	0.9900
C(9)-N(5)	1.501(6)	C(9)-C(10)	1.513(7)
C(9)-H(9A)	0.9900	C(9)-H(9B)	0.9900
C(10)-N(1)	1.462(6)	C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900	C(11)-N(1)	1.479(6)
C(11)-H(11A)	0.9800	C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800	C(12)-N(2)	1.499(7)
C(12)-H(12A)	0.9800	C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800	C(13)-N(4)	1.495(6)
C(13)-H(13A)	0.9800	C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800	C(14)-N(3)	1.462(6)
C(14)-C(15)	1.516(7)	C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900	C(15)-N(5)	1.508(6)
C(15)-H(15A)	0.9900	C(15)-H(15B)	0.9900
C(16)-N(6)	1.146(8)	C(16)-C(17)	1.435(10)
C(17)-H(17A)	0.9800	C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800	N(2)-H(2)	0.82(4)
N(4)-H(4)	0.82(4)	N(5)-H(5)	0.82(4)
P(1)-F(6)	1.585(4)	P(1)-F(5)	1.587(4)
P(1)-F(2)	1.591(4)	P(1)-F(3)	1.595(4)
P(1)-F(1)	1.602(4)	P(1)-F(4)	1.609(4)
P(2)-F(9)	1.570(4)	P(2)-F(8)	1.588(3)
P(2)-F(7)	1.589(4)	P(2)-F(10)	1.590(4)
P(2)-F(11)	1.599(3)	P(2)-F(12)	1.609(4)
N(1)-C(1)-C(2)	109.6(4)	N(1)-C(1)-H(1A)	109.8
C(2)-C(1)-H(1A)	109.8	N(1)-C(1)-H(1B)	109.8
C(2)-C(1)-H(1B)	109.8	H(1A)-C(1)-H(1B)	108.2

Table S8. Bond lengths [Å] and angles [°] for $H_3 3^{3+}$.

N(2)-C(2)-C(1)	111.1(4)	N(2)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2A)	109.4	N(2)-C(2)-H(2B)	109.4
C(1)-C(2)-H(2B)	109.4	H(2A)-C(2)-H(2B)	108.0
C(4)-C(3)-N(2)	115.7(4)	C(4)-C(3)-H(3A)	108.4
N(2)-C(3)-H(3A)	108.4	C(4)-C(3)-H(3B)	108.4
N(2)-C(3)-H(3B)	108.4	H(3A)-C(3)-H(3B)	107.4
N(3)-C(4)-C(3)	116.7(4)	N(3)-C(4)-H(4A)	108.1
C(3)-C(4)-H(4A)	108.1	N(3)-C(4)-H(4B)	108.1
C(3)-C(4)-H(4B)	108.1	H(4A)-C(4)-H(4B)	107.3
N(3)-C(5)-C(6)	113.0(4)	N(3)-C(5)-H(5A)	109.0
C(6)-C(5)-H(5A)	109.0	N(3)-C(5)-H(5B)	109.0
C(6)-C(5)-H(5B)	109.0	H(5A)-C(5)-H(5B)	107.8
C(5)-C(6)-N(4)	114.0(4)	C(5)-C(6)-H(6A)	108.8
N(4)-C(6)-H(6A)	108.8	C(5)-C(6)-H(6B)	108.8
N(4)-C(6)-H(6B)	108.8	H(6A)-C(6)-H(6B)	107.7
N(4)-C(7)-C(8)	113.6(4)	N(4)-C(7)-H(7A)	108.8
C(8)-C(7)-H(7A)	108.8	N(4)-C(7)-H(7B)	108.8
C(8)-C(7)-H(7B)	108.8	H(7A)-C(7)-H(7B)	107.7
N(5)-C(8)-C(7)	115.9(4)	N(5)-C(8)-H(8A)	108.3
C(7)-C(8)-H(8A)	108.3	N(5)-C(8)-H(8B)	108.3
C(7)-C(8)-H(8B)	108.3	H(8A)-C(8)-H(8B)	107.4
N(5)-C(9)-C(10)	112.1(4)	N(5)-C(9)-H(9A)	109.2
C(10)-C(9)-H(9A)	109.2	N(5)-C(9)-H(9B)	109.2
C(10)-C(9)-H(9B)	109.2	H(9A)-C(9)-H(9B)	107.9
N(1)-C(10)-C(9)	110.9(4)	N(1)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10A)	109.5	N(1)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10B)	109.5	H(10A)-C(10)-H(10B)	108.0
N(1)-C(11)-H(11A)	109.5	N(1)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5	N(1)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5	H(11B)-C(11)-H(11C)	109.5
N(2)-C(12)-H(12A)	109.5	N(2)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5	N(2)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5	H(12B)-C(12)-H(12C)	109.5
N(4)-C(13)-H(13A)	109.5	N(4)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5	N(4)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5	H(13B)-C(13)-H(13C)	109.5
N(3)-C(14)-C(15)	110.8(4)	N(3)-C(14)-H(14A)	109.5
C(15)-C(14)-H(14A)	109.5	N(3)-C(14)-H(14B)	109.5
C(15)-C(14)-H(14B)	109.5	H(14A)-C(14)-H(14B)	108.1
N(5)-C(15)-C(14)	110.3(4)	N(5)-C(15)-H(15A)	109.6
C(14)-C(15)-H(15A)	109.6	N(5)-C(15)-H(15B)	109.6
C(14)-C(15)-H(15B)	109.6	H(15A)-C(15)-H(15B)	108.1
N(6)-C(16)-C(17)	179.2(7)	C(16)-C(17)-H(17A)	109.5

C(16)-C(17)-H(17B)	109.5	H(17A)-C(17)-H(17B)	109.5
C(16)-C(17)-H(17C)	109.5	H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5	C(10)-N(1)-C(1)	112.1(4)
C(10)-N(1)-C(11)	110.2(4)	C(1)-N(1)-C(11)	110.8(4)
C(2)-N(2)-C(12)	111.1(4)	C(2)-N(2)-C(3)	111.3(5)
C(12)-N(2)-C(3)	110.4(4)	C(2)-N(2)-H(2)	107.9
C(12)-N(2)-H(2)	107.9	C(3)-N(2)-H(2)	107.9
C(14)-N(3)-C(4)	115.1(4)	C(14)-N(3)-C(5)	109.9(4)
C(4)-N(3)-C(5)	108.1(4)	C(13)-N(4)-C(6)	108.4(4)
C(13)-N(4)-C(7)	111.6(4)	C(6)-N(4)-C(7)	115.4(4)
C(13)-N(4)-H(4)	107.0	C(6)-N(4)-H(4)	107.0
C(7)-N(4)-H(4)	107.0	C(9)-N(5)-C(8)	109.7(4)
C(9)-N(5)-C(15)	112.9(4)	C(8)-N(5)-C(15)	114.0(4)
C(9)-N(5)-H(5)	106.6	C(8)-N(5)-H(5)	106.6
C(15)-N(5)-H(5)	106.6	F(6)-P(1)-F(5)	89.4(3)
F(6)-P(1)-F(2)	90.4(3)	F(5)-P(1)-F(2)	179.8(3)
F(6)-P(1)-F(3)	179.6(3)	F(5)-P(1)-F(3)	90.1(2)
F(2)-P(1)-F(3)	90.0(2)	F(6)-P(1)-F(1)	90.3(2)
F(5)-P(1)-F(1)	90.0(2)	F(2)-P(1)-F(1)	89.8(2)
F(3)-P(1)-F(1)	89.8(2)	F(6)-P(1)-F(4)	90.4(2)
F(5)-P(1)-F(4)	90.1(2)	F(2)-P(1)-F(4)	90.1(2)
F(3)-P(1)-F(4)	89.53(19)	F(1)-P(1)-F(4)	179.3(2)
F(9)-P(2)-F(8)	90.9(2)	F(9)-P(2)-F(7)	92.6(3)
F(8)-P(2)-F(7)	89.7(2)	F(9)-P(2)-F(10)	89.8(2)
F(8)-P(2)-F(10)	91.05(19)	F(7)-P(2)-F(10)	177.5(3)
F(9)-P(2)-F(11)	90.3(2)	F(8)-P(2)-F(11)	178.8(2)
F(7)-P(2)-F(11)	90.2(2)	F(10)-P(2)-F(11)	89.0(2)
F(9)-P(2)-F(12)	178.0(2)	F(8)-P(2)-F(12)	90.5(2)
F(7)-P(2)-F(12)	88.8(3)	F(10)-P(2)-F(12)	88.8(2)
F(11)-P(2)-F(12)	88.3(2)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	29(1)	29(1)	35(1)	1(1)	-1(1)	5(1)
C(1)	35(3)	37(3)	23(3)	4(2)	-1(2)	0(2)
C(2)	36(3)	33(3)	36(3)	16(2)	-4(2)	0(2)
C(3)	18(3)	22(2)	37(3)	3(2)	6(2)	-2(2)
C(4)	21(2)	23(2)	29(2)	0(2)	2(2)	-6(2)
C(5)	17(2)	23(2)	21(2)	0(2)	-5(2)	-1(2)
C(6)	22(3)	23(2)	22(2)	-1(2)	-3(2)	-3(2)
C(7)	22(2)	18(2)	27(3)	3(2)	2(2)	1(2)
C(8)	20(2)	18(2)	33(3)	2(2)	-1(2)	-3(2)
C(9)	25(2)	20(2)	34(3)	-5(2)	-9(2)	-1(2)
C(10)	26(2)	24(3)	24(3)	-5(2)	-6(2)	5(2)
C(11)	26(3)	28(3)	41(3)	-3(2)	-7(2)	6(2)
C(12)	34(3)	24(3)	55(4)	-5(3)	5(3)	0(2)
C(13)	36(3)	50(4)	26(3)	-7(3)	14(2)	-6(3)
C(14)	22(3)	23(2)	20(2)	-1(2)	1(2)	1(2)
C(15)	18(2)	21(2)	23(2)	-5(2)	1(2)	4(2)
C(16)	21(3)	34(3)	48(4)	15(3)	0(2)	2(2)
C(17)	50(4)	34(4)	59(4)	10(3)	-1(3)	0(3)
N(1)	23(2)	22(2)	25(2)	-1(2)	-2(2)	3(2)
N(2)	24(2)	19(2)	32(2)	5(2)	3(2)	-3(2)
N(3)	16(2)	16(2)	21(2)	1(2)	2(2)	3(2)
N(4)	23(2)	24(2)	20(2)	1(2)	0(2)	1(2)
N(5)	18(2)	13(2)	22(2)	-4(2)	-1(2)	1(2)
N(6)	33(3)	53(4)	58(4)	4(3)	-3(2)	7(3)
P(1)	27(1)	21(1)	49(1)	10(1)	10(1)	3(1)
F(1)	54(2)	27(2)	56(2)	15(2)	3(2)	6(2)
F(2)	57(3)	56(2)	80(3)	21(2)	-18(2)	-29(2)
F(3)	39(2)	39(2)	59(2)	5(2)	18(2)	11(2)
F(4)	38(2)	36(2)	61(2)	23(2)	16(2)	10(1)
F(5)	75(3)	29(2)	67(3)	-5(2)	-5(2)	-6(2)
F(6)	67(3)	76(3)	82(3)	38(2)	46(3)	38(3)
P(2)	22(1)	35(1)	20(1)	-6(1)	3(1)	-4(1)
F(7)	56(2)	131(4)	27(2)	0(2)	-7(2)	-48(3)
F(8)	39(2)	67(3)	30(2)	-1(2)	8(2)	-21(2)
F(9)	73(3)	47(2)	75(3)	15(2)	16(2)	25(2)
F(10)	45(2)	61(2)	28(2)	-7(2)	-4(2)	-12(2)
F(11)	33(2)	67(2)	34(2)	-4(2)	11(1)	-18(2)
F(12)	75(3)	41(2)	66(3)	-12(2)	32(2)	6(2)

Table S9. Anisotropic displacement parameters (Å²x 10³) for $H_3 3^{3+}$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}]$

	X	у	Z	U(eq)
H(1A)	3819	3836	7301	38
H(1B)	5492	3483	7601	38
H(2A)	5728	2160	7038	42
H(2B)	3820	2177	7239	42
H(3A)	1563	2258	6458	31
H(3B)	2000	3283	6706	31
H(4A)	2051	2872	5585	29
H(4B)	496	3351	5887	29
H(5A)	1537	5311	5287	24
H(5B)	573	4316	5214	24
H(6A)	2235	4684	4453	27
H(6B)	2756	3685	4720	27
H(7A)	3621	6043	5041	27
H(7B)	5276	6107	4678	27
H(8A)	6909	5607	5433	28
H(8B)	5977	6597	5545	28
H(9A)	6236	6376	6560	31
H(9B)	7408	5517	6359	31
H(10A)	6546	5294	7273	30
H(10B)	4630	5270	7079	30
H(11A)	8131	3855	7257	47
H(11B)	8369	4194	6642	47
H(11C)	7800	3120	6772	47
H(12A)	5565	1457	6180	57
H(12B)	4035	1675	5779	57
H(12C)	3711	1121	6337	57
H(13A)	4953	4903	4012	56
H(13B)	5264	3830	4214	56
H(13C)	6615	4644	4344	56
H(14A)	2417	4667	6562	26
H(14B)	992	5175	6206	26
H(15A)	2891	6212	5817	25
H(15B)	3297	6225	6454	25
H(17A)	400	8548	6579	72
H(17B)	-723	7829	6929	72
H(17C)	-1590	8535	6503	72
H(2)	4630(30)	2970(20)	6283(8)	30
H(4)	4980(20)	4404(16)	5061(12)	27
H(5)	5039(5)	4920(30)	5968(3)	21

Table S10. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for $H_3 3^{3+}$.

5.3 X-Ray Crystallograpy of Cu(3)²⁺ (CCDC 1917396)

SCrALS Code SWOSU059 Chemist Code: GB08A (from MeNO₂-ether) Crystal Size: 0.04 x 0.02 x 0.002 Crystal Habit: violet plate

Intensity data were collected at 150K on a D8 goniostat equipped with a Bruker PHOTON100 CMOS detector at Beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to λ =0.7749Å. For data collection frames were measured for a duration of 3-s at 0.50 intervals of ω . The data frames were collected using the program APEX3 and processed using the program SAINT routine within APEX3. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS.

Acknowledgements, References and Notes:

(1) Crystallographic data were collected through the SCrALS (Service Crystallography at Advanced Light Source) program at the Small-Crystal Crystallography Beamline 11.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The ALS is supported by the U.S. Department of Energy, Office of Energy Sciences Materials Sciences Division, under contract DE-AC02-05CH11231.

(2) APEX3 v2016.1.0 and SAINT v8.37A data collection and data processing programs, respectively. Bruker Analytical X-ray Instruments, Inc., Madison, WI; SADABS v2014.5 semi-empirical absorption and beam correction program. G.M. Sheldrick, University of Göttingen, Germany. Table S11. Crystal data and structure refinement for $Cu(3)^{2+}$.

Identification code	$Cu(3)^{2+}$ (GB08A)		
Empirical formula	C15 H33 Cl2 Cu N5 O1.79		
Chemical formula	C15H33N5Cu, 1.55Cl, 0.45(ClO4)		
Formula weight	446.58		
Temperature	150(2) K		
Wavelength	0.7749 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	a = 8.8067(14) Å	$\alpha = 90^{\circ}$	
	b = 15.792(2) Å	$\beta=90.357(4)^\circ$	
	c = 14.030(2) Å	$\gamma=90^\circ$	
Volume	1951.1(5) Å ³		
Z	4		
Density (calculated)	1.520 Mg/m ³		
Absorption coefficient	1.783 mm ⁻¹		
F(000)	941		
Crystal size	0.040 x 0.020 x 0.002 mm ³		
θ range for data collection	2.117 to 29.076°		
Index ranges	-11≤h≤11, -19≤k≤19, -17≤l≤17		
Reflections collected	20954		
Independent reflections	4026 [R(int) = 0.1643]		
Completeness to $\theta = 27.706^{\circ}$	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.9281 and 0.7057		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	4026 / 28 / 268		
Goodness-of-fit on F ²	1.042		
Final R indices $[I>2\sigma(I)]$	R1 = 0.0787, $wR2 = 0.1748$		
R indices (all data)	R1 = 0.1734, wR2 = 0.2109		
Largest diff. peak and hole	1.111 and -0.875 eÅ ⁻³		

Table S12. Atomic coordinates $[x10^4]$ and equivalent isotropic displacement parameters $[\mathring{A}^2x10^3]$ for **Cu(3)**²⁺. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Ζ	U(eq)
Cu(1)	7408(1)	2526(1)	9150(1)	26(1)
N(1)	5986(7)	3290(4)	8421(4)	30(2)
N(2)	5750(7)	1633(4)	9045(4)	28(2)
N(3)	8942(7)	1565(4)	9229(4)	31(2)
N(4)	9118(7)	3263(4)	8630(4)	32(2)
N(5)	7259(7)	3478(4)	10254(4)	28(2)
C(1)	5043(10)	2698(5)	7846(6)	41(2)
C(2)	4503(9)	1985(5)	8448(5)	39(2)
C(3)	5123(10)	1305(5)	9945(6)	44(2)
C(4)	6604(10)	967(5)	8518(6)	38(2)
C(5)	8076(10)	773(5)	9027(6)	45(2)
C(6)	9853(9)	1453(5)	10117(5)	40(2)
C(7)	9956(9)	1801(5)	8430(5)	35(2)
C(8)	10452(9)	2703(5)	8527(6)	40(2)
C(9)	8501(9)	3528(5)	7681(5)	38(2)
C(10)	6902(9)	3874(5)	7798(6)	42(2)
C(11)	9399(10)	3987(5)	9279(6)	42(2)
C(12)	8828(9)	3809(5)	10271(6)	41(2)
C(13)	5128(10)	3754(5)	9146(5)	39(2)
C(14)	6146(9)	4122(5)	9906(6)	37(2)
C(15)	6830(10)	3166(6)	11205(5)	42(2)
Cl(1)	7435(3)	6584(3)	8987(2)	83(2)
Cl(1A)	7430(20)	7195(11)	9263(12)	24(4)
Cl(1B)	7000(30)	5911(18)	8550(20)	48(8)
Cl(2)	2590(10)	9722(4)	7923(4)	21(2)
Cl(2A)	2478(14)	9741(8)	7980(9)	70(6)
O(1)	2503(16)	10144(7)	8742(8)	56(5)
O(2)	2699(14)	8967(7)	8049(8)	42(4)
O(3)	1116(17)	9842(10)	7671(11)	114(6)
O(4)	3330(20)	10047(9)	7365(10)	100(8)
H(1A)	5649	2473	7310	50
H(1B)	4160	3005	7575	50
H(2A)	3676	2187	8865	47
H(2B)	4086	1533	8033	47
H(3A)	4379	860	9805	65
H(3B)	4627	1766	10291	65
H(3C)	5946	1070	10337	65
H(4A)	6817	1166	7863	46

H(4B)	5981	447	8473	46
H(5A)	7860	478	9633	53
H(5B)	8698	392	8627	53
H(6A)	10562	981	10036	60
H(6B)	9173	1333	10650	60
H(6C)	10425	1973	10250	60
H(7A)	9411	1724	7816	42
H(7B)	10857	1426	8430	42
H(8A)	11123	2762	9091	48
H(8B)	11036	2871	7956	48
H(9A)	8482	3036	7244	46
H(9B)	9162	3968	7401	46
H(10A)	6947	4444	8091	50
H(10B)	6406	3927	7166	50
H(11A)	8884	4497	9023	50
H(11B)	10502	4105	9307	50
H(12A)	9504	3391	10585	49
H(12B)	8859	4338	10650	49
H(13A)	4387	3367	9446	47
H(13B)	4552	4218	8835	47
H(14A)	6699	4615	9644	44
H(14B)	5522	4321	10445	44
H(15A)	6911	3629	11668	63
H(15B)	7512	2705	11394	63
H(15C)	5782	2958	11186	63

Cu(1)-N(1)	2.013(6)	Cu(1)-N(3)	2.034(6)
Cu(1)-N(2)	2.035(6)	Cu(1)-N(4)	2.042(6)
Cu(1)-N(5)	2.162(6)	N(1)-C(13)	1.467(9)
N(1)-C(1)	1.486(9)	N(1)-C(10)	1.508(9)
N(2)-C(3)	1.475(9)	N(2)-C(2)	1.486(9)
N(2)-C(4)	1.491(9)	N(3)-C(7)	1.485(9)
N(3)-C(6)	1.488(9)	N(3)-C(5)	1.491(10)
N(4)-C(8)	1.479(9)	N(4)-C(11)	1.481(9)
N(4)-C(9)	1.494(9)	N(5)-C(15)	1.474(9)
N(5)-C(12)	1.477(9)	N(5)-C(14)	1.493(9)
C(1)-C(2)	1.487(11)	C(4)-C(5)	1.507(11)
C(7)-C(8)	1.497(11)	C(9)-C(10)	1.521(11)
C(11)-C(12)	1.509(11)	C(13)-C(14)	1.505(11)
Cl(2A)-O(2)	1.242(12)	Cl(2A)-O(1)	1.243(11)
Cl(2A)-O(4)	1.246(13)	Cl(2A)-O(3)	1.283(14)
N(1)-Cu(1)-N(3)	152.3(2)	N(1)-Cu(1)-N(2)	86.3(2)
N(3)-Cu(1)-N(2)	87.9(2)	N(1)-Cu(1)-N(4)	86.2(3)
N(3)-Cu(1)-N(4)	87.3(3)	N(2)-Cu(1)-N(4)	154.1(2)
N(1)-Cu(1)-N(5)	84.7(2)	N(3)-Cu(1)-N(5)	121.5(2)
N(2)-Cu(1)-N(5)	119.2(2)	N(4)-Cu(1)-N(5)	84.7(2)
C(13)-N(1)-C(1)	113.7(6)	C(13)-N(1)-C(10)	112.0(6)
C(1)-N(1)-C(10)	111.7(6)	C(13)-N(1)-Cu(1)	105.6(4)
C(1)-N(1)-Cu(1)	104.1(4)	C(10)-N(1)-Cu(1)	109.2(5)
C(3)-N(2)-C(2)	109.6(6)	C(3)-N(2)-C(4)	111.7(6)
C(2)-N(2)-C(4)	111.0(6)	C(3)-N(2)-Cu(1)	117.0(5)
C(2)-N(2)-Cu(1)	108.0(5)	C(4)-N(2)-Cu(1)	99.2(4)
C(7)-N(3)-C(6)	109.8(6)	C(7)-N(3)-C(5)	112.1(6)
C(6)-N(3)-C(5)	109.4(6)	C(7)-N(3)-Cu(1)	100.0(5)
C(6)-N(3)-Cu(1)	119.2(5)	C(5)-N(3)-Cu(1)	106.0(5)
C(8)-N(4)-C(11)	113.1(6)	C(8)-N(4)-C(9)	111.4(6)
C(11)-N(4)-C(9)	113.0(6)	C(8)-N(4)-Cu(1)	106.4(5)
C(11)-N(4)-Cu(1)	109.9(5)	C(9)-N(4)-Cu(1)	102.3(5)
C(15)-N(5)-C(12)	110.4(6)	C(15)-N(5)-C(14)	110.6(6)
C(12)-N(5)-C(14)	112.1(6)	C(15)-N(5)-Cu(1)	115.7(5)
C(12)-N(5)-Cu(1)	101.4(4)	C(14)-N(5)-Cu(1)	106.4(4)
N(1)-C(1)-C(2)	110.3(6)	N(2)-C(2)-C(1)	111.5(7)
N(2)-C(4)-C(5)	110.1(6)	N(3)-C(5)-C(4)	110.9(6)
N(3)-C(7)-C(8)	110.3(6)	N(4)-C(8)-C(7)	110.3(7)
N(4)-C(9)-C(10)	109.7(6)	N(1)-C(10)-C(9)	109.9(6)
N(4)-C(11)-C(12)	111.6(6)	N(5)-C(12)-C(11)	111.5(6)

Table S13. Bond lengths [Å] and angles $[^{\circ}]$ for $Cu(3)^{2+}$.

N(1)-C(13)-C(14)	112.1(7)	N(5)-C(14)-C(13)	110.9(6)
O(2)-Cl(2A)-O(1)	115.7(11)	O(2)-Cl(2A)-O(4)	109.9(11)
O(1)-Cl(2A)-O(4)	112.9(11)	O(2)-Cl(2A)-O(3)	107.1(11)
O(1)-Cl(2A)-O(3)	103.8(11)	O(4)-Cl(2A)-O(3)	106.6(12)

Table S14. Anisotropic displacement parameters $[Å^2x10^3]$ for **Cu(3)**²⁺. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+...+2hka^*b^*U_{12}]$

	U11	U22	U33	U23	U13	U12
Cu(1)	21(1)	26(1)	31(1)	0(1)	1(1)	2(1)
N(1)	27(4)	37(4)	25(3)	3(3)	3(3)	5(3)
N(2)	22(4)	34(4)	29(3)	-1(3)	1(3)	6(3)
N(3)	26(4)	33(4)	34(4)	-3(3)	-3(3)	1(3)
N(4)	34(4)	32(4)	30(4)	-1(3)	10(3)	-2(3)
N(5)	24(4)	34(4)	27(3)	0(3)	-2(3)	1(3)
C(1)	35(5)	53(6)	36(5)	2(4)	-10(4)	8(4)
C(2)	31(5)	53(6)	35(5)	0(4)	-4(4)	3(4)
C(3)	41(6)	45(5)	46(5)	12(4)	6(4)	-8(4)
C(4)	40(6)	36(5)	39(5)	-8(4)	1(4)	-3(4)
C(5)	45(6)	36(5)	52(6)	0(4)	0(4)	8(4)
C(6)	34(5)	47(5)	39(5)	1(4)	1(4)	12(4)
C(7)	36(5)	42(5)	27(4)	-5(4)	9(4)	3(4)
C(8)	27(5)	51(6)	43(5)	-6(4)	6(4)	4(4)
C(9)	38(5)	39(5)	39(5)	9(4)	5(4)	-6(4)
C(10)	29(5)	49(5)	48(5)	12(4)	2(4)	3(4)
C(11)	38(6)	36(5)	52(6)	-5(4)	6(4)	-13(4)
C(12)	30(5)	37(5)	55(6)	-14(4)	-3(4)	-10(4)
C(13)	46(6)	33(5)	39(5)	5(4)	0(4)	19(4)
C(14)	39(5)	24(4)	47(5)	-4(4)	2(4)	11(4)
C(15)	44(6)	57(6)	25(4)	-2(4)	3(4)	4(4)
Cl(1)	22(2)	187(5)	41(2)	-4(2)	2(1)	-7(2)
Cl(2)	32(4)	20(4)	10(3)	-5(3)	2(2)	0(3)
Cl(2A)) 23(6)	65(10)	122(12)	28(8)	-14(6)	-5(6)
O(1)	114(13)	30(8)	25(7)	-17(6)	18(7)	11(7)
O(2)	57(10)	35(8)	34(7)	-18(6)	6(6)	9(7)
O(3)	158(14)	90(10)	93(10)	-20(8)	19(9)	10(10)
O(4)	180(20)	59(11)	64(13)	11(9)	68(13)	-2(12)

6. References:

1. Kovacs, Z.; Archer, E. A.; Russell, M. K.; Sherry, A. D., A convenient synthesis of 1,4,7,10,13-pentaazacyclopentadecane. *Synthetic Communications* **1999**, *29*, 2817-2822.

2. Hubin, T. J.; McCormick, J. M.; Collinson, S. R.; Alcock, N. W.; Busch, D. H., Ultra rigid crossbridged tetraazamacrocycles as ligands - the challenge and the solution. *Chemical Communications* **1998**, (16), 1675-1676.